ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.33
Committed: Mon Aug 25 23:50:24 2003 UTC (20 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.32: +2 -2 lines
Log Message:
Add parentheses to placate javadoc filter

File Contents

# Content
1 package java.util;
2
3 /**
4 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
5 * This queue orders
6 * elements according to an order specified at construction time, which is
7 * specified in the same manner as {@link java.util.TreeSet} and
8 * {@link java.util.TreeMap}: elements are ordered
9 * either according to their <i>natural order</i> (see {@link Comparable}), or
10 * according to a {@link java.util.Comparator}, depending on which
11 * constructor is used.
12 * <p>The <em>head</em> of this queue is the <em>least</em> element with
13 * respect to the specified ordering.
14 * If multiple elements are tied for least value, the
15 * head is one of those elements. A priority queue does not permit
16 * <tt>null</tt> elements.
17 *
18 * <p>The {@link #remove()} and {@link #poll()} methods remove and
19 * return the head of the queue.
20 *
21 * <p>The {@link #element()} and {@link #peek()} methods return, but do
22 * not delete, the head of the queue.
23 *
24 * <p>A priority queue has a <i>capacity</i>. The capacity is the
25 * size of the array used internally to store the elements on the
26 * queue.
27 * It is always at least as large as the queue size. As
28 * elements are added to a priority queue, its capacity grows
29 * automatically. The details of the growth policy are not specified.
30 *
31 * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
32 * guaranteed to traverse the elements of the PriorityQueue in any
33 * particular order. If you need ordered traversal, consider using
34 * <tt>Arrays.sort(pq.toArray())</tt>.
35 *
36 * <p> <strong>Note that this implementation is not synchronized.</strong>
37 * Multiple threads should not access a <tt>PriorityQueue</tt>
38 * instance concurrently if any of the threads modifies the list
39 * structurally. Instead, use the thread-safe {@link
40 * java.util.concurrent.BlockingPriorityQueue} class.
41 *
42 *
43 * <p>Implementation note: this implementation provides O(log(n)) time
44 * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
45 * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
46 * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
47 * constant time for the retrieval methods (<tt>peek</tt>,
48 * <tt>element</tt>, and <tt>size</tt>).
49 *
50 * <p>This class is a member of the
51 * <a href="{@docRoot}/../guide/collections/index.html">
52 * Java Collections Framework</a>.
53 * @since 1.5
54 * @author Josh Bloch
55 */
56 public class PriorityQueue<E> extends AbstractQueue<E>
57 implements Queue<E>, java.io.Serializable {
58
59 private static final long serialVersionUID = -7720805057305804111L;
60
61 private static final int DEFAULT_INITIAL_CAPACITY = 11;
62
63 /**
64 * Priority queue represented as a balanced binary heap: the two children
65 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
66 * ordered by comparator, or by the elements' natural ordering, if
67 * comparator is null: For each node n in the heap and each descendant d
68 * of n, n <= d.
69 *
70 * The element with the lowest value is in queue[1], assuming the queue is
71 * nonempty. (A one-based array is used in preference to the traditional
72 * zero-based array to simplify parent and child calculations.)
73 *
74 * queue.length must be >= 2, even if size == 0.
75 */
76 private transient Object[] queue;
77
78 /**
79 * The number of elements in the priority queue.
80 */
81 private int size = 0;
82
83 /**
84 * The comparator, or null if priority queue uses elements'
85 * natural ordering.
86 */
87 private final Comparator<? super E> comparator;
88
89 /**
90 * The number of times this priority queue has been
91 * <i>structurally modified</i>. See AbstractList for gory details.
92 */
93 private transient int modCount = 0;
94
95 /**
96 * Creates a <tt>PriorityQueue</tt> with the default initial capacity
97 * (11) that orders its elements according to their natural
98 * ordering (using <tt>Comparable</tt>).
99 */
100 public PriorityQueue() {
101 this(DEFAULT_INITIAL_CAPACITY, null);
102 }
103
104 /**
105 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
106 * that orders its elements according to their natural ordering
107 * (using <tt>Comparable</tt>).
108 *
109 * @param initialCapacity the initial capacity for this priority queue.
110 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
111 * than 1
112 */
113 public PriorityQueue(int initialCapacity) {
114 this(initialCapacity, null);
115 }
116
117 /**
118 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
119 * that orders its elements according to the specified comparator.
120 *
121 * @param initialCapacity the initial capacity for this priority queue.
122 * @param comparator the comparator used to order this priority queue.
123 * If <tt>null</tt> then the order depends on the elements' natural
124 * ordering.
125 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
126 * than 1
127 */
128 public PriorityQueue(int initialCapacity,
129 Comparator<? super E> comparator) {
130 if (initialCapacity < 1)
131 throw new IllegalArgumentException();
132 this.queue = new Object[initialCapacity + 1];
133 this.comparator = comparator;
134 }
135
136 /**
137 * Common code to initialize underlying queue array across
138 * constructors below.
139 */
140 private void initializeArray(Collection<? extends E> c) {
141 int sz = c.size();
142 int initialCapacity = (int)Math.min((sz * 110L) / 100,
143 Integer.MAX_VALUE - 1);
144 if (initialCapacity < 1)
145 initialCapacity = 1;
146
147 this.queue = new Object[initialCapacity + 1];
148 }
149
150 /**
151 * Initially fill elements of the queue array under the
152 * knowledge that it is sorted or is another PQ, in which
153 * case we can just place the elements without fixups.
154 */
155 private void fillFromSorted(Collection<? extends E> c) {
156 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
157 queue[++size] = i.next();
158 }
159
160
161 /**
162 * Initially fill elements of the queue array that is
163 * not to our knowledge sorted, so we must add them
164 * one by one.
165 */
166 private void fillFromUnsorted(Collection<? extends E> c) {
167 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
168 add(i.next());
169 }
170
171 /**
172 * Creates a <tt>PriorityQueue</tt> containing the elements in the
173 * specified collection. The priority queue has an initial
174 * capacity of 110% of the size of the specified collection or 1
175 * if the collection is empty. If the specified collection is an
176 * instance of a {@link java.util.SortedSet} or is another
177 * <tt>PriorityQueue</tt>, the priority queue will be sorted
178 * according to the same comparator, or according to its elements'
179 * natural order if the collection is sorted according to its
180 * elements' natural order. Otherwise, the priority queue is
181 * ordered according to its elements' natural order.
182 *
183 * @param c the collection whose elements are to be placed
184 * into this priority queue.
185 * @throws ClassCastException if elements of the specified collection
186 * cannot be compared to one another according to the priority
187 * queue's ordering.
188 * @throws NullPointerException if <tt>c</tt> or any element within it
189 * is <tt>null</tt>
190 */
191 public PriorityQueue(Collection<? extends E> c) {
192 initializeArray(c);
193 if (c instanceof SortedSet) {
194 // @fixme double-cast workaround for compiler
195 SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
196 comparator = (Comparator<? super E>)s.comparator();
197 fillFromSorted(s);
198 } else if (c instanceof PriorityQueue) {
199 PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
200 comparator = (Comparator<? super E>)s.comparator();
201 fillFromSorted(s);
202 } else {
203 comparator = null;
204 fillFromUnsorted(c);
205 }
206 }
207
208 /**
209 * Creates a <tt>PriorityQueue</tt> containing the elements in the
210 * specified collection. The priority queue has an initial
211 * capacity of 110% of the size of the specified collection or 1
212 * if the collection is empty. This priority queue will be sorted
213 * according to the same comparator as the given collection, or
214 * according to its elements' natural order if the collection is
215 * sorted according to its elements' natural order.
216 *
217 * @param c the collection whose elements are to be placed
218 * into this priority queue.
219 * @throws ClassCastException if elements of the specified collection
220 * cannot be compared to one another according to the priority
221 * queue's ordering.
222 * @throws NullPointerException if <tt>c</tt> or any element within it
223 * is <tt>null</tt>
224 */
225 public PriorityQueue(PriorityQueue<? extends E> c) {
226 initializeArray(c);
227 comparator = (Comparator<? super E>)c.comparator();
228 fillFromSorted(c);
229 }
230
231 /**
232 * Creates a <tt>PriorityQueue</tt> containing the elements in the
233 * specified collection. The priority queue has an initial
234 * capacity of 110% of the size of the specified collection or 1
235 * if the collection is empty. This priority queue will be sorted
236 * according to the same comparator as the given collection, or
237 * according to its elements' natural order if the collection is
238 * sorted according to its elements' natural order.
239 *
240 * @param c the collection whose elements are to be placed
241 * into this priority queue.
242 * @throws ClassCastException if elements of the specified collection
243 * cannot be compared to one another according to the priority
244 * queue's ordering.
245 * @throws NullPointerException if <tt>c</tt> or any element within it
246 * is <tt>null</tt>
247 */
248 public PriorityQueue(SortedSet<? extends E> c) {
249 initializeArray(c);
250 comparator = (Comparator<? super E>)c.comparator();
251 fillFromSorted(c);
252 }
253
254 /**
255 * Resize array, if necessary, to be able to hold given index
256 */
257 private void grow(int index) {
258 int newlen = queue.length;
259 if (index < newlen) // don't need to grow
260 return;
261 if (index == Integer.MAX_VALUE)
262 throw new OutOfMemoryError();
263 while (newlen <= index) {
264 if (newlen >= Integer.MAX_VALUE / 2) // avoid overflow
265 newlen = Integer.MAX_VALUE;
266 else
267 newlen <<= 2;
268 }
269 Object[] newQueue = new Object[newlen];
270 System.arraycopy(queue, 0, newQueue, 0, queue.length);
271 queue = newQueue;
272 }
273
274 // Queue Methods
275
276
277
278 /**
279 * Add the specified element to this priority queue.
280 *
281 * @return <tt>true</tt>
282 * @throws ClassCastException if the specified element cannot be compared
283 * with elements currently in the priority queue according
284 * to the priority queue's ordering.
285 * @throws NullPointerException if the specified element is <tt>null</tt>.
286 */
287 public boolean offer(E o) {
288 if (o == null)
289 throw new NullPointerException();
290 modCount++;
291 ++size;
292
293 // Grow backing store if necessary
294 if (size >= queue.length)
295 grow(size);
296
297 queue[size] = o;
298 fixUp(size);
299 return true;
300 }
301
302 public E poll() {
303 if (size == 0)
304 return null;
305 return (E) remove(1);
306 }
307
308 public E peek() {
309 return (E) queue[1];
310 }
311
312 // Collection Methods - the first two override to update docs
313
314 /**
315 * Adds the specified element to this queue.
316 * @return <tt>true</tt> (as per the general contract of
317 * <tt>Collection.add</tt>).
318 *
319 * @throws NullPointerException {@inheritDoc}
320 * @throws ClassCastException if the specified element cannot be compared
321 * with elements currently in the priority queue according
322 * to the priority queue's ordering.
323 */
324 public boolean add(E o) {
325 return super.add(o);
326 }
327
328
329 /**
330 * Adds all of the elements in the specified collection to this queue.
331 * The behavior of this operation is undefined if
332 * the specified collection is modified while the operation is in
333 * progress. (This implies that the behavior of this call is undefined if
334 * the specified collection is this queue, and this queue is nonempty.)
335 * <p>
336 * This implementation iterates over the specified collection, and adds
337 * each object returned by the iterator to this collection, in turn.
338 * @throws NullPointerException {@inheritDoc}
339 * @throws ClassCastException if any element cannot be compared
340 * with elements currently in the priority queue according
341 * to the priority queue's ordering.
342 */
343 public boolean addAll(Collection<? extends E> c) {
344 return super.addAll(c);
345 }
346
347
348 /**
349 * Removes a single instance of the specified element from this
350 * queue, if it is present. More formally,
351 * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
352 * o.equals(e))</tt>, if the queue contains one or more such
353 * elements. Returns <tt>true</tt> if the queue contained the
354 * specified element (or equivalently, if the queue changed as a
355 * result of the call).
356 *
357 * <p>This implementation iterates over the queue looking for the
358 * specified element. If it finds the element, it removes the element
359 * from the queue using the iterator's remove method.<p>
360 *
361 */
362 public boolean remove(Object o) {
363 if (o == null)
364 return false;
365
366 if (comparator == null) {
367 for (int i = 1; i <= size; i++) {
368 if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
369 remove(i);
370 return true;
371 }
372 }
373 } else {
374 for (int i = 1; i <= size; i++) {
375 if (comparator.compare((E)queue[i], (E)o) == 0) {
376 remove(i);
377 return true;
378 }
379 }
380 }
381 return false;
382 }
383
384 /**
385 * Returns an iterator over the elements in this queue. The iterator
386 * does not return the elements in any particular order.
387 *
388 * @return an iterator over the elements in this queue.
389 */
390 public Iterator<E> iterator() {
391 return new Itr();
392 }
393
394 private class Itr implements Iterator<E> {
395 /**
396 * Index (into queue array) of element to be returned by
397 * subsequent call to next.
398 */
399 private int cursor = 1;
400
401 /**
402 * Index of element returned by most recent call to next or
403 * previous. Reset to 0 if this element is deleted by a call
404 * to remove.
405 */
406 private int lastRet = 0;
407
408 /**
409 * The modCount value that the iterator believes that the backing
410 * List should have. If this expectation is violated, the iterator
411 * has detected concurrent modification.
412 */
413 private int expectedModCount = modCount;
414
415 public boolean hasNext() {
416 return cursor <= size;
417 }
418
419 public E next() {
420 checkForComodification();
421 if (cursor > size)
422 throw new NoSuchElementException();
423 E result = (E) queue[cursor];
424 lastRet = cursor++;
425 return result;
426 }
427
428 public void remove() {
429 if (lastRet == 0)
430 throw new IllegalStateException();
431 checkForComodification();
432
433 PriorityQueue.this.remove(lastRet);
434 cursor--;
435 lastRet = 0;
436 expectedModCount = modCount;
437 }
438
439 final void checkForComodification() {
440 if (modCount != expectedModCount)
441 throw new ConcurrentModificationException();
442 }
443 }
444
445 public int size() {
446 return size;
447 }
448
449 /**
450 * Remove all elements from the priority queue.
451 */
452 public void clear() {
453 modCount++;
454
455 // Null out element references to prevent memory leak
456 for (int i=1; i<=size; i++)
457 queue[i] = null;
458
459 size = 0;
460 }
461
462 /**
463 * Removes and returns the ith element from queue. Recall
464 * that queue is one-based, so 1 <= i <= size.
465 *
466 */
467 private E remove(int i) {
468 assert i <= size;
469 modCount++;
470
471 E result = (E) queue[i];
472 queue[i] = queue[size];
473 queue[size--] = null; // Drop extra ref to prevent memory leak
474 if (i <= size)
475 fixDown(i);
476 return result;
477 }
478
479 /**
480 * Establishes the heap invariant (described above) assuming the heap
481 * satisfies the invariant except possibly for the leaf-node indexed by k
482 * (which may have a nextExecutionTime less than its parent's).
483 *
484 * This method functions by "promoting" queue[k] up the hierarchy
485 * (by swapping it with its parent) repeatedly until queue[k]
486 * is greater than or equal to its parent.
487 */
488 private void fixUp(int k) {
489 if (comparator == null) {
490 while (k > 1) {
491 int j = k >> 1;
492 if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
493 break;
494 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
495 k = j;
496 }
497 } else {
498 while (k > 1) {
499 int j = k >> 1;
500 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
501 break;
502 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
503 k = j;
504 }
505 }
506 }
507
508 /**
509 * Establishes the heap invariant (described above) in the subtree
510 * rooted at k, which is assumed to satisfy the heap invariant except
511 * possibly for node k itself (which may be greater than its children).
512 *
513 * This method functions by "demoting" queue[k] down the hierarchy
514 * (by swapping it with its smaller child) repeatedly until queue[k]
515 * is less than or equal to its children.
516 */
517 private void fixDown(int k) {
518 int j;
519 if (comparator == null) {
520 while ((j = k << 1) <= size && (j > 0)) {
521 if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
522 j++; // j indexes smallest kid
523 if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
524 break;
525 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
526 k = j;
527 }
528 } else {
529 while ((j = k << 1) <= size && (j > 0)) {
530 if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
531 j++; // j indexes smallest kid
532 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
533 break;
534 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
535 k = j;
536 }
537 }
538 }
539
540
541 /**
542 * Returns the comparator used to order this collection, or <tt>null</tt>
543 * if this collection is sorted according to its elements natural ordering
544 * (using <tt>Comparable</tt>).
545 *
546 * @return the comparator used to order this collection, or <tt>null</tt>
547 * if this collection is sorted according to its elements natural ordering.
548 */
549 public Comparator<? super E> comparator() {
550 return comparator;
551 }
552
553 /**
554 * Save the state of the instance to a stream (that
555 * is, serialize it).
556 *
557 * @serialData The length of the array backing the instance is
558 * emitted (int), followed by all of its elements (each an
559 * <tt>Object</tt>) in the proper order.
560 * @param s the stream
561 */
562 private void writeObject(java.io.ObjectOutputStream s)
563 throws java.io.IOException{
564 // Write out element count, and any hidden stuff
565 s.defaultWriteObject();
566
567 // Write out array length
568 s.writeInt(queue.length);
569
570 // Write out all elements in the proper order.
571 for (int i=0; i<size; i++)
572 s.writeObject(queue[i]);
573 }
574
575 /**
576 * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
577 * deserialize it).
578 * @param s the stream
579 */
580 private void readObject(java.io.ObjectInputStream s)
581 throws java.io.IOException, ClassNotFoundException {
582 // Read in size, and any hidden stuff
583 s.defaultReadObject();
584
585 // Read in array length and allocate array
586 int arrayLength = s.readInt();
587 queue = new Object[arrayLength];
588
589 // Read in all elements in the proper order.
590 for (int i=0; i<size; i++)
591 queue[i] = s.readObject();
592 }
593
594 }
595