ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.69
Committed: Sun May 18 23:59:57 2008 UTC (15 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.68: +0 -1 lines
Log Message:
Sync with OpenJDK; remove all @version tags

File Contents

# Content
1 /*
2 * Copyright 2003-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Sun designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Sun in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 * CA 95054 USA or visit www.sun.com if you need additional information or
23 * have any questions.
24 */
25
26 package java.util;
27
28 /**
29 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 * The elements of the priority queue are ordered according to their
31 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 * provided at queue construction time, depending on which constructor is
33 * used. A priority queue does not permit {@code null} elements.
34 * A priority queue relying on natural ordering also does not permit
35 * insertion of non-comparable objects (doing so may result in
36 * {@code ClassCastException}).
37 *
38 * <p>The <em>head</em> of this queue is the <em>least</em> element
39 * with respect to the specified ordering. If multiple elements are
40 * tied for least value, the head is one of those elements -- ties are
41 * broken arbitrarily. The queue retrieval operations {@code poll},
42 * {@code remove}, {@code peek}, and {@code element} access the
43 * element at the head of the queue.
44 *
45 * <p>A priority queue is unbounded, but has an internal
46 * <i>capacity</i> governing the size of an array used to store the
47 * elements on the queue. It is always at least as large as the queue
48 * size. As elements are added to a priority queue, its capacity
49 * grows automatically. The details of the growth policy are not
50 * specified.
51 *
52 * <p>This class and its iterator implement all of the
53 * <em>optional</em> methods of the {@link Collection} and {@link
54 * Iterator} interfaces. The Iterator provided in method {@link
55 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 * the priority queue in any particular order. If you need ordered
57 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 *
59 * <p> <strong>Note that this implementation is not synchronized.</strong>
60 * Multiple threads should not access a {@code PriorityQueue}
61 * instance concurrently if any of the threads modifies the queue.
62 * Instead, use the thread-safe {@link
63 * java.util.concurrent.PriorityBlockingQueue} class.
64 *
65 * <p>Implementation note: this implementation provides
66 * O(log(n)) time for the enqueing and dequeing methods
67 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 * methods; and constant time for the retrieval methods
70 * ({@code peek}, {@code element}, and {@code size}).
71 *
72 * <p>This class is a member of the
73 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74 * Java Collections Framework</a>.
75 *
76 * @since 1.5
77 * @author Josh Bloch, Doug Lea
78 * @param <E> the type of elements held in this collection
79 */
80 public class PriorityQueue<E> extends AbstractQueue<E>
81 implements java.io.Serializable {
82
83 private static final long serialVersionUID = -7720805057305804111L;
84
85 private static final int DEFAULT_INITIAL_CAPACITY = 11;
86
87 /**
88 * Priority queue represented as a balanced binary heap: the two
89 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
90 * priority queue is ordered by comparator, or by the elements'
91 * natural ordering, if comparator is null: For each node n in the
92 * heap and each descendant d of n, n <= d. The element with the
93 * lowest value is in queue[0], assuming the queue is nonempty.
94 */
95 private transient Object[] queue;
96
97 /**
98 * The number of elements in the priority queue.
99 */
100 private int size = 0;
101
102 /**
103 * The comparator, or null if priority queue uses elements'
104 * natural ordering.
105 */
106 private final Comparator<? super E> comparator;
107
108 /**
109 * The number of times this priority queue has been
110 * <i>structurally modified</i>. See AbstractList for gory details.
111 */
112 private transient int modCount = 0;
113
114 /**
115 * Creates a {@code PriorityQueue} with the default initial
116 * capacity (11) that orders its elements according to their
117 * {@linkplain Comparable natural ordering}.
118 */
119 public PriorityQueue() {
120 this(DEFAULT_INITIAL_CAPACITY, null);
121 }
122
123 /**
124 * Creates a {@code PriorityQueue} with the specified initial
125 * capacity that orders its elements according to their
126 * {@linkplain Comparable natural ordering}.
127 *
128 * @param initialCapacity the initial capacity for this priority queue
129 * @throws IllegalArgumentException if {@code initialCapacity} is less
130 * than 1
131 */
132 public PriorityQueue(int initialCapacity) {
133 this(initialCapacity, null);
134 }
135
136 /**
137 * Creates a {@code PriorityQueue} with the specified initial capacity
138 * that orders its elements according to the specified comparator.
139 *
140 * @param initialCapacity the initial capacity for this priority queue
141 * @param comparator the comparator that will be used to order this
142 * priority queue. If {@code null}, the {@linkplain Comparable
143 * natural ordering} of the elements will be used.
144 * @throws IllegalArgumentException if {@code initialCapacity} is
145 * less than 1
146 */
147 public PriorityQueue(int initialCapacity,
148 Comparator<? super E> comparator) {
149 // Note: This restriction of at least one is not actually needed,
150 // but continues for 1.5 compatibility
151 if (initialCapacity < 1)
152 throw new IllegalArgumentException();
153 this.queue = new Object[initialCapacity];
154 this.comparator = comparator;
155 }
156
157 /**
158 * Creates a {@code PriorityQueue} containing the elements in the
159 * specified collection. If the specified collection is an instance of
160 * a {@link SortedSet} or is another {@code PriorityQueue}, this
161 * priority queue will be ordered according to the same ordering.
162 * Otherwise, this priority queue will be ordered according to the
163 * {@linkplain Comparable natural ordering} of its elements.
164 *
165 * @param c the collection whose elements are to be placed
166 * into this priority queue
167 * @throws ClassCastException if elements of the specified collection
168 * cannot be compared to one another according to the priority
169 * queue's ordering
170 * @throws NullPointerException if the specified collection or any
171 * of its elements are null
172 */
173 public PriorityQueue(Collection<? extends E> c) {
174 initFromCollection(c);
175 if (c instanceof SortedSet)
176 comparator = (Comparator<? super E>)
177 ((SortedSet<? extends E>)c).comparator();
178 else if (c instanceof PriorityQueue)
179 comparator = (Comparator<? super E>)
180 ((PriorityQueue<? extends E>)c).comparator();
181 else {
182 comparator = null;
183 heapify();
184 }
185 }
186
187 /**
188 * Creates a {@code PriorityQueue} containing the elements in the
189 * specified priority queue. This priority queue will be
190 * ordered according to the same ordering as the given priority
191 * queue.
192 *
193 * @param c the priority queue whose elements are to be placed
194 * into this priority queue
195 * @throws ClassCastException if elements of {@code c} cannot be
196 * compared to one another according to {@code c}'s
197 * ordering
198 * @throws NullPointerException if the specified priority queue or any
199 * of its elements are null
200 */
201 public PriorityQueue(PriorityQueue<? extends E> c) {
202 comparator = (Comparator<? super E>)c.comparator();
203 initFromCollection(c);
204 }
205
206 /**
207 * Creates a {@code PriorityQueue} containing the elements in the
208 * specified sorted set. This priority queue will be ordered
209 * according to the same ordering as the given sorted set.
210 *
211 * @param c the sorted set whose elements are to be placed
212 * into this priority queue
213 * @throws ClassCastException if elements of the specified sorted
214 * set cannot be compared to one another according to the
215 * sorted set's ordering
216 * @throws NullPointerException if the specified sorted set or any
217 * of its elements are null
218 */
219 public PriorityQueue(SortedSet<? extends E> c) {
220 comparator = (Comparator<? super E>)c.comparator();
221 initFromCollection(c);
222 }
223
224 /**
225 * Initializes queue array with elements from the given Collection.
226 *
227 * @param c the collection
228 */
229 private void initFromCollection(Collection<? extends E> c) {
230 Object[] a = c.toArray();
231 // If c.toArray incorrectly doesn't return Object[], copy it.
232 if (a.getClass() != Object[].class)
233 a = Arrays.copyOf(a, a.length, Object[].class);
234 queue = a;
235 size = a.length;
236 }
237
238 /**
239 * Increases the capacity of the array.
240 *
241 * @param minCapacity the desired minimum capacity
242 */
243 private void grow(int minCapacity) {
244 if (minCapacity < 0) // overflow
245 throw new OutOfMemoryError();
246 int oldCapacity = queue.length;
247 // Double size if small; else grow by 50%
248 int newCapacity = ((oldCapacity < 64)?
249 ((oldCapacity + 1) * 2):
250 ((oldCapacity / 2) * 3));
251 if (newCapacity < 0) // overflow
252 newCapacity = Integer.MAX_VALUE;
253 if (newCapacity < minCapacity)
254 newCapacity = minCapacity;
255 queue = Arrays.copyOf(queue, newCapacity);
256 }
257
258 /**
259 * Inserts the specified element into this priority queue.
260 *
261 * @return {@code true} (as specified by {@link Collection#add})
262 * @throws ClassCastException if the specified element cannot be
263 * compared with elements currently in this priority queue
264 * according to the priority queue's ordering
265 * @throws NullPointerException if the specified element is null
266 */
267 public boolean add(E e) {
268 return offer(e);
269 }
270
271 /**
272 * Inserts the specified element into this priority queue.
273 *
274 * @return {@code true} (as specified by {@link Queue#offer})
275 * @throws ClassCastException if the specified element cannot be
276 * compared with elements currently in this priority queue
277 * according to the priority queue's ordering
278 * @throws NullPointerException if the specified element is null
279 */
280 public boolean offer(E e) {
281 if (e == null)
282 throw new NullPointerException();
283 modCount++;
284 int i = size;
285 if (i >= queue.length)
286 grow(i + 1);
287 size = i + 1;
288 if (i == 0)
289 queue[0] = e;
290 else
291 siftUp(i, e);
292 return true;
293 }
294
295 public E peek() {
296 if (size == 0)
297 return null;
298 return (E) queue[0];
299 }
300
301 private int indexOf(Object o) {
302 if (o != null) {
303 for (int i = 0; i < size; i++)
304 if (o.equals(queue[i]))
305 return i;
306 }
307 return -1;
308 }
309
310 /**
311 * Removes a single instance of the specified element from this queue,
312 * if it is present. More formally, removes an element {@code e} such
313 * that {@code o.equals(e)}, if this queue contains one or more such
314 * elements. Returns {@code true} if and only if this queue contained
315 * the specified element (or equivalently, if this queue changed as a
316 * result of the call).
317 *
318 * @param o element to be removed from this queue, if present
319 * @return {@code true} if this queue changed as a result of the call
320 */
321 public boolean remove(Object o) {
322 int i = indexOf(o);
323 if (i == -1)
324 return false;
325 else {
326 removeAt(i);
327 return true;
328 }
329 }
330
331 /**
332 * Version of remove using reference equality, not equals.
333 * Needed by iterator.remove.
334 *
335 * @param o element to be removed from this queue, if present
336 * @return {@code true} if removed
337 */
338 boolean removeEq(Object o) {
339 for (int i = 0; i < size; i++) {
340 if (o == queue[i]) {
341 removeAt(i);
342 return true;
343 }
344 }
345 return false;
346 }
347
348 /**
349 * Returns {@code true} if this queue contains the specified element.
350 * More formally, returns {@code true} if and only if this queue contains
351 * at least one element {@code e} such that {@code o.equals(e)}.
352 *
353 * @param o object to be checked for containment in this queue
354 * @return {@code true} if this queue contains the specified element
355 */
356 public boolean contains(Object o) {
357 return indexOf(o) != -1;
358 }
359
360 /**
361 * Returns an array containing all of the elements in this queue.
362 * The elements are in no particular order.
363 *
364 * <p>The returned array will be "safe" in that no references to it are
365 * maintained by this queue. (In other words, this method must allocate
366 * a new array). The caller is thus free to modify the returned array.
367 *
368 * <p>This method acts as bridge between array-based and collection-based
369 * APIs.
370 *
371 * @return an array containing all of the elements in this queue
372 */
373 public Object[] toArray() {
374 return Arrays.copyOf(queue, size);
375 }
376
377 /**
378 * Returns an array containing all of the elements in this queue; the
379 * runtime type of the returned array is that of the specified array.
380 * The returned array elements are in no particular order.
381 * If the queue fits in the specified array, it is returned therein.
382 * Otherwise, a new array is allocated with the runtime type of the
383 * specified array and the size of this queue.
384 *
385 * <p>If the queue fits in the specified array with room to spare
386 * (i.e., the array has more elements than the queue), the element in
387 * the array immediately following the end of the collection is set to
388 * {@code null}.
389 *
390 * <p>Like the {@link #toArray()} method, this method acts as bridge between
391 * array-based and collection-based APIs. Further, this method allows
392 * precise control over the runtime type of the output array, and may,
393 * under certain circumstances, be used to save allocation costs.
394 *
395 * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
396 * The following code can be used to dump the queue into a newly
397 * allocated array of <tt>String</tt>:
398 *
399 * <pre>
400 * String[] y = x.toArray(new String[0]);</pre>
401 *
402 * Note that <tt>toArray(new Object[0])</tt> is identical in function to
403 * <tt>toArray()</tt>.
404 *
405 * @param a the array into which the elements of the queue are to
406 * be stored, if it is big enough; otherwise, a new array of the
407 * same runtime type is allocated for this purpose.
408 * @return an array containing all of the elements in this queue
409 * @throws ArrayStoreException if the runtime type of the specified array
410 * is not a supertype of the runtime type of every element in
411 * this queue
412 * @throws NullPointerException if the specified array is null
413 */
414 public <T> T[] toArray(T[] a) {
415 if (a.length < size)
416 // Make a new array of a's runtime type, but my contents:
417 return (T[]) Arrays.copyOf(queue, size, a.getClass());
418 System.arraycopy(queue, 0, a, 0, size);
419 if (a.length > size)
420 a[size] = null;
421 return a;
422 }
423
424 /**
425 * Returns an iterator over the elements in this queue. The iterator
426 * does not return the elements in any particular order.
427 *
428 * @return an iterator over the elements in this queue
429 */
430 public Iterator<E> iterator() {
431 return new Itr();
432 }
433
434 private final class Itr implements Iterator<E> {
435 /**
436 * Index (into queue array) of element to be returned by
437 * subsequent call to next.
438 */
439 private int cursor = 0;
440
441 /**
442 * Index of element returned by most recent call to next,
443 * unless that element came from the forgetMeNot list.
444 * Set to -1 if element is deleted by a call to remove.
445 */
446 private int lastRet = -1;
447
448 /**
449 * A queue of elements that were moved from the unvisited portion of
450 * the heap into the visited portion as a result of "unlucky" element
451 * removals during the iteration. (Unlucky element removals are those
452 * that require a siftup instead of a siftdown.) We must visit all of
453 * the elements in this list to complete the iteration. We do this
454 * after we've completed the "normal" iteration.
455 *
456 * We expect that most iterations, even those involving removals,
457 * will not need to store elements in this field.
458 */
459 private ArrayDeque<E> forgetMeNot = null;
460
461 /**
462 * Element returned by the most recent call to next iff that
463 * element was drawn from the forgetMeNot list.
464 */
465 private E lastRetElt = null;
466
467 /**
468 * The modCount value that the iterator believes that the backing
469 * Queue should have. If this expectation is violated, the iterator
470 * has detected concurrent modification.
471 */
472 private int expectedModCount = modCount;
473
474 public boolean hasNext() {
475 return cursor < size ||
476 (forgetMeNot != null && !forgetMeNot.isEmpty());
477 }
478
479 public E next() {
480 if (expectedModCount != modCount)
481 throw new ConcurrentModificationException();
482 if (cursor < size)
483 return (E) queue[lastRet = cursor++];
484 if (forgetMeNot != null) {
485 lastRet = -1;
486 lastRetElt = forgetMeNot.poll();
487 if (lastRetElt != null)
488 return lastRetElt;
489 }
490 throw new NoSuchElementException();
491 }
492
493 public void remove() {
494 if (expectedModCount != modCount)
495 throw new ConcurrentModificationException();
496 if (lastRet != -1) {
497 E moved = PriorityQueue.this.removeAt(lastRet);
498 lastRet = -1;
499 if (moved == null)
500 cursor--;
501 else {
502 if (forgetMeNot == null)
503 forgetMeNot = new ArrayDeque<E>();
504 forgetMeNot.add(moved);
505 }
506 } else if (lastRetElt != null) {
507 PriorityQueue.this.removeEq(lastRetElt);
508 lastRetElt = null;
509 } else {
510 throw new IllegalStateException();
511 }
512 expectedModCount = modCount;
513 }
514 }
515
516 public int size() {
517 return size;
518 }
519
520 /**
521 * Removes all of the elements from this priority queue.
522 * The queue will be empty after this call returns.
523 */
524 public void clear() {
525 modCount++;
526 for (int i = 0; i < size; i++)
527 queue[i] = null;
528 size = 0;
529 }
530
531 public E poll() {
532 if (size == 0)
533 return null;
534 int s = --size;
535 modCount++;
536 E result = (E) queue[0];
537 E x = (E) queue[s];
538 queue[s] = null;
539 if (s != 0)
540 siftDown(0, x);
541 return result;
542 }
543
544 /**
545 * Removes the ith element from queue.
546 *
547 * Normally this method leaves the elements at up to i-1,
548 * inclusive, untouched. Under these circumstances, it returns
549 * null. Occasionally, in order to maintain the heap invariant,
550 * it must swap a later element of the list with one earlier than
551 * i. Under these circumstances, this method returns the element
552 * that was previously at the end of the list and is now at some
553 * position before i. This fact is used by iterator.remove so as to
554 * avoid missing traversing elements.
555 */
556 private E removeAt(int i) {
557 assert i >= 0 && i < size;
558 modCount++;
559 int s = --size;
560 if (s == i) // removed last element
561 queue[i] = null;
562 else {
563 E moved = (E) queue[s];
564 queue[s] = null;
565 siftDown(i, moved);
566 if (queue[i] == moved) {
567 siftUp(i, moved);
568 if (queue[i] != moved)
569 return moved;
570 }
571 }
572 return null;
573 }
574
575 /**
576 * Inserts item x at position k, maintaining heap invariant by
577 * promoting x up the tree until it is greater than or equal to
578 * its parent, or is the root.
579 *
580 * To simplify and speed up coercions and comparisons. the
581 * Comparable and Comparator versions are separated into different
582 * methods that are otherwise identical. (Similarly for siftDown.)
583 *
584 * @param k the position to fill
585 * @param x the item to insert
586 */
587 private void siftUp(int k, E x) {
588 if (comparator != null)
589 siftUpUsingComparator(k, x);
590 else
591 siftUpComparable(k, x);
592 }
593
594 private void siftUpComparable(int k, E x) {
595 Comparable<? super E> key = (Comparable<? super E>) x;
596 while (k > 0) {
597 int parent = (k - 1) >>> 1;
598 Object e = queue[parent];
599 if (key.compareTo((E) e) >= 0)
600 break;
601 queue[k] = e;
602 k = parent;
603 }
604 queue[k] = key;
605 }
606
607 private void siftUpUsingComparator(int k, E x) {
608 while (k > 0) {
609 int parent = (k - 1) >>> 1;
610 Object e = queue[parent];
611 if (comparator.compare(x, (E) e) >= 0)
612 break;
613 queue[k] = e;
614 k = parent;
615 }
616 queue[k] = x;
617 }
618
619 /**
620 * Inserts item x at position k, maintaining heap invariant by
621 * demoting x down the tree repeatedly until it is less than or
622 * equal to its children or is a leaf.
623 *
624 * @param k the position to fill
625 * @param x the item to insert
626 */
627 private void siftDown(int k, E x) {
628 if (comparator != null)
629 siftDownUsingComparator(k, x);
630 else
631 siftDownComparable(k, x);
632 }
633
634 private void siftDownComparable(int k, E x) {
635 Comparable<? super E> key = (Comparable<? super E>)x;
636 int half = size >>> 1; // loop while a non-leaf
637 while (k < half) {
638 int child = (k << 1) + 1; // assume left child is least
639 Object c = queue[child];
640 int right = child + 1;
641 if (right < size &&
642 ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
643 c = queue[child = right];
644 if (key.compareTo((E) c) <= 0)
645 break;
646 queue[k] = c;
647 k = child;
648 }
649 queue[k] = key;
650 }
651
652 private void siftDownUsingComparator(int k, E x) {
653 int half = size >>> 1;
654 while (k < half) {
655 int child = (k << 1) + 1;
656 Object c = queue[child];
657 int right = child + 1;
658 if (right < size &&
659 comparator.compare((E) c, (E) queue[right]) > 0)
660 c = queue[child = right];
661 if (comparator.compare(x, (E) c) <= 0)
662 break;
663 queue[k] = c;
664 k = child;
665 }
666 queue[k] = x;
667 }
668
669 /**
670 * Establishes the heap invariant (described above) in the entire tree,
671 * assuming nothing about the order of the elements prior to the call.
672 */
673 private void heapify() {
674 for (int i = (size >>> 1) - 1; i >= 0; i--)
675 siftDown(i, (E) queue[i]);
676 }
677
678 /**
679 * Returns the comparator used to order the elements in this
680 * queue, or {@code null} if this queue is sorted according to
681 * the {@linkplain Comparable natural ordering} of its elements.
682 *
683 * @return the comparator used to order this queue, or
684 * {@code null} if this queue is sorted according to the
685 * natural ordering of its elements
686 */
687 public Comparator<? super E> comparator() {
688 return comparator;
689 }
690
691 /**
692 * Saves the state of the instance to a stream (that
693 * is, serializes it).
694 *
695 * @serialData The length of the array backing the instance is
696 * emitted (int), followed by all of its elements
697 * (each an {@code Object}) in the proper order.
698 * @param s the stream
699 */
700 private void writeObject(java.io.ObjectOutputStream s)
701 throws java.io.IOException{
702 // Write out element count, and any hidden stuff
703 s.defaultWriteObject();
704
705 // Write out array length, for compatibility with 1.5 version
706 s.writeInt(Math.max(2, size + 1));
707
708 // Write out all elements in the "proper order".
709 for (int i = 0; i < size; i++)
710 s.writeObject(queue[i]);
711 }
712
713 /**
714 * Reconstitutes the {@code PriorityQueue} instance from a stream
715 * (that is, deserializes it).
716 *
717 * @param s the stream
718 */
719 private void readObject(java.io.ObjectInputStream s)
720 throws java.io.IOException, ClassNotFoundException {
721 // Read in size, and any hidden stuff
722 s.defaultReadObject();
723
724 // Read in (and discard) array length
725 s.readInt();
726
727 queue = new Object[size];
728
729 // Read in all elements.
730 for (int i = 0; i < size; i++)
731 queue[i] = s.readObject();
732
733 // Elements are guaranteed to be in "proper order", but the
734 // spec has never explained what that might be.
735 heapify();
736 }
737 }