ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.59
Committed: Tue Nov 29 08:52:26 2005 UTC (18 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.58: +3 -3 lines
Log Message:
doc touchups

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9 import java.util.*; // for javadoc (till 6280605 is fixed)
10
11 /**
12 * An unbounded priority {@linkplain Queue queue} based on a priority
13 * heap. The elements of the priority queue are ordered according to
14 * their {@linkplain Comparable natural ordering}, or by a {@link
15 * Comparator} provided at queue construction time, depending on which
16 * constructor is used. A priority queue does not permit
17 * <tt>null</tt> elements. A priority queue relying on natural
18 * ordering also does not permit insertion of non-comparable objects
19 * (doing so may result in <tt>ClassCastException</tt>).
20 *
21 * <p>The <em>head</em> of this queue is the <em>least</em> element
22 * with respect to the specified ordering. If multiple elements are
23 * tied for least value, the head is one of those elements -- ties are
24 * broken arbitrarily. The queue retrieval operations <tt>poll</tt>,
25 * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 * element at the head of the queue.
27 *
28 * <p>A priority queue is unbounded, but has an internal
29 * <i>capacity</i> governing the size of an array used to store the
30 * elements on the queue. It is always at least as large as the queue
31 * size. As elements are added to a priority queue, its capacity
32 * grows automatically. The details of the growth policy are not
33 * specified.
34 *
35 * <p>This class and its iterator implement all of the
36 * <em>optional</em> methods of the {@link Collection} and {@link
37 * Iterator} interfaces. The Iterator provided in method {@link
38 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
39 * the priority queue in any particular order. If you need ordered
40 * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
41 *
42 * <p> <strong>Note that this implementation is not synchronized.</strong>
43 * Multiple threads should not access a <tt>PriorityQueue</tt>
44 * instance concurrently if any of the threads modifies the list
45 * structurally. Instead, use the thread-safe {@link
46 * java.util.concurrent.PriorityBlockingQueue} class.
47 *
48 * <p>Implementation note: this implementation provides O(log(n)) time
49 * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
50 * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
51 * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
52 * constant time for the retrieval methods (<tt>peek</tt>,
53 * <tt>element</tt>, and <tt>size</tt>).
54 *
55 * <p>This class is a member of the
56 * <a href="{@docRoot}/../guide/collections/index.html">
57 * Java Collections Framework</a>.
58 * @since 1.5
59 * @version 1.8, 08/27/05
60 * @author Josh Bloch
61 * @param <E> the type of elements held in this collection
62 */
63 public class PriorityQueue<E> extends AbstractQueue<E>
64 implements java.io.Serializable {
65
66 private static final long serialVersionUID = -7720805057305804111L;
67
68 private static final int DEFAULT_INITIAL_CAPACITY = 11;
69
70 /**
71 * Priority queue represented as a balanced binary heap: the two
72 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
73 * priority queue is ordered by comparator, or by the elements'
74 * natural ordering, if comparator is null: For each node n in the
75 * heap and each descendant d of n, n <= d. The element with the
76 * lowest value is in queue[0], assuming the queue is nonempty.
77 */
78 private transient Object[] queue;
79
80 /**
81 * The number of elements in the priority queue.
82 */
83 private int size = 0;
84
85 /**
86 * The comparator, or null if priority queue uses elements'
87 * natural ordering.
88 */
89 private final Comparator<? super E> comparator;
90
91 /**
92 * The number of times this priority queue has been
93 * <i>structurally modified</i>. See AbstractList for gory details.
94 */
95 private transient int modCount = 0;
96
97 /**
98 * Creates a <tt>PriorityQueue</tt> with the default initial
99 * capacity (11) that orders its elements according to their
100 * {@linkplain Comparable natural ordering}.
101 */
102 public PriorityQueue() {
103 this(DEFAULT_INITIAL_CAPACITY, null);
104 }
105
106 /**
107 * Creates a <tt>PriorityQueue</tt> with the specified initial
108 * capacity that orders its elements according to their
109 * {@linkplain Comparable natural ordering}.
110 *
111 * @param initialCapacity the initial capacity for this priority queue
112 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
113 * than 1
114 */
115 public PriorityQueue(int initialCapacity) {
116 this(initialCapacity, null);
117 }
118
119 /**
120 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
121 * that orders its elements according to the specified comparator.
122 *
123 * @param initialCapacity the initial capacity for this priority queue
124 * @param comparator the comparator that will be used to order
125 * this priority queue. If <tt>null</tt>, the <i>natural
126 * ordering</i> of the elements will be used.
127 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
128 * less than 1
129 */
130 public PriorityQueue(int initialCapacity,
131 Comparator<? super E> comparator) {
132 // Note: This restriction of at least one is not actually needed,
133 // but continues for 1.5 compatibility
134 if (initialCapacity < 1)
135 throw new IllegalArgumentException();
136 this.queue = new Object[initialCapacity];
137 this.comparator = comparator;
138 }
139
140 /**
141 * Creates a <tt>PriorityQueue</tt> containing the elements in the
142 * specified collection. If the specified collection is an
143 * instance of a {@link java.util.SortedSet} or is another
144 * <tt>PriorityQueue</tt>, the priority queue will be ordered
145 * according to the same ordering. Otherwise, this priority queue
146 * will be ordered according to the natural ordering of its elements.
147 *
148 * @param c the collection whose elements are to be placed
149 * into this priority queue
150 * @throws ClassCastException if elements of the specified collection
151 * cannot be compared to one another according to the priority
152 * queue's ordering
153 * @throws NullPointerException if the specified collection or any
154 * of its elements are null
155 */
156 public PriorityQueue(Collection<? extends E> c) {
157 initFromCollection(c);
158 if (c instanceof SortedSet)
159 comparator = (Comparator<? super E>)
160 ((SortedSet<? extends E>)c).comparator();
161 else if (c instanceof PriorityQueue)
162 comparator = (Comparator<? super E>)
163 ((PriorityQueue<? extends E>)c).comparator();
164 else {
165 comparator = null;
166 heapify();
167 }
168 }
169
170 /**
171 * Creates a <tt>PriorityQueue</tt> containing the elements in the
172 * specified priority queue. This priority queue will be
173 * ordered according to the same ordering as the given priority
174 * queue.
175 *
176 * @param c the priority queue whose elements are to be placed
177 * into this priority queue
178 * @throws ClassCastException if elements of <tt>c</tt> cannot be
179 * compared to one another according to <tt>c</tt>'s
180 * ordering
181 * @throws NullPointerException if the specified priority queue or any
182 * of its elements are null
183 */
184 public PriorityQueue(PriorityQueue<? extends E> c) {
185 comparator = (Comparator<? super E>)c.comparator();
186 initFromCollection(c);
187 }
188
189 /**
190 * Creates a <tt>PriorityQueue</tt> containing the elements in the
191 * specified sorted set. This priority queue will be ordered
192 * according to the same ordering as the given sorted set.
193 *
194 * @param c the sorted set whose elements are to be placed
195 * into this priority queue.
196 * @throws ClassCastException if elements of the specified sorted
197 * set cannot be compared to one another according to the
198 * sorted set's ordering
199 * @throws NullPointerException if the specified sorted set or any
200 * of its elements are null
201 */
202 public PriorityQueue(SortedSet<? extends E> c) {
203 comparator = (Comparator<? super E>)c.comparator();
204 initFromCollection(c);
205 }
206
207 /**
208 * Initialize queue array with elements from the given Collection.
209 * @param c the collection
210 */
211 private void initFromCollection(Collection<? extends E> c) {
212 Object[] a = c.toArray();
213 // If c.toArray incorrectly doesn't return Object[], copy it.
214 if (a.getClass() != Object[].class)
215 a = Arrays.copyOf(a, a.length, Object[].class);
216 queue = a;
217 size = a.length;
218 }
219
220 /**
221 * Increases the capacity of the array.
222 *
223 * @param minCapacity the desired minimum capacity
224 */
225 private void grow(int minCapacity) {
226 if (minCapacity < 0) // overflow
227 throw new OutOfMemoryError();
228 int oldCapacity = queue.length;
229 // Double size if small; else grow by 50%
230 int newCapacity = ((oldCapacity < 64)?
231 ((oldCapacity + 1) * 2):
232 ((oldCapacity / 2) * 3));
233 if (newCapacity < 0) // overflow
234 newCapacity = Integer.MAX_VALUE;
235 if (newCapacity < minCapacity)
236 newCapacity = minCapacity;
237 queue = Arrays.copyOf(queue, newCapacity);
238 }
239
240 /**
241 * Inserts the specified element into this priority queue.
242 *
243 * @return <tt>true</tt> (as specified by {@link Collection#add})
244 * @throws ClassCastException if the specified element cannot be
245 * compared with elements currently in this priority queue
246 * according to the priority queue's ordering
247 * @throws NullPointerException if the specified element is null
248 */
249 public boolean add(E e) {
250 return offer(e);
251 }
252
253 /**
254 * Inserts the specified element into this priority queue.
255 *
256 * @return <tt>true</tt> (as specified by {@link Queue#offer})
257 * @throws ClassCastException if the specified element cannot be
258 * compared with elements currently in this priority queue
259 * according to the priority queue's ordering
260 * @throws NullPointerException if the specified element is null
261 */
262 public boolean offer(E e) {
263 if (e == null)
264 throw new NullPointerException();
265 modCount++;
266 int i = size;
267 if (i >= queue.length)
268 grow(i + 1);
269 size = i + 1;
270 if (i == 0)
271 queue[0] = e;
272 else
273 siftUp(i, e);
274 return true;
275 }
276
277 public E peek() {
278 if (size == 0)
279 return null;
280 return (E) queue[0];
281 }
282
283 private int indexOf(Object o) {
284 if (o != null) {
285 for (int i = 0; i < size; i++)
286 if (o.equals(queue[i]))
287 return i;
288 }
289 return -1;
290 }
291
292 /**
293 * Removes a single instance of the specified element from this queue,
294 * if it is present. More formally, removes an element <tt>e</tt> such
295 * that <tt>o.equals(e)</tt>, if this queue contains one or more such
296 * elements. Returns true if this queue contained the specified element
297 * (or equivalently, if this queue changed as a result of the call).
298 *
299 * @param o element to be removed from this queue, if present
300 * @return <tt>true</tt> if this queue changed as a result of the call
301 */
302 public boolean remove(Object o) {
303 int i = indexOf(o);
304 if (i == -1)
305 return false;
306 else {
307 removeAt(i);
308 return true;
309 }
310 }
311
312 /**
313 * Version of remove using reference equality, not equals.
314 * Needed by iterator.remove.
315 *
316 * @param o element to be removed from this queue, if present
317 * @return <tt>true</tt> if removed
318 */
319 boolean removeEq(Object o) {
320 for (int i = 0; i < size; i++) {
321 if (o == queue[i]) {
322 removeAt(i);
323 return true;
324 }
325 }
326 return false;
327 }
328
329 /**
330 * Returns <tt>true</tt> if this queue contains the specified element.
331 * More formally, returns <tt>true</tt> if and only if this queue contains
332 * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
333 *
334 * @param o object to be checked for containment in this queue
335 * @return <tt>true</tt> if this queue contains the specified element
336 */
337 public boolean contains(Object o) {
338 return indexOf(o) != -1;
339 }
340
341 /**
342 * Returns an array containing all of the elements in this queue,
343 * The elements are in no particular order.
344 *
345 * <p>The returned array will be "safe" in that no references to it are
346 * maintained by this list. (In other words, this method must allocate
347 * a new array). The caller is thus free to modify the returned array.
348 *
349 * @return an array containing all of the elements in this queue
350 */
351 public Object[] toArray() {
352 return Arrays.copyOf(queue, size);
353 }
354
355 /**
356 * Returns an array containing all of the elements in this queue.
357 * The elements are in no particular order. The runtime type of
358 * the returned array is that of the specified array. If the queue
359 * fits in the specified array, it is returned therein.
360 * Otherwise, a new array is allocated with the runtime type of
361 * the specified array and the size of this queue.
362 *
363 * <p>If the queue fits in the specified array with room to spare
364 * (i.e., the array has more elements than the queue), the element in
365 * the array immediately following the end of the collection is set to
366 * <tt>null</tt>. (This is useful in determining the length of the
367 * queue <i>only</i> if the caller knows that the queue does not contain
368 * any null elements.)
369 *
370 * @param a the array into which the elements of the queue are to
371 * be stored, if it is big enough; otherwise, a new array of the
372 * same runtime type is allocated for this purpose.
373 * @return an array containing the elements of the queue
374 * @throws ArrayStoreException if the runtime type of the specified array
375 * is not a supertype of the runtime type of every element in
376 * this queue
377 * @throws NullPointerException if the specified array is null
378 */
379 public <T> T[] toArray(T[] a) {
380 if (a.length < size)
381 // Make a new array of a's runtime type, but my contents:
382 return (T[]) Arrays.copyOf(queue, size, a.getClass());
383 System.arraycopy(queue, 0, a, 0, size);
384 if (a.length > size)
385 a[size] = null;
386 return a;
387 }
388
389 /**
390 * Returns an iterator over the elements in this queue. The iterator
391 * does not return the elements in any particular order.
392 *
393 * @return an iterator over the elements in this queue
394 */
395 public Iterator<E> iterator() {
396 return new Itr();
397 }
398
399 private final class Itr implements Iterator<E> {
400 /**
401 * Index (into queue array) of element to be returned by
402 * subsequent call to next.
403 */
404 private int cursor = 0;
405
406 /**
407 * Index of element returned by most recent call to next,
408 * unless that element came from the forgetMeNot list.
409 * Set to -1 if element is deleted by a call to remove.
410 */
411 private int lastRet = -1;
412
413 /**
414 * A queue of elements that were moved from the unvisited portion of
415 * the heap into the visited portion as a result of "unlucky" element
416 * removals during the iteration. (Unlucky element removals are those
417 * that require a siftup instead of a siftdown.) We must visit all of
418 * the elements in this list to complete the iteration. We do this
419 * after we've completed the "normal" iteration.
420 *
421 * We expect that most iterations, even those involving removals,
422 * will not use need to store elements in this field.
423 */
424 private ArrayDeque<E> forgetMeNot = null;
425
426 /**
427 * Element returned by the most recent call to next iff that
428 * element was drawn from the forgetMeNot list.
429 */
430 private E lastRetElt = null;
431
432 /**
433 * The modCount value that the iterator believes that the backing
434 * List should have. If this expectation is violated, the iterator
435 * has detected concurrent modification.
436 */
437 private int expectedModCount = modCount;
438
439 public boolean hasNext() {
440 return cursor < size ||
441 (forgetMeNot != null && !forgetMeNot.isEmpty());
442 }
443
444 public E next() {
445 if (expectedModCount != modCount)
446 throw new ConcurrentModificationException();
447 if (cursor < size)
448 return (E) queue[lastRet = cursor++];
449 if (forgetMeNot != null) {
450 lastRet = -1;
451 lastRetElt = forgetMeNot.poll();
452 if (lastRetElt != null)
453 return lastRetElt;
454 }
455 throw new NoSuchElementException();
456 }
457
458 public void remove() {
459 if (expectedModCount != modCount)
460 throw new ConcurrentModificationException();
461 if (lastRet == -1 && lastRetElt == null)
462 throw new IllegalStateException();
463 if (lastRet != -1) {
464 E moved = PriorityQueue.this.removeAt(lastRet);
465 lastRet = -1;
466 if (moved == null)
467 cursor--;
468 else {
469 if (forgetMeNot == null)
470 forgetMeNot = new ArrayDeque<E>();
471 forgetMeNot.add(moved);
472 }
473 } else {
474 PriorityQueue.this.removeEq(lastRetElt);
475 lastRetElt = null;
476 }
477 expectedModCount = modCount;
478 }
479
480 }
481
482 public int size() {
483 return size;
484 }
485
486 /**
487 * Removes all of the elements from this priority queue.
488 * The queue will be empty after this call returns.
489 */
490 public void clear() {
491 modCount++;
492 for (int i = 0; i < size; i++)
493 queue[i] = null;
494 size = 0;
495 }
496
497 public E poll() {
498 if (size == 0)
499 return null;
500 int s = --size;
501 modCount++;
502 E result = (E)queue[0];
503 E x = (E)queue[s];
504 queue[s] = null;
505 if (s != 0)
506 siftDown(0, x);
507 return result;
508 }
509
510 /**
511 * Removes the ith element from queue.
512 *
513 * Normally this method leaves the elements at up to i-1,
514 * inclusive, untouched. Under these circumstances, it returns
515 * null. Occasionally, in order to maintain the heap invariant,
516 * it must swap a later element of the list with one earlier than
517 * i. Under these circumstances, this method returns the element
518 * that was previously at the end of the list and is now at some
519 * position before i. This fact is used by iterator.remove so as to
520 * avoid missing traverseing elements.
521 */
522 private E removeAt(int i) {
523 assert i >= 0 && i < size;
524 modCount++;
525 int s = --size;
526 if (s == i) // removed last element
527 queue[i] = null;
528 else {
529 E moved = (E) queue[s];
530 queue[s] = null;
531 siftDown(i, moved);
532 if (queue[i] == moved) {
533 siftUp(i, moved);
534 if (queue[i] != moved)
535 return moved;
536 }
537 }
538 return null;
539 }
540
541 /**
542 * Inserts item x at position k, maintaining heap invariant by
543 * promoting x up the tree until it is greater than or equal to
544 * its parent, or is the root.
545 *
546 * To simplify and speed up coercions and comparisons. the
547 * Comparable and Comparator versions are separated into different
548 * methods that are otherwise identical. (Similarly for siftDown.)
549 *
550 * @param k the position to fill
551 * @param x the item to insert
552 */
553 private void siftUp(int k, E x) {
554 if (comparator != null)
555 siftUpUsingComparator(k, x);
556 else
557 siftUpComparable(k, x);
558 }
559
560 private void siftUpComparable(int k, E x) {
561 Comparable<? super E> key = (Comparable<? super E>) x;
562 while (k > 0) {
563 int parent = (k - 1) >>> 1;
564 Object e = queue[parent];
565 if (key.compareTo((E)e) >= 0)
566 break;
567 queue[k] = e;
568 k = parent;
569 }
570 queue[k] = key;
571 }
572
573 private void siftUpUsingComparator(int k, E x) {
574 while (k > 0) {
575 int parent = (k - 1) >>> 1;
576 Object e = queue[parent];
577 if (comparator.compare(x, (E)e) >= 0)
578 break;
579 queue[k] = e;
580 k = parent;
581 }
582 queue[k] = x;
583 }
584
585 /**
586 * Inserts item x at position k, maintaining heap invariant by
587 * demoting x down the tree repeatedly until it is less than or
588 * equal to its children or is a leaf.
589 *
590 * @param k the position to fill
591 * @param x the item to insert
592 */
593 private void siftDown(int k, E x) {
594 if (comparator != null)
595 siftDownUsingComparator(k, x);
596 else
597 siftDownComparable(k, x);
598 }
599
600 private void siftDownComparable(int k, E x) {
601 Comparable<? super E> key = (Comparable<? super E>)x;
602 int half = size >>> 1; // loop while a non-leaf
603 while (k < half) {
604 int child = (k << 1) + 1; // assume left child is least
605 Object c = queue[child];
606 int right = child + 1;
607 if (right < size &&
608 ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
609 c = queue[child = right];
610 if (key.compareTo((E)c) <= 0)
611 break;
612 queue[k] = c;
613 k = child;
614 }
615 queue[k] = key;
616 }
617
618 private void siftDownUsingComparator(int k, E x) {
619 int half = size >>> 1;
620 while (k < half) {
621 int child = (k << 1) + 1;
622 Object c = queue[child];
623 int right = child + 1;
624 if (right < size &&
625 comparator.compare((E)c, (E)queue[right]) > 0)
626 c = queue[child = right];
627 if (comparator.compare(x, (E)c) <= 0)
628 break;
629 queue[k] = c;
630 k = child;
631 }
632 queue[k] = x;
633 }
634
635 /**
636 * Establishes the heap invariant (described above) in the entire tree,
637 * assuming nothing about the order of the elements prior to the call.
638 */
639 private void heapify() {
640 for (int i = (size >>> 1) - 1; i >= 0; i--)
641 siftDown(i, (E)queue[i]);
642 }
643
644 /**
645 * Returns the comparator used to order the elements in this
646 * queue, or <tt>null</tt> if this queue is sorted according to
647 * the {@linkplain Comparable natural ordering} of its elements.
648 *
649 * @return the comparator used to order this queue, or
650 * <tt>null</tt> if this queue is sorted according to the
651 * natural ordering of its elements.
652 */
653 public Comparator<? super E> comparator() {
654 return comparator;
655 }
656
657 /**
658 * Save the state of the instance to a stream (that
659 * is, serialize it).
660 *
661 * @serialData The length of the array backing the instance is
662 * emitted (int), followed by all of its elements (each an
663 * <tt>Object</tt>) in the proper order.
664 * @param s the stream
665 */
666 private void writeObject(java.io.ObjectOutputStream s)
667 throws java.io.IOException{
668 // Write out element count, and any hidden stuff
669 s.defaultWriteObject();
670
671 // Write out array length
672 // For compatibility with 1.5 version, must be at least 2.
673 s.writeInt(Math.max(2, queue.length));
674
675 // Write out all elements in the proper order.
676 for (int i=0; i<size; i++)
677 s.writeObject(queue[i]);
678 }
679
680 /**
681 * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
682 * (that is, deserialize it).
683 * @param s the stream
684 */
685 private void readObject(java.io.ObjectInputStream s)
686 throws java.io.IOException, ClassNotFoundException {
687 // Read in size, and any hidden stuff
688 s.defaultReadObject();
689
690 // Read in array length and allocate array
691 int arrayLength = s.readInt();
692 queue = new Object[arrayLength];
693
694 // Read in all elements in the proper order.
695 for (int i=0; i<size; i++)
696 queue[i] = (E) s.readObject();
697 }
698
699 }