ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.62
Committed: Thu Feb 16 08:17:21 2006 UTC (18 years, 2 months ago) by jsr166
Branch: MAIN
Changes since 1.61: +1 -1 lines
Log Message:
6382646: Core Library "frozen-in-time" SCCS keywords

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9
10 /**
11 * An unbounded priority {@linkplain Queue queue} based on a priority
12 * heap. The elements of the priority queue are ordered according to
13 * their {@linkplain Comparable natural ordering}, or by a {@link
14 * Comparator} provided at queue construction time, depending on which
15 * constructor is used. A priority queue does not permit
16 * <tt>null</tt> elements. A priority queue relying on natural
17 * ordering also does not permit insertion of non-comparable objects
18 * (doing so may result in <tt>ClassCastException</tt>).
19 *
20 * <p>The <em>head</em> of this queue is the <em>least</em> element
21 * with respect to the specified ordering. If multiple elements are
22 * tied for least value, the head is one of those elements -- ties are
23 * broken arbitrarily. The queue retrieval operations <tt>poll</tt>,
24 * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
25 * element at the head of the queue.
26 *
27 * <p>A priority queue is unbounded, but has an internal
28 * <i>capacity</i> governing the size of an array used to store the
29 * elements on the queue. It is always at least as large as the queue
30 * size. As elements are added to a priority queue, its capacity
31 * grows automatically. The details of the growth policy are not
32 * specified.
33 *
34 * <p>This class and its iterator implement all of the
35 * <em>optional</em> methods of the {@link Collection} and {@link
36 * Iterator} interfaces. The Iterator provided in method {@link
37 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
38 * the priority queue in any particular order. If you need ordered
39 * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
40 *
41 * <p> <strong>Note that this implementation is not synchronized.</strong>
42 * Multiple threads should not access a <tt>PriorityQueue</tt>
43 * instance concurrently if any of the threads modifies the list
44 * structurally. Instead, use the thread-safe {@link
45 * java.util.concurrent.PriorityBlockingQueue} class.
46 *
47 * <p>Implementation note: this implementation provides O(log(n)) time
48 * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
49 * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
50 * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
51 * constant time for the retrieval methods (<tt>peek</tt>,
52 * <tt>element</tt>, and <tt>size</tt>).
53 *
54 * <p>This class is a member of the
55 * <a href="{@docRoot}/../guide/collections/index.html">
56 * Java Collections Framework</a>.
57 * @since 1.5
58 * @version %I%, %G%
59 * @author Josh Bloch
60 * @param <E> the type of elements held in this collection
61 */
62 public class PriorityQueue<E> extends AbstractQueue<E>
63 implements java.io.Serializable {
64
65 private static final long serialVersionUID = -7720805057305804111L;
66
67 private static final int DEFAULT_INITIAL_CAPACITY = 11;
68
69 /**
70 * Priority queue represented as a balanced binary heap: the two
71 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
72 * priority queue is ordered by comparator, or by the elements'
73 * natural ordering, if comparator is null: For each node n in the
74 * heap and each descendant d of n, n <= d. The element with the
75 * lowest value is in queue[0], assuming the queue is nonempty.
76 */
77 private transient Object[] queue;
78
79 /**
80 * The number of elements in the priority queue.
81 */
82 private int size = 0;
83
84 /**
85 * The comparator, or null if priority queue uses elements'
86 * natural ordering.
87 */
88 private final Comparator<? super E> comparator;
89
90 /**
91 * The number of times this priority queue has been
92 * <i>structurally modified</i>. See AbstractList for gory details.
93 */
94 private transient int modCount = 0;
95
96 /**
97 * Creates a <tt>PriorityQueue</tt> with the default initial
98 * capacity (11) that orders its elements according to their
99 * {@linkplain Comparable natural ordering}.
100 */
101 public PriorityQueue() {
102 this(DEFAULT_INITIAL_CAPACITY, null);
103 }
104
105 /**
106 * Creates a <tt>PriorityQueue</tt> with the specified initial
107 * capacity that orders its elements according to their
108 * {@linkplain Comparable natural ordering}.
109 *
110 * @param initialCapacity the initial capacity for this priority queue
111 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
112 * than 1
113 */
114 public PriorityQueue(int initialCapacity) {
115 this(initialCapacity, null);
116 }
117
118 /**
119 * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
120 * that orders its elements according to the specified comparator.
121 *
122 * @param initialCapacity the initial capacity for this priority queue
123 * @param comparator the comparator that will be used to order
124 * this priority queue. If <tt>null</tt>, the <i>natural
125 * ordering</i> of the elements will be used.
126 * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
127 * less than 1
128 */
129 public PriorityQueue(int initialCapacity,
130 Comparator<? super E> comparator) {
131 // Note: This restriction of at least one is not actually needed,
132 // but continues for 1.5 compatibility
133 if (initialCapacity < 1)
134 throw new IllegalArgumentException();
135 this.queue = new Object[initialCapacity];
136 this.comparator = comparator;
137 }
138
139 /**
140 * Creates a <tt>PriorityQueue</tt> containing the elements in the
141 * specified collection. If the specified collection is an
142 * instance of a {@link java.util.SortedSet} or is another
143 * <tt>PriorityQueue</tt>, the priority queue will be ordered
144 * according to the same ordering. Otherwise, this priority queue
145 * will be ordered according to the natural ordering of its elements.
146 *
147 * @param c the collection whose elements are to be placed
148 * into this priority queue
149 * @throws ClassCastException if elements of the specified collection
150 * cannot be compared to one another according to the priority
151 * queue's ordering
152 * @throws NullPointerException if the specified collection or any
153 * of its elements are null
154 */
155 public PriorityQueue(Collection<? extends E> c) {
156 initFromCollection(c);
157 if (c instanceof SortedSet)
158 comparator = (Comparator<? super E>)
159 ((SortedSet<? extends E>)c).comparator();
160 else if (c instanceof PriorityQueue)
161 comparator = (Comparator<? super E>)
162 ((PriorityQueue<? extends E>)c).comparator();
163 else {
164 comparator = null;
165 heapify();
166 }
167 }
168
169 /**
170 * Creates a <tt>PriorityQueue</tt> containing the elements in the
171 * specified priority queue. This priority queue will be
172 * ordered according to the same ordering as the given priority
173 * queue.
174 *
175 * @param c the priority queue whose elements are to be placed
176 * into this priority queue
177 * @throws ClassCastException if elements of <tt>c</tt> cannot be
178 * compared to one another according to <tt>c</tt>'s
179 * ordering
180 * @throws NullPointerException if the specified priority queue or any
181 * of its elements are null
182 */
183 public PriorityQueue(PriorityQueue<? extends E> c) {
184 comparator = (Comparator<? super E>)c.comparator();
185 initFromCollection(c);
186 }
187
188 /**
189 * Creates a <tt>PriorityQueue</tt> containing the elements in the
190 * specified sorted set. This priority queue will be ordered
191 * according to the same ordering as the given sorted set.
192 *
193 * @param c the sorted set whose elements are to be placed
194 * into this priority queue.
195 * @throws ClassCastException if elements of the specified sorted
196 * set cannot be compared to one another according to the
197 * sorted set's ordering
198 * @throws NullPointerException if the specified sorted set or any
199 * of its elements are null
200 */
201 public PriorityQueue(SortedSet<? extends E> c) {
202 comparator = (Comparator<? super E>)c.comparator();
203 initFromCollection(c);
204 }
205
206 /**
207 * Initialize queue array with elements from the given Collection.
208 * @param c the collection
209 */
210 private void initFromCollection(Collection<? extends E> c) {
211 Object[] a = c.toArray();
212 // If c.toArray incorrectly doesn't return Object[], copy it.
213 if (a.getClass() != Object[].class)
214 a = Arrays.copyOf(a, a.length, Object[].class);
215 queue = a;
216 size = a.length;
217 }
218
219 /**
220 * Increases the capacity of the array.
221 *
222 * @param minCapacity the desired minimum capacity
223 */
224 private void grow(int minCapacity) {
225 if (minCapacity < 0) // overflow
226 throw new OutOfMemoryError();
227 int oldCapacity = queue.length;
228 // Double size if small; else grow by 50%
229 int newCapacity = ((oldCapacity < 64)?
230 ((oldCapacity + 1) * 2):
231 ((oldCapacity / 2) * 3));
232 if (newCapacity < 0) // overflow
233 newCapacity = Integer.MAX_VALUE;
234 if (newCapacity < minCapacity)
235 newCapacity = minCapacity;
236 queue = Arrays.copyOf(queue, newCapacity);
237 }
238
239 /**
240 * Inserts the specified element into this priority queue.
241 *
242 * @return <tt>true</tt> (as specified by {@link Collection#add})
243 * @throws ClassCastException if the specified element cannot be
244 * compared with elements currently in this priority queue
245 * according to the priority queue's ordering
246 * @throws NullPointerException if the specified element is null
247 */
248 public boolean add(E e) {
249 return offer(e);
250 }
251
252 /**
253 * Inserts the specified element into this priority queue.
254 *
255 * @return <tt>true</tt> (as specified by {@link Queue#offer})
256 * @throws ClassCastException if the specified element cannot be
257 * compared with elements currently in this priority queue
258 * according to the priority queue's ordering
259 * @throws NullPointerException if the specified element is null
260 */
261 public boolean offer(E e) {
262 if (e == null)
263 throw new NullPointerException();
264 modCount++;
265 int i = size;
266 if (i >= queue.length)
267 grow(i + 1);
268 size = i + 1;
269 if (i == 0)
270 queue[0] = e;
271 else
272 siftUp(i, e);
273 return true;
274 }
275
276 public E peek() {
277 if (size == 0)
278 return null;
279 return (E) queue[0];
280 }
281
282 private int indexOf(Object o) {
283 if (o != null) {
284 for (int i = 0; i < size; i++)
285 if (o.equals(queue[i]))
286 return i;
287 }
288 return -1;
289 }
290
291 /**
292 * Removes a single instance of the specified element from this queue,
293 * if it is present. More formally, removes an element <tt>e</tt> such
294 * that <tt>o.equals(e)</tt>, if this queue contains one or more such
295 * elements. Returns true if this queue contained the specified element
296 * (or equivalently, if this queue changed as a result of the call).
297 *
298 * @param o element to be removed from this queue, if present
299 * @return <tt>true</tt> if this queue changed as a result of the call
300 */
301 public boolean remove(Object o) {
302 int i = indexOf(o);
303 if (i == -1)
304 return false;
305 else {
306 removeAt(i);
307 return true;
308 }
309 }
310
311 /**
312 * Version of remove using reference equality, not equals.
313 * Needed by iterator.remove.
314 *
315 * @param o element to be removed from this queue, if present
316 * @return <tt>true</tt> if removed
317 */
318 boolean removeEq(Object o) {
319 for (int i = 0; i < size; i++) {
320 if (o == queue[i]) {
321 removeAt(i);
322 return true;
323 }
324 }
325 return false;
326 }
327
328 /**
329 * Returns <tt>true</tt> if this queue contains the specified element.
330 * More formally, returns <tt>true</tt> if and only if this queue contains
331 * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
332 *
333 * @param o object to be checked for containment in this queue
334 * @return <tt>true</tt> if this queue contains the specified element
335 */
336 public boolean contains(Object o) {
337 return indexOf(o) != -1;
338 }
339
340 /**
341 * Returns an array containing all of the elements in this queue,
342 * The elements are in no particular order.
343 *
344 * <p>The returned array will be "safe" in that no references to it are
345 * maintained by this list. (In other words, this method must allocate
346 * a new array). The caller is thus free to modify the returned array.
347 *
348 * @return an array containing all of the elements in this queue
349 */
350 public Object[] toArray() {
351 return Arrays.copyOf(queue, size);
352 }
353
354 /**
355 * Returns an array containing all of the elements in this queue.
356 * The elements are in no particular order. The runtime type of
357 * the returned array is that of the specified array. If the queue
358 * fits in the specified array, it is returned therein.
359 * Otherwise, a new array is allocated with the runtime type of
360 * the specified array and the size of this queue.
361 *
362 * <p>If the queue fits in the specified array with room to spare
363 * (i.e., the array has more elements than the queue), the element in
364 * the array immediately following the end of the collection is set to
365 * <tt>null</tt>. (This is useful in determining the length of the
366 * queue <i>only</i> if the caller knows that the queue does not contain
367 * any null elements.)
368 *
369 * @param a the array into which the elements of the queue are to
370 * be stored, if it is big enough; otherwise, a new array of the
371 * same runtime type is allocated for this purpose.
372 * @return an array containing the elements of the queue
373 * @throws ArrayStoreException if the runtime type of the specified array
374 * is not a supertype of the runtime type of every element in
375 * this queue
376 * @throws NullPointerException if the specified array is null
377 */
378 public <T> T[] toArray(T[] a) {
379 if (a.length < size)
380 // Make a new array of a's runtime type, but my contents:
381 return (T[]) Arrays.copyOf(queue, size, a.getClass());
382 System.arraycopy(queue, 0, a, 0, size);
383 if (a.length > size)
384 a[size] = null;
385 return a;
386 }
387
388 /**
389 * Returns an iterator over the elements in this queue. The iterator
390 * does not return the elements in any particular order.
391 *
392 * @return an iterator over the elements in this queue
393 */
394 public Iterator<E> iterator() {
395 return new Itr();
396 }
397
398 private final class Itr implements Iterator<E> {
399 /**
400 * Index (into queue array) of element to be returned by
401 * subsequent call to next.
402 */
403 private int cursor = 0;
404
405 /**
406 * Index of element returned by most recent call to next,
407 * unless that element came from the forgetMeNot list.
408 * Set to -1 if element is deleted by a call to remove.
409 */
410 private int lastRet = -1;
411
412 /**
413 * A queue of elements that were moved from the unvisited portion of
414 * the heap into the visited portion as a result of "unlucky" element
415 * removals during the iteration. (Unlucky element removals are those
416 * that require a siftup instead of a siftdown.) We must visit all of
417 * the elements in this list to complete the iteration. We do this
418 * after we've completed the "normal" iteration.
419 *
420 * We expect that most iterations, even those involving removals,
421 * will not use need to store elements in this field.
422 */
423 private ArrayDeque<E> forgetMeNot = null;
424
425 /**
426 * Element returned by the most recent call to next iff that
427 * element was drawn from the forgetMeNot list.
428 */
429 private E lastRetElt = null;
430
431 /**
432 * The modCount value that the iterator believes that the backing
433 * List should have. If this expectation is violated, the iterator
434 * has detected concurrent modification.
435 */
436 private int expectedModCount = modCount;
437
438 public boolean hasNext() {
439 return cursor < size ||
440 (forgetMeNot != null && !forgetMeNot.isEmpty());
441 }
442
443 public E next() {
444 if (expectedModCount != modCount)
445 throw new ConcurrentModificationException();
446 if (cursor < size)
447 return (E) queue[lastRet = cursor++];
448 if (forgetMeNot != null) {
449 lastRet = -1;
450 lastRetElt = forgetMeNot.poll();
451 if (lastRetElt != null)
452 return lastRetElt;
453 }
454 throw new NoSuchElementException();
455 }
456
457 public void remove() {
458 if (expectedModCount != modCount)
459 throw new ConcurrentModificationException();
460 if (lastRet == -1 && lastRetElt == null)
461 throw new IllegalStateException();
462 if (lastRet != -1) {
463 E moved = PriorityQueue.this.removeAt(lastRet);
464 lastRet = -1;
465 if (moved == null)
466 cursor--;
467 else {
468 if (forgetMeNot == null)
469 forgetMeNot = new ArrayDeque<E>();
470 forgetMeNot.add(moved);
471 }
472 } else {
473 PriorityQueue.this.removeEq(lastRetElt);
474 lastRetElt = null;
475 }
476 expectedModCount = modCount;
477 }
478
479 }
480
481 public int size() {
482 return size;
483 }
484
485 /**
486 * Removes all of the elements from this priority queue.
487 * The queue will be empty after this call returns.
488 */
489 public void clear() {
490 modCount++;
491 for (int i = 0; i < size; i++)
492 queue[i] = null;
493 size = 0;
494 }
495
496 public E poll() {
497 if (size == 0)
498 return null;
499 int s = --size;
500 modCount++;
501 E result = (E)queue[0];
502 E x = (E)queue[s];
503 queue[s] = null;
504 if (s != 0)
505 siftDown(0, x);
506 return result;
507 }
508
509 /**
510 * Removes the ith element from queue.
511 *
512 * Normally this method leaves the elements at up to i-1,
513 * inclusive, untouched. Under these circumstances, it returns
514 * null. Occasionally, in order to maintain the heap invariant,
515 * it must swap a later element of the list with one earlier than
516 * i. Under these circumstances, this method returns the element
517 * that was previously at the end of the list and is now at some
518 * position before i. This fact is used by iterator.remove so as to
519 * avoid missing traverseing elements.
520 */
521 private E removeAt(int i) {
522 assert i >= 0 && i < size;
523 modCount++;
524 int s = --size;
525 if (s == i) // removed last element
526 queue[i] = null;
527 else {
528 E moved = (E) queue[s];
529 queue[s] = null;
530 siftDown(i, moved);
531 if (queue[i] == moved) {
532 siftUp(i, moved);
533 if (queue[i] != moved)
534 return moved;
535 }
536 }
537 return null;
538 }
539
540 /**
541 * Inserts item x at position k, maintaining heap invariant by
542 * promoting x up the tree until it is greater than or equal to
543 * its parent, or is the root.
544 *
545 * To simplify and speed up coercions and comparisons. the
546 * Comparable and Comparator versions are separated into different
547 * methods that are otherwise identical. (Similarly for siftDown.)
548 *
549 * @param k the position to fill
550 * @param x the item to insert
551 */
552 private void siftUp(int k, E x) {
553 if (comparator != null)
554 siftUpUsingComparator(k, x);
555 else
556 siftUpComparable(k, x);
557 }
558
559 private void siftUpComparable(int k, E x) {
560 Comparable<? super E> key = (Comparable<? super E>) x;
561 while (k > 0) {
562 int parent = (k - 1) >>> 1;
563 Object e = queue[parent];
564 if (key.compareTo((E)e) >= 0)
565 break;
566 queue[k] = e;
567 k = parent;
568 }
569 queue[k] = key;
570 }
571
572 private void siftUpUsingComparator(int k, E x) {
573 while (k > 0) {
574 int parent = (k - 1) >>> 1;
575 Object e = queue[parent];
576 if (comparator.compare(x, (E)e) >= 0)
577 break;
578 queue[k] = e;
579 k = parent;
580 }
581 queue[k] = x;
582 }
583
584 /**
585 * Inserts item x at position k, maintaining heap invariant by
586 * demoting x down the tree repeatedly until it is less than or
587 * equal to its children or is a leaf.
588 *
589 * @param k the position to fill
590 * @param x the item to insert
591 */
592 private void siftDown(int k, E x) {
593 if (comparator != null)
594 siftDownUsingComparator(k, x);
595 else
596 siftDownComparable(k, x);
597 }
598
599 private void siftDownComparable(int k, E x) {
600 Comparable<? super E> key = (Comparable<? super E>)x;
601 int half = size >>> 1; // loop while a non-leaf
602 while (k < half) {
603 int child = (k << 1) + 1; // assume left child is least
604 Object c = queue[child];
605 int right = child + 1;
606 if (right < size &&
607 ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
608 c = queue[child = right];
609 if (key.compareTo((E)c) <= 0)
610 break;
611 queue[k] = c;
612 k = child;
613 }
614 queue[k] = key;
615 }
616
617 private void siftDownUsingComparator(int k, E x) {
618 int half = size >>> 1;
619 while (k < half) {
620 int child = (k << 1) + 1;
621 Object c = queue[child];
622 int right = child + 1;
623 if (right < size &&
624 comparator.compare((E)c, (E)queue[right]) > 0)
625 c = queue[child = right];
626 if (comparator.compare(x, (E)c) <= 0)
627 break;
628 queue[k] = c;
629 k = child;
630 }
631 queue[k] = x;
632 }
633
634 /**
635 * Establishes the heap invariant (described above) in the entire tree,
636 * assuming nothing about the order of the elements prior to the call.
637 */
638 private void heapify() {
639 for (int i = (size >>> 1) - 1; i >= 0; i--)
640 siftDown(i, (E)queue[i]);
641 }
642
643 /**
644 * Returns the comparator used to order the elements in this
645 * queue, or <tt>null</tt> if this queue is sorted according to
646 * the {@linkplain Comparable natural ordering} of its elements.
647 *
648 * @return the comparator used to order this queue, or
649 * <tt>null</tt> if this queue is sorted according to the
650 * natural ordering of its elements.
651 */
652 public Comparator<? super E> comparator() {
653 return comparator;
654 }
655
656 /**
657 * Save the state of the instance to a stream (that
658 * is, serialize it).
659 *
660 * @serialData The length of the array backing the instance is
661 * emitted (int), followed by all of its elements (each an
662 * <tt>Object</tt>) in the proper order.
663 * @param s the stream
664 */
665 private void writeObject(java.io.ObjectOutputStream s)
666 throws java.io.IOException{
667 // Write out element count, and any hidden stuff
668 s.defaultWriteObject();
669
670 // Write out array length
671 // For compatibility with 1.5 version, must be at least 2.
672 s.writeInt(Math.max(2, queue.length));
673
674 // Write out all elements in the proper order.
675 for (int i=0; i<size; i++)
676 s.writeObject(queue[i]);
677 }
678
679 /**
680 * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
681 * (that is, deserialize it).
682 * @param s the stream
683 */
684 private void readObject(java.io.ObjectInputStream s)
685 throws java.io.IOException, ClassNotFoundException {
686 // Read in size, and any hidden stuff
687 s.defaultReadObject();
688
689 // Read in array length and allocate array
690 int arrayLength = s.readInt();
691 queue = new Object[arrayLength];
692
693 // Read in all elements in the proper order.
694 for (int i=0; i<size; i++)
695 queue[i] = (E) s.readObject();
696 }
697
698 }