ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.5
Committed: Tue May 27 18:20:06 2003 UTC (20 years, 11 months ago) by dl
Branch: MAIN
CVS Tags: JSR166_PRELIMINARY_TEST_RELEASE_1, JSR166_PRERELEASE_0_1
Changes since 1.4: +87 -49 lines
Log Message:
re-checkin initial implementations

File Contents

# Content
1 package java.util;
2
3 /**
4 * An unbounded priority queue based on a priority heap. This queue orders
5 * elements according to the order specified at creation time. This order is
6 * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
7 * either according to their <i>natural order</i> (see {@link Comparable}), or
8 * according to a {@link Comparator}, depending on which constructor is used.
9 * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
10 * minimal element with respect to the specified ordering. If multiple
11 * these elements are tied for least value, no guarantees are made as to
12 * which of elements is returned.
13 *
14 * <p>Each priority queue has a <i>capacity</i>. The capacity is the size of
15 * the array used to store the elements on the queue. It is always at least
16 * as large as the queue size. As elements are added to a priority list,
17 * its capacity grows automatically. The details of the growth policy are not
18 * specified.
19 *
20 *<p>Implementation note: this implementation provides O(log(n)) time for
21 * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
22 * methods; linear time for the <tt>remove(Object)</tt> and
23 * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
24 * <tt>element</tt>, and <tt>size</tt> methods.
25 *
26 * <p>This class is a member of the
27 * <a href="{@docRoot}/../guide/collections/index.html">
28 * Java Collections Framework</a>.
29 */
30 public class PriorityQueue<E> extends AbstractQueue<E>
31 implements Queue<E>
32 {
33 private static final int DEFAULT_INITIAL_CAPACITY = 11;
34
35 /**
36 * Priority queue represented as a balanced binary heap: the two children
37 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
38 * ordered by comparator, or by the elements' natural ordering, if
39 * comparator is null: For each node n in the heap, and each descendant
40 * of n, d, n <= d.
41 *
42 * The element with the lowest value is in queue[1] (assuming the queue is
43 * nonempty). A one-based array is used in preference to the traditional
44 * zero-based array to simplify parent and child calculations.
45 *
46 * queue.length must be >= 2, even if size == 0.
47 */
48 private transient E[] queue;
49
50 /**
51 * The number of elements in the priority queue.
52 */
53 private int size = 0;
54
55 /**
56 * The comparator, or null if priority queue uses elements'
57 * natural ordering.
58 */
59 private final Comparator<E> comparator;
60
61 /**
62 * The number of times this priority queue has been
63 * <i>structurally modified</i>. See AbstractList for gory details.
64 */
65 private transient int modCount = 0;
66
67 /**
68 * Create a new priority queue with the default initial capacity (11)
69 * that orders its elements according to their natural ordering.
70 */
71 public PriorityQueue() {
72 this(DEFAULT_INITIAL_CAPACITY);
73 }
74
75 /**
76 * Create a new priority queue with the specified initial capacity
77 * that orders its elements according to their natural ordering.
78 *
79 * @param initialCapacity the initial capacity for this priority queue.
80 */
81 public PriorityQueue(int initialCapacity) {
82 this(initialCapacity, null);
83 }
84
85 /**
86 * Create a new priority queue with the specified initial capacity (11)
87 * that orders its elements according to the specified comparator.
88 *
89 * @param initialCapacity the initial capacity for this priority queue.
90 * @param comparator the comparator used to order this priority queue.
91 */
92 public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
93 if (initialCapacity < 1)
94 initialCapacity = 1;
95 queue = new E[initialCapacity + 1];
96 this.comparator = comparator;
97 }
98
99 /**
100 * Create a new priority queue containing the elements in the specified
101 * collection. The priority queue has an initial capacity of 110% of the
102 * size of the specified collection. If the specified collection
103 * implements the {@link Sorted} interface, the priority queue will be
104 * sorted according to the same comparator, or according to its elements'
105 * natural order if the collection is sorted according to its elements'
106 * natural order. If the specified collection does not implement the
107 * <tt>Sorted</tt> interface, the priority queue is ordered according to
108 * its elements' natural order.
109 *
110 * @param initialElements the collection whose elements are to be placed
111 * into this priority queue.
112 * @throws ClassCastException if elements of the specified collection
113 * cannot be compared to one another according to the priority
114 * queue's ordering.
115 * @throws NullPointerException if the specified collection or an
116 * element of the specified collection is <tt>null</tt>.
117 */
118 public PriorityQueue(Collection<E> initialElements) {
119 int sz = initialElements.size();
120 int initialCapacity = (int)Math.min((sz * 110L) / 100,
121 Integer.MAX_VALUE - 1);
122 if (initialCapacity < 1)
123 initialCapacity = 1;
124 queue = new E[initialCapacity + 1];
125
126 /* Commented out to compile with generics compiler
127
128 if (initialElements instanceof Sorted) {
129 comparator = ((Sorted)initialElements).comparator();
130 for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
131 queue[++size] = i.next();
132 } else {
133 */
134 {
135 comparator = null;
136 for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
137 add(i.next());
138 }
139 }
140
141 // Queue Methods
142
143 /**
144 * Remove and return the minimal element from this priority queue if
145 * it contains one or more elements, otherwise <tt>null</tt>. The term
146 * <i>minimal</i> is defined according to this priority queue's order.
147 *
148 * @return the minimal element from this priority queue if it contains
149 * one or more elements, otherwise <tt>null</tt>.
150 */
151 public E poll() {
152 if (size == 0)
153 return null;
154 return remove(1);
155 }
156
157 /**
158 * Return, but do not remove, the minimal element from the priority queue,
159 * or <tt>null</tt> if the queue is empty. The term <i>minimal</i> is
160 * defined according to this priority queue's order. This method returns
161 * the same object reference that would be returned by by the
162 * <tt>poll</tt> method. The two methods differ in that this method
163 * does not remove the element from the priority queue.
164 *
165 * @return the minimal element from this priority queue if it contains
166 * one or more elements, otherwise <tt>null</tt>.
167 */
168 public E peek() {
169 return queue[1];
170 }
171
172 // Collection Methods
173
174 /**
175 * Removes a single instance of the specified element from this priority
176 * queue, if it is present. Returns true if this collection contained the
177 * specified element (or equivalently, if this collection changed as a
178 * result of the call).
179 *
180 * @param o element to be removed from this collection, if present.
181 * @return <tt>true</tt> if this collection changed as a result of the
182 * call
183 * @throws ClassCastException if the specified element cannot be compared
184 * with elements currently in the priority queue according
185 * to the priority queue's ordering.
186 * @throws NullPointerException if the specified element is null.
187 */
188 public boolean remove(Object element) {
189 if (element == null)
190 throw new NullPointerException();
191
192 if (comparator == null) {
193 for (int i = 1; i <= size; i++) {
194 if (((Comparable)queue[i]).compareTo(element) == 0) {
195 remove(i);
196 return true;
197 }
198 }
199 } else {
200 for (int i = 1; i <= size; i++) {
201 if (comparator.compare(queue[i], (E) element) == 0) {
202 remove(i);
203 return true;
204 }
205 }
206 }
207 return false;
208 }
209
210 /**
211 * Returns an iterator over the elements in this priority queue. The
212 * first element returned by this iterator is the same element that
213 * would be returned by a call to <tt>peek</tt>.
214 *
215 * @return an <tt>Iterator</tt> over the elements in this priority queue.
216 */
217 public Iterator<E> iterator() {
218 return new Itr();
219 }
220
221 private class Itr implements Iterator<E> {
222 /**
223 * Index (into queue array) of element to be returned by
224 * subsequent call to next.
225 */
226 int cursor = 1;
227
228 /**
229 * Index of element returned by most recent call to next or
230 * previous. Reset to 0 if this element is deleted by a call
231 * to remove.
232 */
233 int lastRet = 0;
234
235 /**
236 * The modCount value that the iterator believes that the backing
237 * List should have. If this expectation is violated, the iterator
238 * has detected concurrent modification.
239 */
240 int expectedModCount = modCount;
241
242 public boolean hasNext() {
243 return cursor <= size;
244 }
245
246 public E next() {
247 checkForComodification();
248 if (cursor > size)
249 throw new NoSuchElementException();
250 E result = queue[cursor];
251 lastRet = cursor++;
252 return result;
253 }
254
255 public void remove() {
256 if (lastRet == 0)
257 throw new IllegalStateException();
258 checkForComodification();
259
260 PriorityQueue.this.remove(lastRet);
261 if (lastRet < cursor)
262 cursor--;
263 lastRet = 0;
264 expectedModCount = modCount;
265 }
266
267 final void checkForComodification() {
268 if (modCount != expectedModCount)
269 throw new ConcurrentModificationException();
270 }
271 }
272
273 /**
274 * Returns the number of elements in this priority queue.
275 *
276 * @return the number of elements in this priority queue.
277 */
278 public int size() {
279 return size;
280 }
281
282 /**
283 * Add the specified element to this priority queue.
284 *
285 * @param element the element to add.
286 * @return true
287 * @throws ClassCastException if the specified element cannot be compared
288 * with elements currently in the priority queue according
289 * to the priority queue's ordering.
290 * @throws NullPointerException if the specified element is null.
291 */
292 public boolean offer(E element) {
293 if (element == null)
294 throw new NullPointerException();
295 modCount++;
296
297 // Grow backing store if necessary
298 if (++size == queue.length) {
299 E[] newQueue = new E[2 * queue.length];
300 System.arraycopy(queue, 0, newQueue, 0, size);
301 queue = newQueue;
302 }
303
304 queue[size] = element;
305 fixUp(size);
306 return true;
307 }
308
309 /**
310 * Remove all elements from the priority queue.
311 */
312 public void clear() {
313 modCount++;
314
315 // Null out element references to prevent memory leak
316 for (int i=1; i<=size; i++)
317 queue[i] = null;
318
319 size = 0;
320 }
321
322 /**
323 * Removes and returns the ith element from queue. Recall
324 * that queue is one-based, so 1 <= i <= size.
325 *
326 * XXX: Could further special-case i==size, but is it worth it?
327 * XXX: Could special-case i==0, but is it worth it?
328 */
329 private E remove(int i) {
330 assert i <= size;
331 modCount++;
332
333 E result = queue[i];
334 queue[i] = queue[size];
335 queue[size--] = null; // Drop extra ref to prevent memory leak
336 if (i <= size)
337 fixDown(i);
338 return result;
339 }
340
341 /**
342 * Establishes the heap invariant (described above) assuming the heap
343 * satisfies the invariant except possibly for the leaf-node indexed by k
344 * (which may have a nextExecutionTime less than its parent's).
345 *
346 * This method functions by "promoting" queue[k] up the hierarchy
347 * (by swapping it with its parent) repeatedly until queue[k]
348 * is greater than or equal to its parent.
349 */
350 private void fixUp(int k) {
351 if (comparator == null) {
352 while (k > 1) {
353 int j = k >> 1;
354 if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
355 break;
356 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
357 k = j;
358 }
359 } else {
360 while (k > 1) {
361 int j = k >> 1;
362 if (comparator.compare(queue[j], queue[k]) <= 0)
363 break;
364 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
365 k = j;
366 }
367 }
368 }
369
370 /**
371 * Establishes the heap invariant (described above) in the subtree
372 * rooted at k, which is assumed to satisfy the heap invariant except
373 * possibly for node k itself (which may be greater than its children).
374 *
375 * This method functions by "demoting" queue[k] down the hierarchy
376 * (by swapping it with its smaller child) repeatedly until queue[k]
377 * is less than or equal to its children.
378 */
379 private void fixDown(int k) {
380 int j;
381 if (comparator == null) {
382 while ((j = k << 1) <= size) {
383 if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
384 j++; // j indexes smallest kid
385 if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
386 break;
387 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
388 k = j;
389 }
390 } else {
391 while ((j = k << 1) <= size) {
392 if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
393 j++; // j indexes smallest kid
394 if (comparator.compare(queue[k], queue[j]) <= 0)
395 break;
396 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
397 k = j;
398 }
399 }
400 }
401
402 /**
403 * Returns the comparator associated with this priority queue, or
404 * <tt>null</tt> if it uses its elements' natural ordering.
405 *
406 * @return the comparator associated with this priority queue, or
407 * <tt>null</tt> if it uses its elements' natural ordering.
408 */
409 Comparator comparator() {
410 return comparator;
411 }
412
413 /**
414 * Save the state of the instance to a stream (that
415 * is, serialize it).
416 *
417 * @serialData The length of the array backing the instance is
418 * emitted (int), followed by all of its elements (each an
419 * <tt>Object</tt>) in the proper order.
420 */
421 private synchronized void writeObject(java.io.ObjectOutputStream s)
422 throws java.io.IOException{
423 // Write out element count, and any hidden stuff
424 s.defaultWriteObject();
425
426 // Write out array length
427 s.writeInt(queue.length);
428
429 // Write out all elements in the proper order.
430 for (int i=0; i<size; i++)
431 s.writeObject(queue[i]);
432 }
433
434 /**
435 * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
436 * deserialize it).
437 */
438 private synchronized void readObject(java.io.ObjectInputStream s)
439 throws java.io.IOException, ClassNotFoundException {
440 // Read in size, and any hidden stuff
441 s.defaultReadObject();
442
443 // Read in array length and allocate array
444 int arrayLength = s.readInt();
445 queue = new E[arrayLength];
446
447 // Read in all elements in the proper order.
448 for (int i=0; i<size; i++)
449 queue[i] = (E)s.readObject();
450 }
451
452 }