ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.37
Committed: Sat Aug 30 11:44:53 2003 UTC (20 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.36: +2 -2 lines
Log Message:
Add cast

File Contents

# Content
1 package java.util;
2
3 /**
4 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
5 * This queue orders elements according to an order specified at construction
6 * time, which is specified in the same manner as {@link java.util.TreeSet}
7 * and {@link java.util.TreeMap}: elements are ordered either according to
8 * their <i>natural order</i> (see {@link Comparable}), or according to a
9 * {@link java.util.Comparator}, depending on which constructor is used.
10 * <p>The <em>head</em> of this queue is the <em>least</em> element with
11 * respect to the specified ordering. If multiple elements are tied for least
12 * value, the head is one of those elements. A priority queue does not permit
13 * <tt>null</tt> elements.
14 *
15 * <p>The {@link #remove()} and {@link #poll()} methods remove and
16 * return the head of the queue.
17 *
18 * <p>The {@link #element()} and {@link #peek()} methods return, but do
19 * not delete, the head of the queue.
20 *
21 * <p>A priority queue has a <i>capacity</i>. The capacity is the
22 * size of the array used internally to store the elements on the
23 * queue.
24 * It is always at least as large as the queue size. As
25 * elements are added to a priority queue, its capacity grows
26 * automatically. The details of the growth policy are not specified.
27 *
28 * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
29 * guaranteed to traverse the elements of the PriorityQueue in any
30 * particular order. If you need ordered traversal, consider using
31 * <tt>Arrays.sort(pq.toArray())</tt>.
32 *
33 * <p> <strong>Note that this implementation is not synchronized.</strong>
34 * Multiple threads should not access a <tt>PriorityQueue</tt>
35 * instance concurrently if any of the threads modifies the list
36 * structurally. Instead, use the thread-safe {@link
37 * java.util.concurrent.PriorityBlockingQueue} class.
38 *
39 *
40 * <p>Implementation note: this implementation provides O(log(n)) time
41 * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
42 * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
43 * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
44 * constant time for the retrieval methods (<tt>peek</tt>,
45 * <tt>element</tt>, and <tt>size</tt>).
46 *
47 * <p>This class is a member of the
48 * <a href="{@docRoot}/../guide/collections/index.html">
49 * Java Collections Framework</a>.
50 * @since 1.5
51 * @author Josh Bloch
52 */
53 public class PriorityQueue<E> extends AbstractQueue<E>
54 implements Queue<E>, java.io.Serializable {
55
56 private static final long serialVersionUID = -7720805057305804111L;
57
58 private static final int DEFAULT_INITIAL_CAPACITY = 11;
59
60 /**
61 * Priority queue represented as a balanced binary heap: the two children
62 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
63 * ordered by comparator, or by the elements' natural ordering, if
64 * comparator is null: For each node n in the heap and each descendant d
65 * of n, n <= d.
66 *
67 * The element with the lowest value is in queue[1], assuming the queue is
68 * nonempty. (A one-based array is used in preference to the traditional
69 * zero-based array to simplify parent and child calculations.)
70 *
71 * queue.length must be >= 2, even if size == 0.
72 */
73 private transient Object[] queue;
74
75 /**
76 * The number of elements in the priority queue.
77 */
78 private int size = 0;
79
80 /**
81 * The comparator, or null if priority queue uses elements'
82 * natural ordering.
83 */
84 private final Comparator<? super E> comparator;
85
86 /**
87 * The number of times this priority queue has been
88 * <i>structurally modified</i>. See AbstractList for gory details.
89 */
90 private transient int modCount = 0;
91
92 /**
93 * Creates a <tt>PriorityQueue</tt> with the default initial capacity
94 * (11) that orders its elements according to their natural
95 * ordering (using <tt>Comparable</tt>).
96 */
97 public PriorityQueue() {
98 this(DEFAULT_INITIAL_CAPACITY, null);
99 }
100
101 /**
102 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
103 * that orders its elements according to their natural ordering
104 * (using <tt>Comparable</tt>).
105 *
106 * @param initialCapacity the initial capacity for this priority queue.
107 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
108 * than 1
109 */
110 public PriorityQueue(int initialCapacity) {
111 this(initialCapacity, null);
112 }
113
114 /**
115 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
116 * that orders its elements according to the specified comparator.
117 *
118 * @param initialCapacity the initial capacity for this priority queue.
119 * @param comparator the comparator used to order this priority queue.
120 * If <tt>null</tt> then the order depends on the elements' natural
121 * ordering.
122 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
123 * than 1
124 */
125 public PriorityQueue(int initialCapacity,
126 Comparator<? super E> comparator) {
127 if (initialCapacity < 1)
128 throw new IllegalArgumentException();
129 this.queue = new Object[initialCapacity + 1];
130 this.comparator = comparator;
131 }
132
133 /**
134 * Common code to initialize underlying queue array across
135 * constructors below.
136 */
137 private void initializeArray(Collection<? extends E> c) {
138 int sz = c.size();
139 int initialCapacity = (int)Math.min((sz * 110L) / 100,
140 Integer.MAX_VALUE - 1);
141 if (initialCapacity < 1)
142 initialCapacity = 1;
143
144 this.queue = new Object[initialCapacity + 1];
145 }
146
147 /**
148 * Initially fill elements of the queue array under the
149 * knowledge that it is sorted or is another PQ, in which
150 * case we can just place the elements in the order presented.
151 */
152 private void fillFromSorted(Collection<? extends E> c) {
153 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
154 queue[++size] = i.next();
155 }
156
157 /**
158 * Initially fill elements of the queue array that is not to our knowledge
159 * sorted, so we must rearrange the elements to guarantee the heap
160 * invariant.
161 */
162 private void fillFromUnsorted(Collection<? extends E> c) {
163 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
164 queue[++size] = i.next();
165 heapify();
166 }
167
168 /**
169 * Creates a <tt>PriorityQueue</tt> containing the elements in the
170 * specified collection. The priority queue has an initial
171 * capacity of 110% of the size of the specified collection or 1
172 * if the collection is empty. If the specified collection is an
173 * instance of a {@link java.util.SortedSet} or is another
174 * <tt>PriorityQueue</tt>, the priority queue will be sorted
175 * according to the same comparator, or according to its elements'
176 * natural order if the collection is sorted according to its
177 * elements' natural order. Otherwise, the priority queue is
178 * ordered according to its elements' natural order.
179 *
180 * @param c the collection whose elements are to be placed
181 * into this priority queue.
182 * @throws ClassCastException if elements of the specified collection
183 * cannot be compared to one another according to the priority
184 * queue's ordering.
185 * @throws NullPointerException if <tt>c</tt> or any element within it
186 * is <tt>null</tt>
187 */
188 public PriorityQueue(Collection<? extends E> c) {
189 initializeArray(c);
190 if (c instanceof SortedSet) {
191 // @fixme double-cast workaround for compiler
192 SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
193 comparator = (Comparator<? super E>)s.comparator();
194 fillFromSorted(s);
195 } else if (c instanceof PriorityQueue) {
196 PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
197 comparator = (Comparator<? super E>)s.comparator();
198 fillFromSorted(s);
199 } else {
200 comparator = null;
201 fillFromUnsorted(c);
202 }
203 }
204
205 /**
206 * Creates a <tt>PriorityQueue</tt> containing the elements in the
207 * specified collection. The priority queue has an initial
208 * capacity of 110% of the size of the specified collection or 1
209 * if the collection is empty. This priority queue will be sorted
210 * according to the same comparator as the given collection, or
211 * according to its elements' natural order if the collection is
212 * sorted according to its elements' natural order.
213 *
214 * @param c the collection whose elements are to be placed
215 * into this priority queue.
216 * @throws ClassCastException if elements of the specified collection
217 * cannot be compared to one another according to the priority
218 * queue's ordering.
219 * @throws NullPointerException if <tt>c</tt> or any element within it
220 * is <tt>null</tt>
221 */
222 public PriorityQueue(PriorityQueue<? extends E> c) {
223 initializeArray(c);
224 comparator = (Comparator<? super E>)c.comparator();
225 fillFromSorted(c);
226 }
227
228 /**
229 * Creates a <tt>PriorityQueue</tt> containing the elements in the
230 * specified collection. The priority queue has an initial
231 * capacity of 110% of the size of the specified collection or 1
232 * if the collection is empty. This priority queue will be sorted
233 * according to the same comparator as the given collection, or
234 * according to its elements' natural order if the collection is
235 * sorted according to its elements' natural order.
236 *
237 * @param c the collection whose elements are to be placed
238 * into this priority queue.
239 * @throws ClassCastException if elements of the specified collection
240 * cannot be compared to one another according to the priority
241 * queue's ordering.
242 * @throws NullPointerException if <tt>c</tt> or any element within it
243 * is <tt>null</tt>
244 */
245 public PriorityQueue(SortedSet<? extends E> c) {
246 initializeArray(c);
247 comparator = (Comparator<? super E>)c.comparator();
248 fillFromSorted(c);
249 }
250
251 /**
252 * Resize array, if necessary, to be able to hold given index
253 */
254 private void grow(int index) {
255 int newlen = queue.length;
256 if (index < newlen) // don't need to grow
257 return;
258 if (index == Integer.MAX_VALUE)
259 throw new OutOfMemoryError();
260 while (newlen <= index) {
261 if (newlen >= Integer.MAX_VALUE / 2) // avoid overflow
262 newlen = Integer.MAX_VALUE;
263 else
264 newlen <<= 2;
265 }
266 Object[] newQueue = new Object[newlen];
267 System.arraycopy(queue, 0, newQueue, 0, queue.length);
268 queue = newQueue;
269 }
270
271
272 // Queue Methods
273
274 /**
275 * Add the specified element to this priority queue.
276 *
277 * @return <tt>true</tt>
278 * @throws ClassCastException if the specified element cannot be compared
279 * with elements currently in the priority queue according
280 * to the priority queue's ordering.
281 * @throws NullPointerException if the specified element is <tt>null</tt>.
282 */
283 public boolean offer(E o) {
284 if (o == null)
285 throw new NullPointerException();
286 modCount++;
287 ++size;
288
289 // Grow backing store if necessary
290 if (size >= queue.length)
291 grow(size);
292
293 queue[size] = o;
294 fixUp(size);
295 return true;
296 }
297
298 public E poll() {
299 if (size == 0)
300 return null;
301 return remove();
302 }
303
304 public E peek() {
305 return (E) queue[1];
306 }
307
308 // Collection Methods - the first two override to update docs
309
310 /**
311 * Adds the specified element to this queue.
312 * @return <tt>true</tt> (as per the general contract of
313 * <tt>Collection.add</tt>).
314 *
315 * @throws NullPointerException {@inheritDoc}
316 * @throws ClassCastException if the specified element cannot be compared
317 * with elements currently in the priority queue according
318 * to the priority queue's ordering.
319 */
320 public boolean add(E o) {
321 return super.add(o);
322 }
323
324
325 /**
326 * Adds all of the elements in the specified collection to this queue.
327 * The behavior of this operation is undefined if
328 * the specified collection is modified while the operation is in
329 * progress. (This implies that the behavior of this call is undefined if
330 * the specified collection is this queue, and this queue is nonempty.)
331 * <p>
332 * This implementation iterates over the specified collection, and adds
333 * each object returned by the iterator to this collection, in turn.
334 * @throws NullPointerException {@inheritDoc}
335 * @throws ClassCastException if any element cannot be compared
336 * with elements currently in the priority queue according
337 * to the priority queue's ordering.
338 */
339 public boolean addAll(Collection<? extends E> c) {
340 return super.addAll(c);
341 }
342
343
344 /**
345 * Removes a single instance of the specified element from this
346 * queue, if it is present. More formally,
347 * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
348 * o.equals(e))</tt>, if the queue contains one or more such
349 * elements. Returns <tt>true</tt> if the queue contained the
350 * specified element (or equivalently, if the queue changed as a
351 * result of the call).
352 *
353 * <p>This implementation iterates over the queue looking for the
354 * specified element. If it finds the element, it removes the element
355 * from the queue using the iterator's remove method.<p>
356 *
357 */
358 public boolean remove(Object o) {
359 if (o == null)
360 return false;
361
362 if (comparator == null) {
363 for (int i = 1; i <= size; i++) {
364 if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
365 removeAt(i);
366 return true;
367 }
368 }
369 } else {
370 for (int i = 1; i <= size; i++) {
371 if (comparator.compare((E)queue[i], (E)o) == 0) {
372 removeAt(i);
373 return true;
374 }
375 }
376 }
377 return false;
378 }
379
380 /**
381 * Returns an iterator over the elements in this queue. The iterator
382 * does not return the elements in any particular order.
383 *
384 * @return an iterator over the elements in this queue.
385 */
386 public Iterator<E> iterator() {
387 return new Itr();
388 }
389
390 private class Itr implements Iterator<E> {
391
392 /**
393 * Index (into queue array) of element to be returned by
394 * subsequent call to next.
395 */
396 private int cursor = 1;
397
398 /**
399 * Index of element returned by most recent call to next,
400 * unless that element came from the forgetMeNot list.
401 * Reset to 0 if element is deleted by a call to remove.
402 */
403 private int lastRet = 0;
404
405 /**
406 * The modCount value that the iterator believes that the backing
407 * List should have. If this expectation is violated, the iterator
408 * has detected concurrent modification.
409 */
410 private int expectedModCount = modCount;
411
412 /**
413 * A list of elements that were moved from the unvisited portion of
414 * the heap into the visited portion as a result of "unlucky" element
415 * removals during the iteration. (Unlucky element removals are those
416 * that require a fixup instead of a fixdown.) We must visit all of
417 * the elements in this list to complete the iteration. We do this
418 * after we've completed the "normal" iteration.
419 *
420 * We expect that most iterations, even those involving removals,
421 * will not use need to store elements in this field.
422 */
423 private ArrayList<E> forgetMeNot = null;
424
425 /**
426 * Element returned by the most recent call to next iff that
427 * element was drawn from the forgetMeNot list.
428 */
429 private Object lastRetElt = null;
430
431 public boolean hasNext() {
432 return cursor <= size || forgetMeNot != null;
433 }
434
435 public E next() {
436 checkForComodification();
437 E result;
438 if (cursor <= size) {
439 result = (E) queue[cursor];
440 lastRet = cursor++;
441 }
442 else if (forgetMeNot == null)
443 throw new NoSuchElementException();
444 else {
445 int remaining = forgetMeNot.size();
446 result = forgetMeNot.remove(remaining - 1);
447 if (remaining == 1)
448 forgetMeNot = null;
449 lastRet = 0;
450 lastRetElt = result;
451 }
452 return result;
453 }
454
455 public void remove() {
456 checkForComodification();
457
458 if (lastRet != 0) {
459 E moved = PriorityQueue.this.removeAt(lastRet);
460 lastRet = 0;
461 if (moved == null) {
462 cursor--;
463 } else {
464 if (forgetMeNot == null)
465 forgetMeNot = new ArrayList<E>();
466 forgetMeNot.add(moved);
467 }
468 } else if (lastRetElt != null) {
469 PriorityQueue.this.remove(lastRetElt);
470 lastRetElt = null;
471 } else {
472 throw new IllegalStateException();
473 }
474
475 expectedModCount = modCount;
476 }
477
478 final void checkForComodification() {
479 if (modCount != expectedModCount)
480 throw new ConcurrentModificationException();
481 }
482 }
483
484 public int size() {
485 return size;
486 }
487
488 /**
489 * Remove all elements from the priority queue.
490 */
491 public void clear() {
492 modCount++;
493
494 // Null out element references to prevent memory leak
495 for (int i=1; i<=size; i++)
496 queue[i] = null;
497
498 size = 0;
499 }
500
501 /**
502 * Removes and returns the first element from queue.
503 */
504 public E remove() {
505 if (size == 0)
506 throw new NoSuchElementException();
507 modCount++;
508
509 E result = (E) queue[1];
510 queue[1] = queue[size];
511 queue[size--] = null; // Drop extra ref to prevent memory leak
512 if (size > 1)
513 fixDown(1);
514
515 return result;
516 }
517
518 /**
519 * Removes and returns the ith element from queue. (Recall that queue
520 * is one-based, so 1 <= i <= size.)
521 *
522 * Normally this method leaves the elements at positions from 1 up to i-1,
523 * inclusive, untouched. Under these circumstances, it returns null.
524 * Occasionally, in order to maintain the heap invariant, it must move
525 * the last element of the list to some index in the range [2, i-1],
526 * and move the element previously at position (i/2) to position i.
527 * Under these circumstances, this method returns the element that was
528 * previously at the end of the list and is now at some position between
529 * 2 and i-1 inclusive.
530 */
531 private E removeAt(int i) {
532 assert i > 0 && i <= size;
533 modCount++;
534
535 E moved = (E) queue[size];
536 queue[i] = moved;
537 queue[size--] = null; // Drop extra ref to prevent memory leak
538 if (i <= size) {
539 fixDown(i);
540 if (queue[i] == moved) {
541 fixUp(i);
542 if (queue[i] != moved)
543 return moved;
544 }
545 }
546 return null;
547 }
548
549 /**
550 * Establishes the heap invariant (described above) assuming the heap
551 * satisfies the invariant except possibly for the leaf-node indexed by k
552 * (which may have a nextExecutionTime less than its parent's).
553 *
554 * This method functions by "promoting" queue[k] up the hierarchy
555 * (by swapping it with its parent) repeatedly until queue[k]
556 * is greater than or equal to its parent.
557 */
558 private void fixUp(int k) {
559 if (comparator == null) {
560 while (k > 1) {
561 int j = k >> 1;
562 if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
563 break;
564 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
565 k = j;
566 }
567 } else {
568 while (k > 1) {
569 int j = k >>> 1;
570 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
571 break;
572 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
573 k = j;
574 }
575 }
576 }
577
578 /**
579 * Establishes the heap invariant (described above) in the subtree
580 * rooted at k, which is assumed to satisfy the heap invariant except
581 * possibly for node k itself (which may be greater than its children).
582 *
583 * This method functions by "demoting" queue[k] down the hierarchy
584 * (by swapping it with its smaller child) repeatedly until queue[k]
585 * is less than or equal to its children.
586 */
587 private void fixDown(int k) {
588 int j;
589 if (comparator == null) {
590 while ((j = k << 1) <= size && (j > 0)) {
591 if (j<size &&
592 ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
593 j++; // j indexes smallest kid
594
595 if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
596 break;
597 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
598 k = j;
599 }
600 } else {
601 while ((j = k << 1) <= size && (j > 0)) {
602 if (j<size &&
603 comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
604 j++; // j indexes smallest kid
605 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
606 break;
607 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
608 k = j;
609 }
610 }
611 }
612
613 /**
614 * Establishes the heap invariant (described above) in the entire tree,
615 * assuming nothing about the order of the elements prior to the call.
616 */
617 private void heapify() {
618 for (int i = size/2; i >= 1; i--)
619 fixDown(i);
620 }
621
622 /**
623 * Returns the comparator used to order this collection, or <tt>null</tt>
624 * if this collection is sorted according to its elements natural ordering
625 * (using <tt>Comparable</tt>).
626 *
627 * @return the comparator used to order this collection, or <tt>null</tt>
628 * if this collection is sorted according to its elements natural ordering.
629 */
630 public Comparator<? super E> comparator() {
631 return comparator;
632 }
633
634 /**
635 * Save the state of the instance to a stream (that
636 * is, serialize it).
637 *
638 * @serialData The length of the array backing the instance is
639 * emitted (int), followed by all of its elements (each an
640 * <tt>Object</tt>) in the proper order.
641 * @param s the stream
642 */
643 private void writeObject(java.io.ObjectOutputStream s)
644 throws java.io.IOException{
645 // Write out element count, and any hidden stuff
646 s.defaultWriteObject();
647
648 // Write out array length
649 s.writeInt(queue.length);
650
651 // Write out all elements in the proper order.
652 for (int i=0; i<size; i++)
653 s.writeObject(queue[i]);
654 }
655
656 /**
657 * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
658 * deserialize it).
659 * @param s the stream
660 */
661 private void readObject(java.io.ObjectInputStream s)
662 throws java.io.IOException, ClassNotFoundException {
663 // Read in size, and any hidden stuff
664 s.defaultReadObject();
665
666 // Read in array length and allocate array
667 int arrayLength = s.readInt();
668 queue = new Object[arrayLength];
669
670 // Read in all elements in the proper order.
671 for (int i=0; i<size; i++)
672 queue[i] = (E) s.readObject();
673 }
674
675 }