ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.67
Committed: Sun May 20 07:54:01 2007 UTC (16 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.66: +21 -3 lines
Log Message:
License update

File Contents

# Content
1 /*
2 * Copyright 2003-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Sun designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Sun in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 * CA 95054 USA or visit www.sun.com if you need additional information or
23 * have any questions.
24 */
25
26 package java.util;
27
28 /**
29 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 * The elements of the priority queue are ordered according to their
31 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 * provided at queue construction time, depending on which constructor is
33 * used. A priority queue does not permit {@code null} elements.
34 * A priority queue relying on natural ordering also does not permit
35 * insertion of non-comparable objects (doing so may result in
36 * {@code ClassCastException}).
37 *
38 * <p>The <em>head</em> of this queue is the <em>least</em> element
39 * with respect to the specified ordering. If multiple elements are
40 * tied for least value, the head is one of those elements -- ties are
41 * broken arbitrarily. The queue retrieval operations {@code poll},
42 * {@code remove}, {@code peek}, and {@code element} access the
43 * element at the head of the queue.
44 *
45 * <p>A priority queue is unbounded, but has an internal
46 * <i>capacity</i> governing the size of an array used to store the
47 * elements on the queue. It is always at least as large as the queue
48 * size. As elements are added to a priority queue, its capacity
49 * grows automatically. The details of the growth policy are not
50 * specified.
51 *
52 * <p>This class and its iterator implement all of the
53 * <em>optional</em> methods of the {@link Collection} and {@link
54 * Iterator} interfaces. The Iterator provided in method {@link
55 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 * the priority queue in any particular order. If you need ordered
57 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 *
59 * <p> <strong>Note that this implementation is not synchronized.</strong>
60 * Multiple threads should not access a {@code PriorityQueue}
61 * instance concurrently if any of the threads modifies the queue.
62 * Instead, use the thread-safe {@link
63 * java.util.concurrent.PriorityBlockingQueue} class.
64 *
65 * <p>Implementation note: this implementation provides
66 * O(log(n)) time for the enqueing and dequeing methods
67 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 * methods; and constant time for the retrieval methods
70 * ({@code peek}, {@code element}, and {@code size}).
71 *
72 * <p>This class is a member of the
73 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74 * Java Collections Framework</a>.
75 *
76 * @since 1.5
77 * @version %I%, %G%
78 * @author Josh Bloch, Doug Lea
79 * @param <E> the type of elements held in this collection
80 */
81 public class PriorityQueue<E> extends AbstractQueue<E>
82 implements java.io.Serializable {
83
84 private static final long serialVersionUID = -7720805057305804111L;
85
86 private static final int DEFAULT_INITIAL_CAPACITY = 11;
87
88 /**
89 * Priority queue represented as a balanced binary heap: the two
90 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
91 * priority queue is ordered by comparator, or by the elements'
92 * natural ordering, if comparator is null: For each node n in the
93 * heap and each descendant d of n, n <= d. The element with the
94 * lowest value is in queue[0], assuming the queue is nonempty.
95 */
96 private transient Object[] queue;
97
98 /**
99 * The number of elements in the priority queue.
100 */
101 private int size = 0;
102
103 /**
104 * The comparator, or null if priority queue uses elements'
105 * natural ordering.
106 */
107 private final Comparator<? super E> comparator;
108
109 /**
110 * The number of times this priority queue has been
111 * <i>structurally modified</i>. See AbstractList for gory details.
112 */
113 private transient int modCount = 0;
114
115 /**
116 * Creates a {@code PriorityQueue} with the default initial
117 * capacity (11) that orders its elements according to their
118 * {@linkplain Comparable natural ordering}.
119 */
120 public PriorityQueue() {
121 this(DEFAULT_INITIAL_CAPACITY, null);
122 }
123
124 /**
125 * Creates a {@code PriorityQueue} with the specified initial
126 * capacity that orders its elements according to their
127 * {@linkplain Comparable natural ordering}.
128 *
129 * @param initialCapacity the initial capacity for this priority queue
130 * @throws IllegalArgumentException if {@code initialCapacity} is less
131 * than 1
132 */
133 public PriorityQueue(int initialCapacity) {
134 this(initialCapacity, null);
135 }
136
137 /**
138 * Creates a {@code PriorityQueue} with the specified initial capacity
139 * that orders its elements according to the specified comparator.
140 *
141 * @param initialCapacity the initial capacity for this priority queue
142 * @param comparator the comparator that will be used to order this
143 * priority queue. If {@code null}, the {@linkplain Comparable
144 * natural ordering} of the elements will be used.
145 * @throws IllegalArgumentException if {@code initialCapacity} is
146 * less than 1
147 */
148 public PriorityQueue(int initialCapacity,
149 Comparator<? super E> comparator) {
150 // Note: This restriction of at least one is not actually needed,
151 // but continues for 1.5 compatibility
152 if (initialCapacity < 1)
153 throw new IllegalArgumentException();
154 this.queue = new Object[initialCapacity];
155 this.comparator = comparator;
156 }
157
158 /**
159 * Creates a {@code PriorityQueue} containing the elements in the
160 * specified collection. If the specified collection is an instance of
161 * a {@link SortedSet} or is another {@code PriorityQueue}, this
162 * priority queue will be ordered according to the same ordering.
163 * Otherwise, this priority queue will be ordered according to the
164 * {@linkplain Comparable natural ordering} of its elements.
165 *
166 * @param c the collection whose elements are to be placed
167 * into this priority queue
168 * @throws ClassCastException if elements of the specified collection
169 * cannot be compared to one another according to the priority
170 * queue's ordering
171 * @throws NullPointerException if the specified collection or any
172 * of its elements are null
173 */
174 public PriorityQueue(Collection<? extends E> c) {
175 initFromCollection(c);
176 if (c instanceof SortedSet)
177 comparator = (Comparator<? super E>)
178 ((SortedSet<? extends E>)c).comparator();
179 else if (c instanceof PriorityQueue)
180 comparator = (Comparator<? super E>)
181 ((PriorityQueue<? extends E>)c).comparator();
182 else {
183 comparator = null;
184 heapify();
185 }
186 }
187
188 /**
189 * Creates a {@code PriorityQueue} containing the elements in the
190 * specified priority queue. This priority queue will be
191 * ordered according to the same ordering as the given priority
192 * queue.
193 *
194 * @param c the priority queue whose elements are to be placed
195 * into this priority queue
196 * @throws ClassCastException if elements of {@code c} cannot be
197 * compared to one another according to {@code c}'s
198 * ordering
199 * @throws NullPointerException if the specified priority queue or any
200 * of its elements are null
201 */
202 public PriorityQueue(PriorityQueue<? extends E> c) {
203 comparator = (Comparator<? super E>)c.comparator();
204 initFromCollection(c);
205 }
206
207 /**
208 * Creates a {@code PriorityQueue} containing the elements in the
209 * specified sorted set. This priority queue will be ordered
210 * according to the same ordering as the given sorted set.
211 *
212 * @param c the sorted set whose elements are to be placed
213 * into this priority queue
214 * @throws ClassCastException if elements of the specified sorted
215 * set cannot be compared to one another according to the
216 * sorted set's ordering
217 * @throws NullPointerException if the specified sorted set or any
218 * of its elements are null
219 */
220 public PriorityQueue(SortedSet<? extends E> c) {
221 comparator = (Comparator<? super E>)c.comparator();
222 initFromCollection(c);
223 }
224
225 /**
226 * Initializes queue array with elements from the given Collection.
227 *
228 * @param c the collection
229 */
230 private void initFromCollection(Collection<? extends E> c) {
231 Object[] a = c.toArray();
232 // If c.toArray incorrectly doesn't return Object[], copy it.
233 if (a.getClass() != Object[].class)
234 a = Arrays.copyOf(a, a.length, Object[].class);
235 queue = a;
236 size = a.length;
237 }
238
239 /**
240 * Increases the capacity of the array.
241 *
242 * @param minCapacity the desired minimum capacity
243 */
244 private void grow(int minCapacity) {
245 if (minCapacity < 0) // overflow
246 throw new OutOfMemoryError();
247 int oldCapacity = queue.length;
248 // Double size if small; else grow by 50%
249 int newCapacity = ((oldCapacity < 64)?
250 ((oldCapacity + 1) * 2):
251 ((oldCapacity / 2) * 3));
252 if (newCapacity < 0) // overflow
253 newCapacity = Integer.MAX_VALUE;
254 if (newCapacity < minCapacity)
255 newCapacity = minCapacity;
256 queue = Arrays.copyOf(queue, newCapacity);
257 }
258
259 /**
260 * Inserts the specified element into this priority queue.
261 *
262 * @return {@code true} (as specified by {@link Collection#add})
263 * @throws ClassCastException if the specified element cannot be
264 * compared with elements currently in this priority queue
265 * according to the priority queue's ordering
266 * @throws NullPointerException if the specified element is null
267 */
268 public boolean add(E e) {
269 return offer(e);
270 }
271
272 /**
273 * Inserts the specified element into this priority queue.
274 *
275 * @return {@code true} (as specified by {@link Queue#offer})
276 * @throws ClassCastException if the specified element cannot be
277 * compared with elements currently in this priority queue
278 * according to the priority queue's ordering
279 * @throws NullPointerException if the specified element is null
280 */
281 public boolean offer(E e) {
282 if (e == null)
283 throw new NullPointerException();
284 modCount++;
285 int i = size;
286 if (i >= queue.length)
287 grow(i + 1);
288 size = i + 1;
289 if (i == 0)
290 queue[0] = e;
291 else
292 siftUp(i, e);
293 return true;
294 }
295
296 public E peek() {
297 if (size == 0)
298 return null;
299 return (E) queue[0];
300 }
301
302 private int indexOf(Object o) {
303 if (o != null) {
304 for (int i = 0; i < size; i++)
305 if (o.equals(queue[i]))
306 return i;
307 }
308 return -1;
309 }
310
311 /**
312 * Removes a single instance of the specified element from this queue,
313 * if it is present. More formally, removes an element {@code e} such
314 * that {@code o.equals(e)}, if this queue contains one or more such
315 * elements. Returns {@code true} if and only if this queue contained
316 * the specified element (or equivalently, if this queue changed as a
317 * result of the call).
318 *
319 * @param o element to be removed from this queue, if present
320 * @return {@code true} if this queue changed as a result of the call
321 */
322 public boolean remove(Object o) {
323 int i = indexOf(o);
324 if (i == -1)
325 return false;
326 else {
327 removeAt(i);
328 return true;
329 }
330 }
331
332 /**
333 * Version of remove using reference equality, not equals.
334 * Needed by iterator.remove.
335 *
336 * @param o element to be removed from this queue, if present
337 * @return {@code true} if removed
338 */
339 boolean removeEq(Object o) {
340 for (int i = 0; i < size; i++) {
341 if (o == queue[i]) {
342 removeAt(i);
343 return true;
344 }
345 }
346 return false;
347 }
348
349 /**
350 * Returns {@code true} if this queue contains the specified element.
351 * More formally, returns {@code true} if and only if this queue contains
352 * at least one element {@code e} such that {@code o.equals(e)}.
353 *
354 * @param o object to be checked for containment in this queue
355 * @return {@code true} if this queue contains the specified element
356 */
357 public boolean contains(Object o) {
358 return indexOf(o) != -1;
359 }
360
361 /**
362 * Returns an array containing all of the elements in this queue.
363 * The elements are in no particular order.
364 *
365 * <p>The returned array will be "safe" in that no references to it are
366 * maintained by this queue. (In other words, this method must allocate
367 * a new array). The caller is thus free to modify the returned array.
368 *
369 * <p>This method acts as bridge between array-based and collection-based
370 * APIs.
371 *
372 * @return an array containing all of the elements in this queue
373 */
374 public Object[] toArray() {
375 return Arrays.copyOf(queue, size);
376 }
377
378 /**
379 * Returns an array containing all of the elements in this queue; the
380 * runtime type of the returned array is that of the specified array.
381 * The returned array elements are in no particular order.
382 * If the queue fits in the specified array, it is returned therein.
383 * Otherwise, a new array is allocated with the runtime type of the
384 * specified array and the size of this queue.
385 *
386 * <p>If the queue fits in the specified array with room to spare
387 * (i.e., the array has more elements than the queue), the element in
388 * the array immediately following the end of the collection is set to
389 * {@code null}.
390 *
391 * <p>Like the {@link #toArray()} method, this method acts as bridge between
392 * array-based and collection-based APIs. Further, this method allows
393 * precise control over the runtime type of the output array, and may,
394 * under certain circumstances, be used to save allocation costs.
395 *
396 * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
397 * The following code can be used to dump the queue into a newly
398 * allocated array of <tt>String</tt>:
399 *
400 * <pre>
401 * String[] y = x.toArray(new String[0]);</pre>
402 *
403 * Note that <tt>toArray(new Object[0])</tt> is identical in function to
404 * <tt>toArray()</tt>.
405 *
406 * @param a the array into which the elements of the queue are to
407 * be stored, if it is big enough; otherwise, a new array of the
408 * same runtime type is allocated for this purpose.
409 * @return an array containing all of the elements in this queue
410 * @throws ArrayStoreException if the runtime type of the specified array
411 * is not a supertype of the runtime type of every element in
412 * this queue
413 * @throws NullPointerException if the specified array is null
414 */
415 public <T> T[] toArray(T[] a) {
416 if (a.length < size)
417 // Make a new array of a's runtime type, but my contents:
418 return (T[]) Arrays.copyOf(queue, size, a.getClass());
419 System.arraycopy(queue, 0, a, 0, size);
420 if (a.length > size)
421 a[size] = null;
422 return a;
423 }
424
425 /**
426 * Returns an iterator over the elements in this queue. The iterator
427 * does not return the elements in any particular order.
428 *
429 * @return an iterator over the elements in this queue
430 */
431 public Iterator<E> iterator() {
432 return new Itr();
433 }
434
435 private final class Itr implements Iterator<E> {
436 /**
437 * Index (into queue array) of element to be returned by
438 * subsequent call to next.
439 */
440 private int cursor = 0;
441
442 /**
443 * Index of element returned by most recent call to next,
444 * unless that element came from the forgetMeNot list.
445 * Set to -1 if element is deleted by a call to remove.
446 */
447 private int lastRet = -1;
448
449 /**
450 * A queue of elements that were moved from the unvisited portion of
451 * the heap into the visited portion as a result of "unlucky" element
452 * removals during the iteration. (Unlucky element removals are those
453 * that require a siftup instead of a siftdown.) We must visit all of
454 * the elements in this list to complete the iteration. We do this
455 * after we've completed the "normal" iteration.
456 *
457 * We expect that most iterations, even those involving removals,
458 * will not need to store elements in this field.
459 */
460 private ArrayDeque<E> forgetMeNot = null;
461
462 /**
463 * Element returned by the most recent call to next iff that
464 * element was drawn from the forgetMeNot list.
465 */
466 private E lastRetElt = null;
467
468 /**
469 * The modCount value that the iterator believes that the backing
470 * Queue should have. If this expectation is violated, the iterator
471 * has detected concurrent modification.
472 */
473 private int expectedModCount = modCount;
474
475 public boolean hasNext() {
476 return cursor < size ||
477 (forgetMeNot != null && !forgetMeNot.isEmpty());
478 }
479
480 public E next() {
481 if (expectedModCount != modCount)
482 throw new ConcurrentModificationException();
483 if (cursor < size)
484 return (E) queue[lastRet = cursor++];
485 if (forgetMeNot != null) {
486 lastRet = -1;
487 lastRetElt = forgetMeNot.poll();
488 if (lastRetElt != null)
489 return lastRetElt;
490 }
491 throw new NoSuchElementException();
492 }
493
494 public void remove() {
495 if (expectedModCount != modCount)
496 throw new ConcurrentModificationException();
497 if (lastRet != -1) {
498 E moved = PriorityQueue.this.removeAt(lastRet);
499 lastRet = -1;
500 if (moved == null)
501 cursor--;
502 else {
503 if (forgetMeNot == null)
504 forgetMeNot = new ArrayDeque<E>();
505 forgetMeNot.add(moved);
506 }
507 } else if (lastRetElt != null) {
508 PriorityQueue.this.removeEq(lastRetElt);
509 lastRetElt = null;
510 } else {
511 throw new IllegalStateException();
512 }
513 expectedModCount = modCount;
514 }
515 }
516
517 public int size() {
518 return size;
519 }
520
521 /**
522 * Removes all of the elements from this priority queue.
523 * The queue will be empty after this call returns.
524 */
525 public void clear() {
526 modCount++;
527 for (int i = 0; i < size; i++)
528 queue[i] = null;
529 size = 0;
530 }
531
532 public E poll() {
533 if (size == 0)
534 return null;
535 int s = --size;
536 modCount++;
537 E result = (E) queue[0];
538 E x = (E) queue[s];
539 queue[s] = null;
540 if (s != 0)
541 siftDown(0, x);
542 return result;
543 }
544
545 /**
546 * Removes the ith element from queue.
547 *
548 * Normally this method leaves the elements at up to i-1,
549 * inclusive, untouched. Under these circumstances, it returns
550 * null. Occasionally, in order to maintain the heap invariant,
551 * it must swap a later element of the list with one earlier than
552 * i. Under these circumstances, this method returns the element
553 * that was previously at the end of the list and is now at some
554 * position before i. This fact is used by iterator.remove so as to
555 * avoid missing traversing elements.
556 */
557 private E removeAt(int i) {
558 assert i >= 0 && i < size;
559 modCount++;
560 int s = --size;
561 if (s == i) // removed last element
562 queue[i] = null;
563 else {
564 E moved = (E) queue[s];
565 queue[s] = null;
566 siftDown(i, moved);
567 if (queue[i] == moved) {
568 siftUp(i, moved);
569 if (queue[i] != moved)
570 return moved;
571 }
572 }
573 return null;
574 }
575
576 /**
577 * Inserts item x at position k, maintaining heap invariant by
578 * promoting x up the tree until it is greater than or equal to
579 * its parent, or is the root.
580 *
581 * To simplify and speed up coercions and comparisons. the
582 * Comparable and Comparator versions are separated into different
583 * methods that are otherwise identical. (Similarly for siftDown.)
584 *
585 * @param k the position to fill
586 * @param x the item to insert
587 */
588 private void siftUp(int k, E x) {
589 if (comparator != null)
590 siftUpUsingComparator(k, x);
591 else
592 siftUpComparable(k, x);
593 }
594
595 private void siftUpComparable(int k, E x) {
596 Comparable<? super E> key = (Comparable<? super E>) x;
597 while (k > 0) {
598 int parent = (k - 1) >>> 1;
599 Object e = queue[parent];
600 if (key.compareTo((E) e) >= 0)
601 break;
602 queue[k] = e;
603 k = parent;
604 }
605 queue[k] = key;
606 }
607
608 private void siftUpUsingComparator(int k, E x) {
609 while (k > 0) {
610 int parent = (k - 1) >>> 1;
611 Object e = queue[parent];
612 if (comparator.compare(x, (E) e) >= 0)
613 break;
614 queue[k] = e;
615 k = parent;
616 }
617 queue[k] = x;
618 }
619
620 /**
621 * Inserts item x at position k, maintaining heap invariant by
622 * demoting x down the tree repeatedly until it is less than or
623 * equal to its children or is a leaf.
624 *
625 * @param k the position to fill
626 * @param x the item to insert
627 */
628 private void siftDown(int k, E x) {
629 if (comparator != null)
630 siftDownUsingComparator(k, x);
631 else
632 siftDownComparable(k, x);
633 }
634
635 private void siftDownComparable(int k, E x) {
636 Comparable<? super E> key = (Comparable<? super E>)x;
637 int half = size >>> 1; // loop while a non-leaf
638 while (k < half) {
639 int child = (k << 1) + 1; // assume left child is least
640 Object c = queue[child];
641 int right = child + 1;
642 if (right < size &&
643 ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
644 c = queue[child = right];
645 if (key.compareTo((E) c) <= 0)
646 break;
647 queue[k] = c;
648 k = child;
649 }
650 queue[k] = key;
651 }
652
653 private void siftDownUsingComparator(int k, E x) {
654 int half = size >>> 1;
655 while (k < half) {
656 int child = (k << 1) + 1;
657 Object c = queue[child];
658 int right = child + 1;
659 if (right < size &&
660 comparator.compare((E) c, (E) queue[right]) > 0)
661 c = queue[child = right];
662 if (comparator.compare(x, (E) c) <= 0)
663 break;
664 queue[k] = c;
665 k = child;
666 }
667 queue[k] = x;
668 }
669
670 /**
671 * Establishes the heap invariant (described above) in the entire tree,
672 * assuming nothing about the order of the elements prior to the call.
673 */
674 private void heapify() {
675 for (int i = (size >>> 1) - 1; i >= 0; i--)
676 siftDown(i, (E) queue[i]);
677 }
678
679 /**
680 * Returns the comparator used to order the elements in this
681 * queue, or {@code null} if this queue is sorted according to
682 * the {@linkplain Comparable natural ordering} of its elements.
683 *
684 * @return the comparator used to order this queue, or
685 * {@code null} if this queue is sorted according to the
686 * natural ordering of its elements
687 */
688 public Comparator<? super E> comparator() {
689 return comparator;
690 }
691
692 /**
693 * Saves the state of the instance to a stream (that
694 * is, serializes it).
695 *
696 * @serialData The length of the array backing the instance is
697 * emitted (int), followed by all of its elements
698 * (each an {@code Object}) in the proper order.
699 * @param s the stream
700 */
701 private void writeObject(java.io.ObjectOutputStream s)
702 throws java.io.IOException{
703 // Write out element count, and any hidden stuff
704 s.defaultWriteObject();
705
706 // Write out array length, for compatibility with 1.5 version
707 s.writeInt(Math.max(2, size + 1));
708
709 // Write out all elements in the "proper order".
710 for (int i = 0; i < size; i++)
711 s.writeObject(queue[i]);
712 }
713
714 /**
715 * Reconstitutes the {@code PriorityQueue} instance from a stream
716 * (that is, deserializes it).
717 *
718 * @param s the stream
719 */
720 private void readObject(java.io.ObjectInputStream s)
721 throws java.io.IOException, ClassNotFoundException {
722 // Read in size, and any hidden stuff
723 s.defaultReadObject();
724
725 // Read in (and discard) array length
726 s.readInt();
727
728 queue = new Object[size];
729
730 // Read in all elements.
731 for (int i = 0; i < size; i++)
732 queue[i] = s.readObject();
733
734 // Elements are guaranteed to be in "proper order", but the
735 // spec has never explained what that might be.
736 heapify();
737 }
738 }