ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.45
Committed: Sun Oct 19 13:38:29 2003 UTC (20 years, 6 months ago) by dl
Branch: MAIN
CVS Tags: JSR166_NOV3_FREEZE, JSR166_DEC9_PRE_ES_SUBMIT, JSR166_DEC9_POST_ES_SUBMIT
Changes since 1.44: +1 -1 lines
Log Message:
Changed doc strings for generic params

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9
10 /**
11 * An unbounded priority {@linkplain Queue queue} based on a priority
12 * heap. This queue orders elements according to an order specified
13 * at construction time, which is specified either according to their
14 * <i>natural order</i> (see {@link Comparable}), or according to a
15 * {@link java.util.Comparator}, depending on which constructor is
16 * used. A priority queue does not permit <tt>null</tt> elements.
17 * A priority queue relying on natural ordering also does not
18 * permit insertion of non-comparable objects (doing so may result
19 * in <tt>ClassCastException</tt>).
20 *
21 * <p>The <em>head</em> of this queue is the <em>least</em> element
22 * with respect to the specified ordering. If multiple elements are
23 * tied for least value, the head is one of those elements -- ties are
24 * broken arbitrarily. The queue retrieval operations <tt>poll</tt>,
25 * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 * element at the head of the queue.
27 *
28 * <p>A priority queue is unbounded, but has an internal
29 * <i>capacity</i> governing the size of an array used to store the
30 * elements on the queue. It is always at least as large as the queue
31 * size. As elements are added to a priority queue, its capacity
32 * grows automatically. The details of the growth policy are not
33 * specified.
34 *
35 * <p>This class implements all of the <em>optional</em> methods of
36 * the {@link Collection} and {@link Iterator} interfaces. The
37 * Iterator provided in method {@link #iterator()} is <em>not</em>
38 * guaranteed to traverse the elements of the PriorityQueue in any
39 * particular order. If you need ordered traversal, consider using
40 * <tt>Arrays.sort(pq.toArray())</tt>.
41 *
42 * <p> <strong>Note that this implementation is not synchronized.</strong>
43 * Multiple threads should not access a <tt>PriorityQueue</tt>
44 * instance concurrently if any of the threads modifies the list
45 * structurally. Instead, use the thread-safe {@link
46 * java.util.concurrent.PriorityBlockingQueue} class.
47 *
48 *
49 * <p>Implementation note: this implementation provides O(log(n)) time
50 * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
51 * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
52 * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
53 * constant time for the retrieval methods (<tt>peek</tt>,
54 * <tt>element</tt>, and <tt>size</tt>).
55 *
56 * <p>This class is a member of the
57 * <a href="{@docRoot}/../guide/collections/index.html">
58 * Java Collections Framework</a>.
59 * @since 1.5
60 * @version %I%, %G%
61 * @author Josh Bloch
62 * @param <E> the type of elements held in this collection
63 */
64 public class PriorityQueue<E> extends AbstractQueue<E>
65 implements Queue<E>, java.io.Serializable {
66
67 private static final long serialVersionUID = -7720805057305804111L;
68
69 private static final int DEFAULT_INITIAL_CAPACITY = 11;
70
71 /**
72 * Priority queue represented as a balanced binary heap: the two children
73 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
74 * ordered by comparator, or by the elements' natural ordering, if
75 * comparator is null: For each node n in the heap and each descendant d
76 * of n, n <= d.
77 *
78 * The element with the lowest value is in queue[1], assuming the queue is
79 * nonempty. (A one-based array is used in preference to the traditional
80 * zero-based array to simplify parent and child calculations.)
81 *
82 * queue.length must be >= 2, even if size == 0.
83 */
84 private transient Object[] queue;
85
86 /**
87 * The number of elements in the priority queue.
88 */
89 private int size = 0;
90
91 /**
92 * The comparator, or null if priority queue uses elements'
93 * natural ordering.
94 */
95 private final Comparator<? super E> comparator;
96
97 /**
98 * The number of times this priority queue has been
99 * <i>structurally modified</i>. See AbstractList for gory details.
100 */
101 private transient int modCount = 0;
102
103 /**
104 * Creates a <tt>PriorityQueue</tt> with the default initial capacity
105 * (11) that orders its elements according to their natural
106 * ordering (using <tt>Comparable</tt>).
107 */
108 public PriorityQueue() {
109 this(DEFAULT_INITIAL_CAPACITY, null);
110 }
111
112 /**
113 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
114 * that orders its elements according to their natural ordering
115 * (using <tt>Comparable</tt>).
116 *
117 * @param initialCapacity the initial capacity for this priority queue.
118 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
119 * than 1
120 */
121 public PriorityQueue(int initialCapacity) {
122 this(initialCapacity, null);
123 }
124
125 /**
126 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
127 * that orders its elements according to the specified comparator.
128 *
129 * @param initialCapacity the initial capacity for this priority queue.
130 * @param comparator the comparator used to order this priority queue.
131 * If <tt>null</tt> then the order depends on the elements' natural
132 * ordering.
133 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
134 * than 1
135 */
136 public PriorityQueue(int initialCapacity,
137 Comparator<? super E> comparator) {
138 if (initialCapacity < 1)
139 throw new IllegalArgumentException();
140 this.queue = new Object[initialCapacity + 1];
141 this.comparator = comparator;
142 }
143
144 /**
145 * Common code to initialize underlying queue array across
146 * constructors below.
147 */
148 private void initializeArray(Collection<? extends E> c) {
149 int sz = c.size();
150 int initialCapacity = (int)Math.min((sz * 110L) / 100,
151 Integer.MAX_VALUE - 1);
152 if (initialCapacity < 1)
153 initialCapacity = 1;
154
155 this.queue = new Object[initialCapacity + 1];
156 }
157
158 /**
159 * Initially fill elements of the queue array under the
160 * knowledge that it is sorted or is another PQ, in which
161 * case we can just place the elements in the order presented.
162 */
163 private void fillFromSorted(Collection<? extends E> c) {
164 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
165 queue[++size] = i.next();
166 }
167
168 /**
169 * Initially fill elements of the queue array that is not to our knowledge
170 * sorted, so we must rearrange the elements to guarantee the heap
171 * invariant.
172 */
173 private void fillFromUnsorted(Collection<? extends E> c) {
174 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
175 queue[++size] = i.next();
176 heapify();
177 }
178
179 /**
180 * Creates a <tt>PriorityQueue</tt> containing the elements in the
181 * specified collection. The priority queue has an initial
182 * capacity of 110% of the size of the specified collection or 1
183 * if the collection is empty. If the specified collection is an
184 * instance of a {@link java.util.SortedSet} or is another
185 * <tt>PriorityQueue</tt>, the priority queue will be sorted
186 * according to the same comparator, or according to its elements'
187 * natural order if the collection is sorted according to its
188 * elements' natural order. Otherwise, the priority queue is
189 * ordered according to its elements' natural order.
190 *
191 * @param c the collection whose elements are to be placed
192 * into this priority queue.
193 * @throws ClassCastException if elements of the specified collection
194 * cannot be compared to one another according to the priority
195 * queue's ordering.
196 * @throws NullPointerException if <tt>c</tt> or any element within it
197 * is <tt>null</tt>
198 */
199 public PriorityQueue(Collection<? extends E> c) {
200 initializeArray(c);
201 if (c instanceof SortedSet) {
202 // @fixme double-cast workaround for compiler
203 SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
204 comparator = (Comparator<? super E>)s.comparator();
205 fillFromSorted(s);
206 } else if (c instanceof PriorityQueue) {
207 PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
208 comparator = (Comparator<? super E>)s.comparator();
209 fillFromSorted(s);
210 } else {
211 comparator = null;
212 fillFromUnsorted(c);
213 }
214 }
215
216 /**
217 * Creates a <tt>PriorityQueue</tt> containing the elements in the
218 * specified collection. The priority queue has an initial
219 * capacity of 110% of the size of the specified collection or 1
220 * if the collection is empty. This priority queue will be sorted
221 * according to the same comparator as the given collection, or
222 * according to its elements' natural order if the collection is
223 * sorted according to its elements' natural order.
224 *
225 * @param c the collection whose elements are to be placed
226 * into this priority queue.
227 * @throws ClassCastException if elements of the specified collection
228 * cannot be compared to one another according to the priority
229 * queue's ordering.
230 * @throws NullPointerException if <tt>c</tt> or any element within it
231 * is <tt>null</tt>
232 */
233 public PriorityQueue(PriorityQueue<? extends E> c) {
234 initializeArray(c);
235 comparator = (Comparator<? super E>)c.comparator();
236 fillFromSorted(c);
237 }
238
239 /**
240 * Creates a <tt>PriorityQueue</tt> containing the elements in the
241 * specified collection. The priority queue has an initial
242 * capacity of 110% of the size of the specified collection or 1
243 * if the collection is empty. This priority queue will be sorted
244 * according to the same comparator as the given collection, or
245 * according to its elements' natural order if the collection is
246 * sorted according to its elements' natural order.
247 *
248 * @param c the collection whose elements are to be placed
249 * into this priority queue.
250 * @throws ClassCastException if elements of the specified collection
251 * cannot be compared to one another according to the priority
252 * queue's ordering.
253 * @throws NullPointerException if <tt>c</tt> or any element within it
254 * is <tt>null</tt>
255 */
256 public PriorityQueue(SortedSet<? extends E> c) {
257 initializeArray(c);
258 comparator = (Comparator<? super E>)c.comparator();
259 fillFromSorted(c);
260 }
261
262 /**
263 * Resize array, if necessary, to be able to hold given index
264 */
265 private void grow(int index) {
266 int newlen = queue.length;
267 if (index < newlen) // don't need to grow
268 return;
269 if (index == Integer.MAX_VALUE)
270 throw new OutOfMemoryError();
271 while (newlen <= index) {
272 if (newlen >= Integer.MAX_VALUE / 2) // avoid overflow
273 newlen = Integer.MAX_VALUE;
274 else
275 newlen <<= 2;
276 }
277 Object[] newQueue = new Object[newlen];
278 System.arraycopy(queue, 0, newQueue, 0, queue.length);
279 queue = newQueue;
280 }
281
282
283 /**
284 * Inserts the specified element into this priority queue.
285 *
286 * @return <tt>true</tt>
287 * @throws ClassCastException if the specified element cannot be compared
288 * with elements currently in the priority queue according
289 * to the priority queue's ordering.
290 * @throws NullPointerException if the specified element is <tt>null</tt>.
291 */
292 public boolean offer(E o) {
293 if (o == null)
294 throw new NullPointerException();
295 modCount++;
296 ++size;
297
298 // Grow backing store if necessary
299 if (size >= queue.length)
300 grow(size);
301
302 queue[size] = o;
303 fixUp(size);
304 return true;
305 }
306
307 public E peek() {
308 if (size == 0)
309 return null;
310 return (E) queue[1];
311 }
312
313 // Collection Methods - the first two override to update docs
314
315 /**
316 * Adds the specified element to this queue.
317 * @return <tt>true</tt> (as per the general contract of
318 * <tt>Collection.add</tt>).
319 *
320 * @throws NullPointerException if the specified element is <tt>null</tt>.
321 * @throws ClassCastException if the specified element cannot be compared
322 * with elements currently in the priority queue according
323 * to the priority queue's ordering.
324 */
325 public boolean add(E o) {
326 return offer(o);
327 }
328
329 public boolean remove(Object o) {
330 if (o == null)
331 return false;
332
333 if (comparator == null) {
334 for (int i = 1; i <= size; i++) {
335 if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
336 removeAt(i);
337 return true;
338 }
339 }
340 } else {
341 for (int i = 1; i <= size; i++) {
342 if (comparator.compare((E)queue[i], (E)o) == 0) {
343 removeAt(i);
344 return true;
345 }
346 }
347 }
348 return false;
349 }
350
351 /**
352 * Returns an iterator over the elements in this queue. The iterator
353 * does not return the elements in any particular order.
354 *
355 * @return an iterator over the elements in this queue.
356 */
357 public Iterator<E> iterator() {
358 return new Itr();
359 }
360
361 private class Itr implements Iterator<E> {
362
363 /**
364 * Index (into queue array) of element to be returned by
365 * subsequent call to next.
366 */
367 private int cursor = 1;
368
369 /**
370 * Index of element returned by most recent call to next,
371 * unless that element came from the forgetMeNot list.
372 * Reset to 0 if element is deleted by a call to remove.
373 */
374 private int lastRet = 0;
375
376 /**
377 * The modCount value that the iterator believes that the backing
378 * List should have. If this expectation is violated, the iterator
379 * has detected concurrent modification.
380 */
381 private int expectedModCount = modCount;
382
383 /**
384 * A list of elements that were moved from the unvisited portion of
385 * the heap into the visited portion as a result of "unlucky" element
386 * removals during the iteration. (Unlucky element removals are those
387 * that require a fixup instead of a fixdown.) We must visit all of
388 * the elements in this list to complete the iteration. We do this
389 * after we've completed the "normal" iteration.
390 *
391 * We expect that most iterations, even those involving removals,
392 * will not use need to store elements in this field.
393 */
394 private ArrayList<E> forgetMeNot = null;
395
396 /**
397 * Element returned by the most recent call to next iff that
398 * element was drawn from the forgetMeNot list.
399 */
400 private Object lastRetElt = null;
401
402 public boolean hasNext() {
403 return cursor <= size || forgetMeNot != null;
404 }
405
406 public E next() {
407 checkForComodification();
408 E result;
409 if (cursor <= size) {
410 result = (E) queue[cursor];
411 lastRet = cursor++;
412 }
413 else if (forgetMeNot == null)
414 throw new NoSuchElementException();
415 else {
416 int remaining = forgetMeNot.size();
417 result = forgetMeNot.remove(remaining - 1);
418 if (remaining == 1)
419 forgetMeNot = null;
420 lastRet = 0;
421 lastRetElt = result;
422 }
423 return result;
424 }
425
426 public void remove() {
427 checkForComodification();
428
429 if (lastRet != 0) {
430 E moved = PriorityQueue.this.removeAt(lastRet);
431 lastRet = 0;
432 if (moved == null) {
433 cursor--;
434 } else {
435 if (forgetMeNot == null)
436 forgetMeNot = new ArrayList<E>();
437 forgetMeNot.add(moved);
438 }
439 } else if (lastRetElt != null) {
440 PriorityQueue.this.remove(lastRetElt);
441 lastRetElt = null;
442 } else {
443 throw new IllegalStateException();
444 }
445
446 expectedModCount = modCount;
447 }
448
449 final void checkForComodification() {
450 if (modCount != expectedModCount)
451 throw new ConcurrentModificationException();
452 }
453 }
454
455 public int size() {
456 return size;
457 }
458
459 /**
460 * Remove all elements from the priority queue.
461 */
462 public void clear() {
463 modCount++;
464
465 // Null out element references to prevent memory leak
466 for (int i=1; i<=size; i++)
467 queue[i] = null;
468
469 size = 0;
470 }
471
472 public E poll() {
473 if (size == 0)
474 return null;
475 modCount++;
476
477 E result = (E) queue[1];
478 queue[1] = queue[size];
479 queue[size--] = null; // Drop extra ref to prevent memory leak
480 if (size > 1)
481 fixDown(1);
482
483 return result;
484 }
485
486 /**
487 * Removes and returns the ith element from queue. (Recall that queue
488 * is one-based, so 1 <= i <= size.)
489 *
490 * Normally this method leaves the elements at positions from 1 up to i-1,
491 * inclusive, untouched. Under these circumstances, it returns null.
492 * Occasionally, in order to maintain the heap invariant, it must move
493 * the last element of the list to some index in the range [2, i-1],
494 * and move the element previously at position (i/2) to position i.
495 * Under these circumstances, this method returns the element that was
496 * previously at the end of the list and is now at some position between
497 * 2 and i-1 inclusive.
498 */
499 private E removeAt(int i) {
500 assert i > 0 && i <= size;
501 modCount++;
502
503 E moved = (E) queue[size];
504 queue[i] = moved;
505 queue[size--] = null; // Drop extra ref to prevent memory leak
506 if (i <= size) {
507 fixDown(i);
508 if (queue[i] == moved) {
509 fixUp(i);
510 if (queue[i] != moved)
511 return moved;
512 }
513 }
514 return null;
515 }
516
517 /**
518 * Establishes the heap invariant (described above) assuming the heap
519 * satisfies the invariant except possibly for the leaf-node indexed by k
520 * (which may have a nextExecutionTime less than its parent's).
521 *
522 * This method functions by "promoting" queue[k] up the hierarchy
523 * (by swapping it with its parent) repeatedly until queue[k]
524 * is greater than or equal to its parent.
525 */
526 private void fixUp(int k) {
527 if (comparator == null) {
528 while (k > 1) {
529 int j = k >> 1;
530 if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
531 break;
532 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
533 k = j;
534 }
535 } else {
536 while (k > 1) {
537 int j = k >>> 1;
538 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
539 break;
540 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
541 k = j;
542 }
543 }
544 }
545
546 /**
547 * Establishes the heap invariant (described above) in the subtree
548 * rooted at k, which is assumed to satisfy the heap invariant except
549 * possibly for node k itself (which may be greater than its children).
550 *
551 * This method functions by "demoting" queue[k] down the hierarchy
552 * (by swapping it with its smaller child) repeatedly until queue[k]
553 * is less than or equal to its children.
554 */
555 private void fixDown(int k) {
556 int j;
557 if (comparator == null) {
558 while ((j = k << 1) <= size && (j > 0)) {
559 if (j<size &&
560 ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
561 j++; // j indexes smallest kid
562
563 if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
564 break;
565 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
566 k = j;
567 }
568 } else {
569 while ((j = k << 1) <= size && (j > 0)) {
570 if (j<size &&
571 comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
572 j++; // j indexes smallest kid
573 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
574 break;
575 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
576 k = j;
577 }
578 }
579 }
580
581 /**
582 * Establishes the heap invariant (described above) in the entire tree,
583 * assuming nothing about the order of the elements prior to the call.
584 */
585 private void heapify() {
586 for (int i = size/2; i >= 1; i--)
587 fixDown(i);
588 }
589
590 /**
591 * Returns the comparator used to order this collection, or <tt>null</tt>
592 * if this collection is sorted according to its elements natural ordering
593 * (using <tt>Comparable</tt>).
594 *
595 * @return the comparator used to order this collection, or <tt>null</tt>
596 * if this collection is sorted according to its elements natural ordering.
597 */
598 public Comparator<? super E> comparator() {
599 return comparator;
600 }
601
602 /**
603 * Save the state of the instance to a stream (that
604 * is, serialize it).
605 *
606 * @serialData The length of the array backing the instance is
607 * emitted (int), followed by all of its elements (each an
608 * <tt>Object</tt>) in the proper order.
609 * @param s the stream
610 */
611 private void writeObject(java.io.ObjectOutputStream s)
612 throws java.io.IOException{
613 // Write out element count, and any hidden stuff
614 s.defaultWriteObject();
615
616 // Write out array length
617 s.writeInt(queue.length);
618
619 // Write out all elements in the proper order.
620 for (int i=1; i<=size; i++)
621 s.writeObject(queue[i]);
622 }
623
624 /**
625 * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
626 * deserialize it).
627 * @param s the stream
628 */
629 private void readObject(java.io.ObjectInputStream s)
630 throws java.io.IOException, ClassNotFoundException {
631 // Read in size, and any hidden stuff
632 s.defaultReadObject();
633
634 // Read in array length and allocate array
635 int arrayLength = s.readInt();
636 queue = new Object[arrayLength];
637
638 // Read in all elements in the proper order.
639 for (int i=1; i<=size; i++)
640 queue[i] = (E) s.readObject();
641 }
642
643 }