ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.50
Committed: Wed Jun 2 23:45:46 2004 UTC (19 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.49: +5 -3 lines
Log Message:
Improve javadoc wording

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9
10 /**
11 * An unbounded priority {@linkplain Queue queue} based on a priority
12 * heap. This queue orders elements according to an order specified
13 * at construction time, which is specified either according to their
14 * <i>natural order</i> (see {@link Comparable}), or according to a
15 * {@link java.util.Comparator}, depending on which constructor is
16 * used. A priority queue does not permit <tt>null</tt> elements.
17 * A priority queue relying on natural ordering also does not
18 * permit insertion of non-comparable objects (doing so may result
19 * in <tt>ClassCastException</tt>).
20 *
21 * <p>The <em>head</em> of this queue is the <em>least</em> element
22 * with respect to the specified ordering. If multiple elements are
23 * tied for least value, the head is one of those elements -- ties are
24 * broken arbitrarily. The queue retrieval operations <tt>poll</tt>,
25 * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 * element at the head of the queue.
27 *
28 * <p>A priority queue is unbounded, but has an internal
29 * <i>capacity</i> governing the size of an array used to store the
30 * elements on the queue. It is always at least as large as the queue
31 * size. As elements are added to a priority queue, its capacity
32 * grows automatically. The details of the growth policy are not
33 * specified.
34 *
35 * <p>This class and its iterator implement all of the
36 * <em>optional</em> methods of the {@link Collection} and {@link
37 * Iterator} interfaces.
38 * The
39 * Iterator provided in method {@link #iterator()} is <em>not</em>
40 * guaranteed to traverse the elements of the PriorityQueue in any
41 * particular order. If you need ordered traversal, consider using
42 * <tt>Arrays.sort(pq.toArray())</tt>.
43 *
44 * <p> <strong>Note that this implementation is not synchronized.</strong>
45 * Multiple threads should not access a <tt>PriorityQueue</tt>
46 * instance concurrently if any of the threads modifies the list
47 * structurally. Instead, use the thread-safe {@link
48 * java.util.concurrent.PriorityBlockingQueue} class.
49 *
50 *
51 * <p>Implementation note: this implementation provides O(log(n)) time
52 * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
53 * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
54 * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
55 * constant time for the retrieval methods (<tt>peek</tt>,
56 * <tt>element</tt>, and <tt>size</tt>).
57 *
58 * <p>This class is a member of the
59 * <a href="{@docRoot}/../guide/collections/index.html">
60 * Java Collections Framework</a>.
61 * @since 1.5
62 * @version %I%, %G%
63 * @author Josh Bloch
64 * @param <E> the type of elements held in this collection
65 */
66 public class PriorityQueue<E> extends AbstractQueue<E>
67 implements java.io.Serializable {
68
69 private static final long serialVersionUID = -7720805057305804111L;
70
71 private static final int DEFAULT_INITIAL_CAPACITY = 11;
72
73 /**
74 * Priority queue represented as a balanced binary heap: the two children
75 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
76 * ordered by comparator, or by the elements' natural ordering, if
77 * comparator is null: For each node n in the heap and each descendant d
78 * of n, n <= d.
79 *
80 * The element with the lowest value is in queue[1], assuming the queue is
81 * nonempty. (A one-based array is used in preference to the traditional
82 * zero-based array to simplify parent and child calculations.)
83 *
84 * queue.length must be >= 2, even if size == 0.
85 */
86 private transient Object[] queue;
87
88 /**
89 * The number of elements in the priority queue.
90 */
91 private int size = 0;
92
93 /**
94 * The comparator, or null if priority queue uses elements'
95 * natural ordering.
96 */
97 private final Comparator<? super E> comparator;
98
99 /**
100 * The number of times this priority queue has been
101 * <i>structurally modified</i>. See AbstractList for gory details.
102 */
103 private transient int modCount = 0;
104
105 /**
106 * Creates a <tt>PriorityQueue</tt> with the default initial capacity
107 * (11) that orders its elements according to their natural
108 * ordering (using <tt>Comparable</tt>).
109 */
110 public PriorityQueue() {
111 this(DEFAULT_INITIAL_CAPACITY, null);
112 }
113
114 /**
115 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
116 * that orders its elements according to their natural ordering
117 * (using <tt>Comparable</tt>).
118 *
119 * @param initialCapacity the initial capacity for this priority queue.
120 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
121 * than 1
122 */
123 public PriorityQueue(int initialCapacity) {
124 this(initialCapacity, null);
125 }
126
127 /**
128 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
129 * that orders its elements according to the specified comparator.
130 *
131 * @param initialCapacity the initial capacity for this priority queue.
132 * @param comparator the comparator used to order this priority queue.
133 * If <tt>null</tt> then the order depends on the elements' natural
134 * ordering.
135 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
136 * than 1
137 */
138 public PriorityQueue(int initialCapacity,
139 Comparator<? super E> comparator) {
140 if (initialCapacity < 1)
141 throw new IllegalArgumentException();
142 this.queue = new Object[initialCapacity + 1];
143 this.comparator = comparator;
144 }
145
146 /**
147 * Common code to initialize underlying queue array across
148 * constructors below.
149 */
150 private void initializeArray(Collection<? extends E> c) {
151 int sz = c.size();
152 int initialCapacity = (int)Math.min((sz * 110L) / 100,
153 Integer.MAX_VALUE - 1);
154 if (initialCapacity < 1)
155 initialCapacity = 1;
156
157 this.queue = new Object[initialCapacity + 1];
158 }
159
160 /**
161 * Initially fill elements of the queue array under the
162 * knowledge that it is sorted or is another PQ, in which
163 * case we can just place the elements in the order presented.
164 */
165 private void fillFromSorted(Collection<? extends E> c) {
166 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
167 queue[++size] = i.next();
168 }
169
170 /**
171 * Initially fill elements of the queue array that is not to our knowledge
172 * sorted, so we must rearrange the elements to guarantee the heap
173 * invariant.
174 */
175 private void fillFromUnsorted(Collection<? extends E> c) {
176 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
177 queue[++size] = i.next();
178 heapify();
179 }
180
181 /**
182 * Creates a <tt>PriorityQueue</tt> containing the elements in the
183 * specified collection. The priority queue has an initial
184 * capacity of 110% of the size of the specified collection or 1
185 * if the collection is empty. If the specified collection is an
186 * instance of a {@link java.util.SortedSet} or is another
187 * <tt>PriorityQueue</tt>, the priority queue will be sorted
188 * according to the same comparator, or according to its elements'
189 * natural order if the collection is sorted according to its
190 * elements' natural order. Otherwise, the priority queue is
191 * ordered according to its elements' natural order.
192 *
193 * @param c the collection whose elements are to be placed
194 * into this priority queue.
195 * @throws ClassCastException if elements of the specified collection
196 * cannot be compared to one another according to the priority
197 * queue's ordering.
198 * @throws NullPointerException if <tt>c</tt> or any element within it
199 * is <tt>null</tt>
200 */
201 public PriorityQueue(Collection<? extends E> c) {
202 initializeArray(c);
203 if (c instanceof SortedSet) {
204 SortedSet<? extends E> s = (SortedSet<? extends E>)c;
205 comparator = (Comparator<? super E>)s.comparator();
206 fillFromSorted(s);
207 } else if (c instanceof PriorityQueue) {
208 PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
209 comparator = (Comparator<? super E>)s.comparator();
210 fillFromSorted(s);
211 } else {
212 comparator = null;
213 fillFromUnsorted(c);
214 }
215 }
216
217 /**
218 * Creates a <tt>PriorityQueue</tt> containing the elements in the
219 * specified collection. The priority queue has an initial
220 * capacity of 110% of the size of the specified collection or 1
221 * if the collection is empty. This priority queue will be sorted
222 * according to the same comparator as the given collection, or
223 * according to its elements' natural order if the collection is
224 * sorted according to its elements' natural order.
225 *
226 * @param c the collection whose elements are to be placed
227 * into this priority queue.
228 * @throws ClassCastException if elements of the specified collection
229 * cannot be compared to one another according to the priority
230 * queue's ordering.
231 * @throws NullPointerException if <tt>c</tt> or any element within it
232 * is <tt>null</tt>
233 */
234 public PriorityQueue(PriorityQueue<? extends E> c) {
235 initializeArray(c);
236 comparator = (Comparator<? super E>)c.comparator();
237 fillFromSorted(c);
238 }
239
240 /**
241 * Creates a <tt>PriorityQueue</tt> containing the elements in the
242 * specified collection. The priority queue has an initial
243 * capacity of 110% of the size of the specified collection or 1
244 * if the collection is empty. This priority queue will be sorted
245 * according to the same comparator as the given collection, or
246 * according to its elements' natural order if the collection is
247 * sorted according to its elements' natural order.
248 *
249 * @param c the collection whose elements are to be placed
250 * into this priority queue.
251 * @throws ClassCastException if elements of the specified collection
252 * cannot be compared to one another according to the priority
253 * queue's ordering.
254 * @throws NullPointerException if <tt>c</tt> or any element within it
255 * is <tt>null</tt>
256 */
257 public PriorityQueue(SortedSet<? extends E> c) {
258 initializeArray(c);
259 comparator = (Comparator<? super E>)c.comparator();
260 fillFromSorted(c);
261 }
262
263 /**
264 * Resize array, if necessary, to be able to hold given index
265 */
266 private void grow(int index) {
267 int newlen = queue.length;
268 if (index < newlen) // don't need to grow
269 return;
270 if (index == Integer.MAX_VALUE)
271 throw new OutOfMemoryError();
272 while (newlen <= index) {
273 if (newlen >= Integer.MAX_VALUE / 2) // avoid overflow
274 newlen = Integer.MAX_VALUE;
275 else
276 newlen <<= 2;
277 }
278 Object[] newQueue = new Object[newlen];
279 System.arraycopy(queue, 0, newQueue, 0, queue.length);
280 queue = newQueue;
281 }
282
283
284 /**
285 * Inserts the specified element into this priority queue.
286 *
287 * @return <tt>true</tt>
288 * @throws ClassCastException if the specified element cannot be compared
289 * with elements currently in the priority queue according
290 * to the priority queue's ordering.
291 * @throws NullPointerException if the specified element is <tt>null</tt>.
292 */
293 public boolean offer(E o) {
294 if (o == null)
295 throw new NullPointerException();
296 modCount++;
297 ++size;
298
299 // Grow backing store if necessary
300 if (size >= queue.length)
301 grow(size);
302
303 queue[size] = o;
304 fixUp(size);
305 return true;
306 }
307
308 public E peek() {
309 if (size == 0)
310 return null;
311 return (E) queue[1];
312 }
313
314 // Collection Methods - the first two override to update docs
315
316 /**
317 * Adds the specified element to this queue.
318 * @return <tt>true</tt> (as per the general contract of
319 * <tt>Collection.add</tt>).
320 *
321 * @throws NullPointerException if the specified element is <tt>null</tt>.
322 * @throws ClassCastException if the specified element cannot be compared
323 * with elements currently in the priority queue according
324 * to the priority queue's ordering.
325 */
326 public boolean add(E o) {
327 return offer(o);
328 }
329
330 /**
331 * Removes a single instance of the specified element from this
332 * queue, if it is present.
333 */
334 public boolean remove(Object o) {
335 if (o == null)
336 return false;
337
338 if (comparator == null) {
339 for (int i = 1; i <= size; i++) {
340 if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
341 removeAt(i);
342 return true;
343 }
344 }
345 } else {
346 for (int i = 1; i <= size; i++) {
347 if (comparator.compare((E)queue[i], (E)o) == 0) {
348 removeAt(i);
349 return true;
350 }
351 }
352 }
353 return false;
354 }
355
356 /**
357 * Returns an iterator over the elements in this queue. The iterator
358 * does not return the elements in any particular order.
359 *
360 * @return an iterator over the elements in this queue.
361 */
362 public Iterator<E> iterator() {
363 return new Itr();
364 }
365
366 private class Itr implements Iterator<E> {
367
368 /**
369 * Index (into queue array) of element to be returned by
370 * subsequent call to next.
371 */
372 private int cursor = 1;
373
374 /**
375 * Index of element returned by most recent call to next,
376 * unless that element came from the forgetMeNot list.
377 * Reset to 0 if element is deleted by a call to remove.
378 */
379 private int lastRet = 0;
380
381 /**
382 * The modCount value that the iterator believes that the backing
383 * List should have. If this expectation is violated, the iterator
384 * has detected concurrent modification.
385 */
386 private int expectedModCount = modCount;
387
388 /**
389 * A list of elements that were moved from the unvisited portion of
390 * the heap into the visited portion as a result of "unlucky" element
391 * removals during the iteration. (Unlucky element removals are those
392 * that require a fixup instead of a fixdown.) We must visit all of
393 * the elements in this list to complete the iteration. We do this
394 * after we've completed the "normal" iteration.
395 *
396 * We expect that most iterations, even those involving removals,
397 * will not use need to store elements in this field.
398 */
399 private ArrayList<E> forgetMeNot = null;
400
401 /**
402 * Element returned by the most recent call to next iff that
403 * element was drawn from the forgetMeNot list.
404 */
405 private Object lastRetElt = null;
406
407 public boolean hasNext() {
408 return cursor <= size || forgetMeNot != null;
409 }
410
411 public E next() {
412 checkForComodification();
413 E result;
414 if (cursor <= size) {
415 result = (E) queue[cursor];
416 lastRet = cursor++;
417 }
418 else if (forgetMeNot == null)
419 throw new NoSuchElementException();
420 else {
421 int remaining = forgetMeNot.size();
422 result = forgetMeNot.remove(remaining - 1);
423 if (remaining == 1)
424 forgetMeNot = null;
425 lastRet = 0;
426 lastRetElt = result;
427 }
428 return result;
429 }
430
431 public void remove() {
432 checkForComodification();
433
434 if (lastRet != 0) {
435 E moved = PriorityQueue.this.removeAt(lastRet);
436 lastRet = 0;
437 if (moved == null) {
438 cursor--;
439 } else {
440 if (forgetMeNot == null)
441 forgetMeNot = new ArrayList<E>();
442 forgetMeNot.add(moved);
443 }
444 } else if (lastRetElt != null) {
445 PriorityQueue.this.remove(lastRetElt);
446 lastRetElt = null;
447 } else {
448 throw new IllegalStateException();
449 }
450
451 expectedModCount = modCount;
452 }
453
454 final void checkForComodification() {
455 if (modCount != expectedModCount)
456 throw new ConcurrentModificationException();
457 }
458 }
459
460 public int size() {
461 return size;
462 }
463
464 /**
465 * Removes all elements from the priority queue.
466 * The queue will be empty after this call returns.
467 */
468 public void clear() {
469 modCount++;
470
471 // Null out element references to prevent memory leak
472 for (int i=1; i<=size; i++)
473 queue[i] = null;
474
475 size = 0;
476 }
477
478 public E poll() {
479 if (size == 0)
480 return null;
481 modCount++;
482
483 E result = (E) queue[1];
484 queue[1] = queue[size];
485 queue[size--] = null; // Drop extra ref to prevent memory leak
486 if (size > 1)
487 fixDown(1);
488
489 return result;
490 }
491
492 /**
493 * Removes and returns the ith element from queue. (Recall that queue
494 * is one-based, so 1 <= i <= size.)
495 *
496 * Normally this method leaves the elements at positions from 1 up to i-1,
497 * inclusive, untouched. Under these circumstances, it returns null.
498 * Occasionally, in order to maintain the heap invariant, it must move
499 * the last element of the list to some index in the range [2, i-1],
500 * and move the element previously at position (i/2) to position i.
501 * Under these circumstances, this method returns the element that was
502 * previously at the end of the list and is now at some position between
503 * 2 and i-1 inclusive.
504 */
505 private E removeAt(int i) {
506 assert i > 0 && i <= size;
507 modCount++;
508
509 E moved = (E) queue[size];
510 queue[i] = moved;
511 queue[size--] = null; // Drop extra ref to prevent memory leak
512 if (i <= size) {
513 fixDown(i);
514 if (queue[i] == moved) {
515 fixUp(i);
516 if (queue[i] != moved)
517 return moved;
518 }
519 }
520 return null;
521 }
522
523 /**
524 * Establishes the heap invariant (described above) assuming the heap
525 * satisfies the invariant except possibly for the leaf-node indexed by k
526 * (which may have a nextExecutionTime less than its parent's).
527 *
528 * This method functions by "promoting" queue[k] up the hierarchy
529 * (by swapping it with its parent) repeatedly until queue[k]
530 * is greater than or equal to its parent.
531 */
532 private void fixUp(int k) {
533 if (comparator == null) {
534 while (k > 1) {
535 int j = k >> 1;
536 if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
537 break;
538 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
539 k = j;
540 }
541 } else {
542 while (k > 1) {
543 int j = k >>> 1;
544 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
545 break;
546 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
547 k = j;
548 }
549 }
550 }
551
552 /**
553 * Establishes the heap invariant (described above) in the subtree
554 * rooted at k, which is assumed to satisfy the heap invariant except
555 * possibly for node k itself (which may be greater than its children).
556 *
557 * This method functions by "demoting" queue[k] down the hierarchy
558 * (by swapping it with its smaller child) repeatedly until queue[k]
559 * is less than or equal to its children.
560 */
561 private void fixDown(int k) {
562 int j;
563 if (comparator == null) {
564 while ((j = k << 1) <= size && (j > 0)) {
565 if (j<size &&
566 ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
567 j++; // j indexes smallest kid
568
569 if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
570 break;
571 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
572 k = j;
573 }
574 } else {
575 while ((j = k << 1) <= size && (j > 0)) {
576 if (j<size &&
577 comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
578 j++; // j indexes smallest kid
579 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
580 break;
581 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
582 k = j;
583 }
584 }
585 }
586
587 /**
588 * Establishes the heap invariant (described above) in the entire tree,
589 * assuming nothing about the order of the elements prior to the call.
590 */
591 private void heapify() {
592 for (int i = size/2; i >= 1; i--)
593 fixDown(i);
594 }
595
596 /**
597 * Returns the comparator used to order this collection, or <tt>null</tt>
598 * if this collection is sorted according to its elements natural ordering
599 * (using <tt>Comparable</tt>).
600 *
601 * @return the comparator used to order this collection, or <tt>null</tt>
602 * if this collection is sorted according to its elements natural ordering.
603 */
604 public Comparator<? super E> comparator() {
605 return comparator;
606 }
607
608 /**
609 * Save the state of the instance to a stream (that
610 * is, serialize it).
611 *
612 * @serialData The length of the array backing the instance is
613 * emitted (int), followed by all of its elements (each an
614 * <tt>Object</tt>) in the proper order.
615 * @param s the stream
616 */
617 private void writeObject(java.io.ObjectOutputStream s)
618 throws java.io.IOException{
619 // Write out element count, and any hidden stuff
620 s.defaultWriteObject();
621
622 // Write out array length
623 s.writeInt(queue.length);
624
625 // Write out all elements in the proper order.
626 for (int i=1; i<=size; i++)
627 s.writeObject(queue[i]);
628 }
629
630 /**
631 * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
632 * deserialize it).
633 * @param s the stream
634 */
635 private void readObject(java.io.ObjectInputStream s)
636 throws java.io.IOException, ClassNotFoundException {
637 // Read in size, and any hidden stuff
638 s.defaultReadObject();
639
640 // Read in array length and allocate array
641 int arrayLength = s.readInt();
642 queue = new Object[arrayLength];
643
644 // Read in all elements in the proper order.
645 for (int i=1; i<=size; i++)
646 queue[i] = (E) s.readObject();
647 }
648
649 }