ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.53
Committed: Wed Nov 23 05:33:25 2005 UTC (18 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.52: +2 -2 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * @(#)PriorityQueue.java 1.8 05/08/27
3 *
4 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9 import java.util.*; // for javadoc (till 6280605 is fixed)
10
11 /**
12 * An unbounded priority {@linkplain Queue queue} based on a priority
13 * heap. The elements of the priority queue are ordered according to
14 * their {@linkplain Comparable natural ordering}, or by a {@link
15 * Comparator} provided at queue construction time, depending on which
16 * constructor is used. A priority queue does not permit
17 * <tt>null</tt> elements. A priority queue relying on natural
18 * ordering also does not permit insertion of non-comparable objects
19 * (doing so may result in <tt>ClassCastException</tt>).
20 *
21 * <p>The <em>head</em> of this queue is the <em>least</em> element
22 * with respect to the specified ordering. If multiple elements are
23 * tied for least value, the head is one of those elements -- ties are
24 * broken arbitrarily. The queue retrieval operations <tt>poll</tt>,
25 * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 * element at the head of the queue.
27 *
28 * <p>A priority queue is unbounded, but has an internal
29 * <i>capacity</i> governing the size of an array used to store the
30 * elements on the queue. It is always at least as large as the queue
31 * size. As elements are added to a priority queue, its capacity
32 * grows automatically. The details of the growth policy are not
33 * specified.
34 *
35 * <p>This class and its iterator implement all of the
36 * <em>optional</em> methods of the {@link Collection} and {@link
37 * Iterator} interfaces. The Iterator provided in method {@link
38 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
39 * the priority queue in any particular order. If you need ordered
40 * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
41 *
42 * <p> <strong>Note that this implementation is not synchronized.</strong>
43 * Multiple threads should not access a <tt>PriorityQueue</tt>
44 * instance concurrently if any of the threads modifies the list
45 * structurally. Instead, use the thread-safe {@link
46 * java.util.concurrent.PriorityBlockingQueue} class.
47 *
48 * <p>Implementation note: this implementation provides O(log(n)) time
49 * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
50 * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
51 * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
52 * constant time for the retrieval methods (<tt>peek</tt>,
53 * <tt>element</tt>, and <tt>size</tt>).
54 *
55 * <p>This class is a member of the
56 * <a href="{@docRoot}/../guide/collections/index.html">
57 * Java Collections Framework</a>.
58 * @since 1.5
59 * @version 1.8, 08/27/05
60 * @author Josh Bloch
61 * @param <E> the type of elements held in this collection
62 */
63 public class PriorityQueue<E> extends AbstractQueue<E>
64 implements java.io.Serializable {
65
66 private static final long serialVersionUID = -7720805057305804111L;
67
68 private static final int DEFAULT_INITIAL_CAPACITY = 11;
69
70 /**
71 * Priority queue represented as a balanced binary heap: the two children
72 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
73 * ordered by comparator, or by the elements' natural ordering, if
74 * comparator is null: For each node n in the heap and each descendant d
75 * of n, n <= d.
76 *
77 * The element with the lowest value is in queue[1], assuming the queue is
78 * nonempty. (A one-based array is used in preference to the traditional
79 * zero-based array to simplify parent and child calculations.)
80 *
81 * queue.length must be >= 2, even if size == 0.
82 */
83 private transient Object[] queue;
84
85 /**
86 * The number of elements in the priority queue.
87 */
88 private int size = 0;
89
90 /**
91 * The comparator, or null if priority queue uses elements'
92 * natural ordering.
93 */
94 private final Comparator<? super E> comparator;
95
96 /**
97 * The number of times this priority queue has been
98 * <i>structurally modified</i>. See AbstractList for gory details.
99 */
100 private transient int modCount = 0;
101
102 /**
103 * Creates a <tt>PriorityQueue</tt> with the default initial
104 * capacity (11) that orders its elements according to their
105 * {@linkplain Comparable natural ordering}.
106 */
107 public PriorityQueue() {
108 this(DEFAULT_INITIAL_CAPACITY, null);
109 }
110
111 /**
112 * Creates a <tt>PriorityQueue</tt> with the specified initial
113 * capacity that orders its elements according to their
114 * {@linkplain Comparable natural ordering}.
115 *
116 * @param initialCapacity the initial capacity for this priority queue
117 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
118 * than 1
119 */
120 public PriorityQueue(int initialCapacity) {
121 this(initialCapacity, null);
122 }
123
124 /**
125 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
126 * that orders its elements according to the specified comparator.
127 *
128 * @param initialCapacity the initial capacity for this priority queue
129 * @param comparator the comparator that will be used to order
130 * this priority queue. If <tt>null</tt>, the <i>natural
131 * ordering</i> of the elements will be used.
132 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
133 * less than 1
134 */
135 public PriorityQueue(int initialCapacity,
136 Comparator<? super E> comparator) {
137 if (initialCapacity < 1)
138 throw new IllegalArgumentException();
139 this.queue = new Object[initialCapacity + 1];
140 this.comparator = comparator;
141 }
142
143 /**
144 * Common code to initialize underlying queue array across
145 * constructors below.
146 */
147 private void initializeArray(Collection<? extends E> c) {
148 int sz = c.size();
149 int initialCapacity = (int)Math.min((sz * 110L) / 100,
150 Integer.MAX_VALUE - 1);
151 if (initialCapacity < 1)
152 initialCapacity = 1;
153
154 this.queue = new Object[initialCapacity + 1];
155 }
156
157 /**
158 * Initially fill elements of the queue array under the
159 * knowledge that it is sorted or is another PQ, in which
160 * case we can just place the elements in the order presented.
161 */
162 private void fillFromSorted(Collection<? extends E> c) {
163 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
164 int k = ++size;
165 if (k >= queue.length)
166 grow(k);
167 queue[k] = i.next();
168 }
169 }
170
171 /**
172 * Initially fill elements of the queue array that is not to our knowledge
173 * sorted, so we must rearrange the elements to guarantee the heap
174 * invariant.
175 */
176 private void fillFromUnsorted(Collection<? extends E> c) {
177 for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
178 int k = ++size;
179 if (k >= queue.length)
180 grow(k);
181 queue[k] = i.next();
182 }
183 heapify();
184 }
185
186 /**
187 * Creates a <tt>PriorityQueue</tt> containing the elements in the
188 * specified collection. The priority queue has an initial
189 * capacity of 110% of the size of the specified collection or 1
190 * if the collection is empty. If the specified collection is an
191 * instance of a {@link java.util.SortedSet} or is another
192 * <tt>PriorityQueue</tt>, the priority queue will be ordered
193 * according to the same ordering. Otherwise, this priority queue
194 * will be ordered according to the natural ordering of its elements.
195 *
196 * @param c the collection whose elements are to be placed
197 * into this priority queue
198 * @throws ClassCastException if elements of the specified collection
199 * cannot be compared to one another according to the priority
200 * queue's ordering
201 * @throws NullPointerException if the specified collection or any
202 * of its elements are null
203 */
204 public PriorityQueue(Collection<? extends E> c) {
205 initializeArray(c);
206 if (c instanceof SortedSet) {
207 SortedSet<? extends E> s = (SortedSet<? extends E>)c;
208 comparator = (Comparator<? super E>)s.comparator();
209 fillFromSorted(s);
210 } else if (c instanceof PriorityQueue) {
211 PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
212 comparator = (Comparator<? super E>)s.comparator();
213 fillFromSorted(s);
214 } else {
215 comparator = null;
216 fillFromUnsorted(c);
217 }
218 }
219
220 /**
221 * Creates a <tt>PriorityQueue</tt> containing the elements in the
222 * specified priority queue. The priority queue has an initial
223 * capacity of 110% of the size of the specified priority queue or
224 * 1 if the priority queue is empty. This priority queue will be
225 * ordered according to the same ordering as the given priority
226 * queue.
227 *
228 * @param c the priority queue whose elements are to be placed
229 * into this priority queue
230 * @throws ClassCastException if elements of <tt>c</tt> cannot be
231 * compared to one another according to <tt>c</tt>'s
232 * ordering
233 * @throws NullPointerException if the specified priority queue or any
234 * of its elements are null
235 */
236 public PriorityQueue(PriorityQueue<? extends E> c) {
237 initializeArray(c);
238 comparator = (Comparator<? super E>)c.comparator();
239 fillFromSorted(c);
240 }
241
242 /**
243 * Creates a <tt>PriorityQueue</tt> containing the elements in the
244 * specified sorted set. The priority queue has an initial
245 * capacity of 110% of the size of the specified sorted set or 1
246 * if the sorted set is empty. This priority queue will be ordered
247 * according to the same ordering as the given sorted set.
248 *
249 * @param c the sorted set whose elements are to be placed
250 * into this priority queue.
251 * @throws ClassCastException if elements of the specified sorted
252 * set cannot be compared to one another according to the
253 * sorted set's ordering
254 * @throws NullPointerException if the specified sorted set or any
255 * of its elements are null
256 */
257 public PriorityQueue(SortedSet<? extends E> c) {
258 initializeArray(c);
259 comparator = (Comparator<? super E>)c.comparator();
260 fillFromSorted(c);
261 }
262
263 /**
264 * Resize array, if necessary, to be able to hold given index.
265 */
266 private void grow(int index) {
267 int newlen = queue.length;
268 if (index < newlen) // don't need to grow
269 return;
270 if (index == Integer.MAX_VALUE)
271 throw new OutOfMemoryError();
272 while (newlen <= index) {
273 if (newlen >= Integer.MAX_VALUE / 2) // avoid overflow
274 newlen = Integer.MAX_VALUE;
275 else
276 newlen <<= 2;
277 }
278 queue = Arrays.copyOf(queue, newlen);
279 }
280
281 /**
282 * Inserts the specified element into this priority queue.
283 *
284 * @return <tt>true</tt> (as specified by {@link Collection#add})
285 * @throws ClassCastException if the specified element cannot be
286 * compared with elements currently in this priority queue
287 * according to the priority queue's ordering
288 * @throws NullPointerException if the specified element is null
289 */
290 public boolean add(E e) {
291 return offer(e);
292 }
293
294 /**
295 * Inserts the specified element into this priority queue.
296 *
297 * @return <tt>true</tt> (as specified by {@link Queue#offer})
298 * @throws ClassCastException if the specified element cannot be
299 * compared with elements currently in this priority queue
300 * according to the priority queue's ordering
301 * @throws NullPointerException if the specified element is null
302 */
303 public boolean offer(E e) {
304 if (e == null)
305 throw new NullPointerException();
306 modCount++;
307 ++size;
308
309 // Grow backing store if necessary
310 if (size >= queue.length)
311 grow(size);
312
313 queue[size] = e;
314 fixUp(size);
315 return true;
316 }
317
318 public E peek() {
319 if (size == 0)
320 return null;
321 return (E) queue[1];
322 }
323
324 private int indexOf(Object o) {
325 if (o == null)
326 return -1;
327 for (int i = 1; i <= size; i++)
328 if (o.equals(queue[i]))
329 return i;
330 return -1;
331 }
332
333 /**
334 * Removes a single instance of the specified element from this queue,
335 * if it is present. More formally, removes an element <tt>e</tt> such
336 * that <tt>o.equals(e)</tt>, if this queue contains one or more such
337 * elements. Returns true if this queue contained the specified element
338 * (or equivalently, if this queue changed as a result of the call).
339 *
340 * @param o element to be removed from this queue, if present
341 * @return <tt>true</tt> if this queue changed as a result of the call
342 */
343 public boolean remove(Object o) {
344 int i = indexOf(o);
345 if (i == -1)
346 return false;
347 else {
348 removeAt(i);
349 return true;
350 }
351 }
352
353 /**
354 * Returns <tt>true</tt> if this queue contains the specified element.
355 * More formally, returns <tt>true</tt> if and only if this queue contains
356 * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
357 *
358 * @param o object to be checked for containment in this queue
359 * @return <tt>true</tt> if this queue contains the specified element
360 */
361 public boolean contains(Object o) {
362 return indexOf(o) != -1;
363 }
364
365 /**
366 * Returns an array containing all of the elements in this queue,
367 * The elements are in no particular order.
368 *
369 * <p>The returned array will be "safe" in that no references to it are
370 * maintained by this list. (In other words, this method must allocate
371 * a new array). The caller is thus free to modify the returned array.
372 *
373 * @return an array containing all of the elements in this queue.
374 */
375 public Object[] toArray() {
376 return Arrays.copyOfRange(queue, 1, size+1);
377 }
378
379 /**
380 * Returns an array containing all of the elements in this queue.
381 * The elements are in no particular order. The runtime type of
382 * the returned array is that of the specified array. If the queue
383 * fits in the specified array, it is returned therein.
384 * Otherwise, a new array is allocated with the runtime type of
385 * the specified array and the size of this queue.
386 *
387 * <p>If the queue fits in the specified array with room to spare
388 * (i.e., the array has more elements than the queue), the element in
389 * the array immediately following the end of the collection is set to
390 * <tt>null</tt>. (This is useful in determining the length of the
391 * queue <i>only</i> if the caller knows that the queue does not contain
392 * any null elements.)
393 *
394 * @param a the array into which the elements of the queue are to
395 * be stored, if it is big enough; otherwise, a new array of the
396 * same runtime type is allocated for this purpose.
397 * @return an array containing the elements of the queue
398 * @throws ArrayStoreException if the runtime type of the specified array
399 * is not a supertype of the runtime type of every element in
400 * this queue
401 * @throws NullPointerException if the specified array is null
402 */
403 public <T> T[] toArray(T[] a) {
404 if (a.length < size)
405 // Make a new array of a's runtime type, but my contents:
406 return (T[]) Arrays.copyOfRange(queue, 1, size+1, a.getClass());
407 System.arraycopy(queue, 1, a, 0, size);
408 if (a.length > size)
409 a[size] = null;
410 return a;
411 }
412
413 /**
414 * Returns an iterator over the elements in this queue. The iterator
415 * does not return the elements in any particular order.
416 *
417 * @return an iterator over the elements in this queue
418 */
419 public Iterator<E> iterator() {
420 return new Itr();
421 }
422
423 private class Itr implements Iterator<E> {
424
425 /**
426 * Index (into queue array) of element to be returned by
427 * subsequent call to next.
428 */
429 private int cursor = 1;
430
431 /**
432 * Index of element returned by most recent call to next,
433 * unless that element came from the forgetMeNot list.
434 * Reset to 0 if element is deleted by a call to remove.
435 */
436 private int lastRet = 0;
437
438 /**
439 * The modCount value that the iterator believes that the backing
440 * List should have. If this expectation is violated, the iterator
441 * has detected concurrent modification.
442 */
443 private int expectedModCount = modCount;
444
445 /**
446 * A list of elements that were moved from the unvisited portion of
447 * the heap into the visited portion as a result of "unlucky" element
448 * removals during the iteration. (Unlucky element removals are those
449 * that require a fixup instead of a fixdown.) We must visit all of
450 * the elements in this list to complete the iteration. We do this
451 * after we've completed the "normal" iteration.
452 *
453 * We expect that most iterations, even those involving removals,
454 * will not use need to store elements in this field.
455 */
456 private ArrayList<E> forgetMeNot = null;
457
458 /**
459 * Element returned by the most recent call to next iff that
460 * element was drawn from the forgetMeNot list.
461 */
462 private Object lastRetElt = null;
463
464 public boolean hasNext() {
465 return cursor <= size || forgetMeNot != null;
466 }
467
468 public E next() {
469 checkForComodification();
470 E result;
471 if (cursor <= size) {
472 result = (E) queue[cursor];
473 lastRet = cursor++;
474 }
475 else if (forgetMeNot == null)
476 throw new NoSuchElementException();
477 else {
478 int remaining = forgetMeNot.size();
479 result = forgetMeNot.remove(remaining - 1);
480 if (remaining == 1)
481 forgetMeNot = null;
482 lastRet = 0;
483 lastRetElt = result;
484 }
485 return result;
486 }
487
488 public void remove() {
489 checkForComodification();
490
491 if (lastRet != 0) {
492 E moved = PriorityQueue.this.removeAt(lastRet);
493 lastRet = 0;
494 if (moved == null) {
495 cursor--;
496 } else {
497 if (forgetMeNot == null)
498 forgetMeNot = new ArrayList<E>();
499 forgetMeNot.add(moved);
500 }
501 } else if (lastRetElt != null) {
502 PriorityQueue.this.remove(lastRetElt);
503 lastRetElt = null;
504 } else {
505 throw new IllegalStateException();
506 }
507
508 expectedModCount = modCount;
509 }
510
511 final void checkForComodification() {
512 if (modCount != expectedModCount)
513 throw new ConcurrentModificationException();
514 }
515 }
516
517 public int size() {
518 return size;
519 }
520
521 /**
522 * Removes all of the elements from this priority queue.
523 * The queue will be empty after this call returns.
524 */
525 public void clear() {
526 modCount++;
527
528 // Null out element references to prevent memory leak
529 for (int i=1; i<=size; i++)
530 queue[i] = null;
531
532 size = 0;
533 }
534
535 public E poll() {
536 if (size == 0)
537 return null;
538 modCount++;
539
540 E result = (E) queue[1];
541 queue[1] = queue[size];
542 queue[size--] = null; // Drop extra ref to prevent memory leak
543 if (size > 1)
544 fixDown(1);
545
546 return result;
547 }
548
549 /**
550 * Removes and returns the ith element from queue. (Recall that queue
551 * is one-based, so 1 <= i <= size.)
552 *
553 * Normally this method leaves the elements at positions from 1 up to i-1,
554 * inclusive, untouched. Under these circumstances, it returns null.
555 * Occasionally, in order to maintain the heap invariant, it must move
556 * the last element of the list to some index in the range [2, i-1],
557 * and move the element previously at position (i/2) to position i.
558 * Under these circumstances, this method returns the element that was
559 * previously at the end of the list and is now at some position between
560 * 2 and i-1 inclusive.
561 */
562 private E removeAt(int i) {
563 assert i > 0 && i <= size;
564 modCount++;
565
566 E moved = (E) queue[size];
567 queue[i] = moved;
568 queue[size--] = null; // Drop extra ref to prevent memory leak
569 if (i <= size) {
570 fixDown(i);
571 if (queue[i] == moved) {
572 fixUp(i);
573 if (queue[i] != moved)
574 return moved;
575 }
576 }
577 return null;
578 }
579
580 /**
581 * Establishes the heap invariant (described above) assuming the heap
582 * satisfies the invariant except possibly for the leaf-node indexed by k
583 * (which may have a nextExecutionTime less than its parent's).
584 *
585 * This method functions by "promoting" queue[k] up the hierarchy
586 * (by swapping it with its parent) repeatedly until queue[k]
587 * is greater than or equal to its parent.
588 */
589 private void fixUp(int k) {
590 if (comparator == null) {
591 while (k > 1) {
592 int j = k >> 1;
593 if (((Comparable<? super E>)queue[j]).compareTo((E)queue[k]) <= 0)
594 break;
595 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
596 k = j;
597 }
598 } else {
599 while (k > 1) {
600 int j = k >>> 1;
601 if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
602 break;
603 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
604 k = j;
605 }
606 }
607 }
608
609 /**
610 * Establishes the heap invariant (described above) in the subtree
611 * rooted at k, which is assumed to satisfy the heap invariant except
612 * possibly for node k itself (which may be greater than its children).
613 *
614 * This method functions by "demoting" queue[k] down the hierarchy
615 * (by swapping it with its smaller child) repeatedly until queue[k]
616 * is less than or equal to its children.
617 */
618 private void fixDown(int k) {
619 int j;
620 if (comparator == null) {
621 while ((j = k << 1) <= size && (j > 0)) {
622 if (j<size &&
623 ((Comparable<? super E>)queue[j]).compareTo((E)queue[j+1]) > 0)
624 j++; // j indexes smallest kid
625
626 if (((Comparable<? super E>)queue[k]).compareTo((E)queue[j]) <= 0)
627 break;
628 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
629 k = j;
630 }
631 } else {
632 while ((j = k << 1) <= size && (j > 0)) {
633 if (j<size &&
634 comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
635 j++; // j indexes smallest kid
636 if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
637 break;
638 Object tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
639 k = j;
640 }
641 }
642 }
643
644 /**
645 * Establishes the heap invariant (described above) in the entire tree,
646 * assuming nothing about the order of the elements prior to the call.
647 */
648 private void heapify() {
649 for (int i = size/2; i >= 1; i--)
650 fixDown(i);
651 }
652
653 /**
654 * Returns the comparator used to order the elements in this
655 * queue, or <tt>null</tt> if this queue is sorted according to
656 * the {@linkplain Comparable natural ordering} of its elements.
657 *
658 * @return the comparator used to order this queue, or
659 * <tt>null</tt> if this queue is sorted according to the
660 * natural ordering of its elements.
661 */
662 public Comparator<? super E> comparator() {
663 return comparator;
664 }
665
666 /**
667 * Save the state of the instance to a stream (that
668 * is, serialize it).
669 *
670 * @serialData The length of the array backing the instance is
671 * emitted (int), followed by all of its elements (each an
672 * <tt>Object</tt>) in the proper order.
673 * @param s the stream
674 */
675 private void writeObject(java.io.ObjectOutputStream s)
676 throws java.io.IOException{
677 // Write out element count, and any hidden stuff
678 s.defaultWriteObject();
679
680 // Write out array length
681 s.writeInt(queue.length);
682
683 // Write out all elements in the proper order.
684 for (int i=1; i<=size; i++)
685 s.writeObject(queue[i]);
686 }
687
688 /**
689 * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
690 * (that is, deserialize it).
691 * @param s the stream
692 */
693 private void readObject(java.io.ObjectInputStream s)
694 throws java.io.IOException, ClassNotFoundException {
695 // Read in size, and any hidden stuff
696 s.defaultReadObject();
697
698 // Read in array length and allocate array
699 int arrayLength = s.readInt();
700 queue = new Object[arrayLength];
701
702 // Read in all elements in the proper order.
703 for (int i=1; i<=size; i++)
704 queue[i] = (E) s.readObject();
705 }
706
707 }