ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.82
Committed: Wed Jan 16 21:18:50 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.81: +3 -3 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27 import java.util.stream.Stream;
28 import java.util.Spliterator;
29 import java.util.stream.Streams;
30 import java.util.function.Block;
31
32 /**
33 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
34 * The elements of the priority queue are ordered according to their
35 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
36 * provided at queue construction time, depending on which constructor is
37 * used. A priority queue does not permit {@code null} elements.
38 * A priority queue relying on natural ordering also does not permit
39 * insertion of non-comparable objects (doing so may result in
40 * {@code ClassCastException}).
41 *
42 * <p>The <em>head</em> of this queue is the <em>least</em> element
43 * with respect to the specified ordering. If multiple elements are
44 * tied for least value, the head is one of those elements -- ties are
45 * broken arbitrarily. The queue retrieval operations {@code poll},
46 * {@code remove}, {@code peek}, and {@code element} access the
47 * element at the head of the queue.
48 *
49 * <p>A priority queue is unbounded, but has an internal
50 * <i>capacity</i> governing the size of an array used to store the
51 * elements on the queue. It is always at least as large as the queue
52 * size. As elements are added to a priority queue, its capacity
53 * grows automatically. The details of the growth policy are not
54 * specified.
55 *
56 * <p>This class and its iterator implement all of the
57 * <em>optional</em> methods of the {@link Collection} and {@link
58 * Iterator} interfaces. The Iterator provided in method {@link
59 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
60 * the priority queue in any particular order. If you need ordered
61 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 *
63 * <p><strong>Note that this implementation is not synchronized.</strong>
64 * Multiple threads should not access a {@code PriorityQueue}
65 * instance concurrently if any of the threads modifies the queue.
66 * Instead, use the thread-safe {@link
67 * java.util.concurrent.PriorityBlockingQueue} class.
68 *
69 * <p>Implementation note: this implementation provides
70 * O(log(n)) time for the enqueing and dequeing methods
71 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 * methods; and constant time for the retrieval methods
74 * ({@code peek}, {@code element}, and {@code size}).
75 *
76 * <p>This class is a member of the
77 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
78 * Java Collections Framework</a>.
79 *
80 * @since 1.5
81 * @author Josh Bloch, Doug Lea
82 * @param <E> the type of elements held in this collection
83 */
84 public class PriorityQueue<E> extends AbstractQueue<E>
85 implements java.io.Serializable {
86
87 private static final long serialVersionUID = -7720805057305804111L;
88
89 private static final int DEFAULT_INITIAL_CAPACITY = 11;
90
91 /**
92 * Priority queue represented as a balanced binary heap: the two
93 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
94 * priority queue is ordered by comparator, or by the elements'
95 * natural ordering, if comparator is null: For each node n in the
96 * heap and each descendant d of n, n <= d. The element with the
97 * lowest value is in queue[0], assuming the queue is nonempty.
98 */
99 transient Object[] queue; // non-private to simplify nested class access
100
101 /**
102 * The number of elements in the priority queue.
103 */
104 private int size = 0;
105
106 /**
107 * The comparator, or null if priority queue uses elements'
108 * natural ordering.
109 */
110 private final Comparator<? super E> comparator;
111
112 /**
113 * The number of times this priority queue has been
114 * <i>structurally modified</i>. See AbstractList for gory details.
115 */
116 transient int modCount = 0; // non-private to simplify nested class access
117
118 /**
119 * Creates a {@code PriorityQueue} with the default initial
120 * capacity (11) that orders its elements according to their
121 * {@linkplain Comparable natural ordering}.
122 */
123 public PriorityQueue() {
124 this(DEFAULT_INITIAL_CAPACITY, null);
125 }
126
127 /**
128 * Creates a {@code PriorityQueue} with the specified initial
129 * capacity that orders its elements according to their
130 * {@linkplain Comparable natural ordering}.
131 *
132 * @param initialCapacity the initial capacity for this priority queue
133 * @throws IllegalArgumentException if {@code initialCapacity} is less
134 * than 1
135 */
136 public PriorityQueue(int initialCapacity) {
137 this(initialCapacity, null);
138 }
139
140 /**
141 * Creates a {@code PriorityQueue} with the specified initial capacity
142 * that orders its elements according to the specified comparator.
143 *
144 * @param initialCapacity the initial capacity for this priority queue
145 * @param comparator the comparator that will be used to order this
146 * priority queue. If {@code null}, the {@linkplain Comparable
147 * natural ordering} of the elements will be used.
148 * @throws IllegalArgumentException if {@code initialCapacity} is
149 * less than 1
150 */
151 public PriorityQueue(int initialCapacity,
152 Comparator<? super E> comparator) {
153 // Note: This restriction of at least one is not actually needed,
154 // but continues for 1.5 compatibility
155 if (initialCapacity < 1)
156 throw new IllegalArgumentException();
157 this.queue = new Object[initialCapacity];
158 this.comparator = comparator;
159 }
160
161 /**
162 * Creates a {@code PriorityQueue} containing the elements in the
163 * specified collection. If the specified collection is an instance of
164 * a {@link SortedSet} or is another {@code PriorityQueue}, this
165 * priority queue will be ordered according to the same ordering.
166 * Otherwise, this priority queue will be ordered according to the
167 * {@linkplain Comparable natural ordering} of its elements.
168 *
169 * @param c the collection whose elements are to be placed
170 * into this priority queue
171 * @throws ClassCastException if elements of the specified collection
172 * cannot be compared to one another according to the priority
173 * queue's ordering
174 * @throws NullPointerException if the specified collection or any
175 * of its elements are null
176 */
177 @SuppressWarnings("unchecked")
178 public PriorityQueue(Collection<? extends E> c) {
179 if (c instanceof SortedSet<?>) {
180 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
181 this.comparator = (Comparator<? super E>) ss.comparator();
182 initElementsFromCollection(ss);
183 }
184 else if (c instanceof PriorityQueue<?>) {
185 PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
186 this.comparator = (Comparator<? super E>) pq.comparator();
187 initFromPriorityQueue(pq);
188 }
189 else {
190 this.comparator = null;
191 initFromCollection(c);
192 }
193 }
194
195 /**
196 * Creates a {@code PriorityQueue} containing the elements in the
197 * specified priority queue. This priority queue will be
198 * ordered according to the same ordering as the given priority
199 * queue.
200 *
201 * @param c the priority queue whose elements are to be placed
202 * into this priority queue
203 * @throws ClassCastException if elements of {@code c} cannot be
204 * compared to one another according to {@code c}'s
205 * ordering
206 * @throws NullPointerException if the specified priority queue or any
207 * of its elements are null
208 */
209 @SuppressWarnings("unchecked")
210 public PriorityQueue(PriorityQueue<? extends E> c) {
211 this.comparator = (Comparator<? super E>) c.comparator();
212 initFromPriorityQueue(c);
213 }
214
215 /**
216 * Creates a {@code PriorityQueue} containing the elements in the
217 * specified sorted set. This priority queue will be ordered
218 * according to the same ordering as the given sorted set.
219 *
220 * @param c the sorted set whose elements are to be placed
221 * into this priority queue
222 * @throws ClassCastException if elements of the specified sorted
223 * set cannot be compared to one another according to the
224 * sorted set's ordering
225 * @throws NullPointerException if the specified sorted set or any
226 * of its elements are null
227 */
228 @SuppressWarnings("unchecked")
229 public PriorityQueue(SortedSet<? extends E> c) {
230 this.comparator = (Comparator<? super E>) c.comparator();
231 initElementsFromCollection(c);
232 }
233
234 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
235 if (c.getClass() == PriorityQueue.class) {
236 this.queue = c.toArray();
237 this.size = c.size();
238 } else {
239 initFromCollection(c);
240 }
241 }
242
243 private void initElementsFromCollection(Collection<? extends E> c) {
244 Object[] a = c.toArray();
245 // If c.toArray incorrectly doesn't return Object[], copy it.
246 if (a.getClass() != Object[].class)
247 a = Arrays.copyOf(a, a.length, Object[].class);
248 int len = a.length;
249 if (len == 1 || this.comparator != null)
250 for (int i = 0; i < len; i++)
251 if (a[i] == null)
252 throw new NullPointerException();
253 this.queue = a;
254 this.size = a.length;
255 }
256
257 /**
258 * Initializes queue array with elements from the given Collection.
259 *
260 * @param c the collection
261 */
262 private void initFromCollection(Collection<? extends E> c) {
263 initElementsFromCollection(c);
264 heapify();
265 }
266
267 /**
268 * The maximum size of array to allocate.
269 * Some VMs reserve some header words in an array.
270 * Attempts to allocate larger arrays may result in
271 * OutOfMemoryError: Requested array size exceeds VM limit
272 */
273 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
274
275 /**
276 * Increases the capacity of the array.
277 *
278 * @param minCapacity the desired minimum capacity
279 */
280 private void grow(int minCapacity) {
281 int oldCapacity = queue.length;
282 // Double size if small; else grow by 50%
283 int newCapacity = oldCapacity + ((oldCapacity < 64) ?
284 (oldCapacity + 2) :
285 (oldCapacity >> 1));
286 // overflow-conscious code
287 if (newCapacity - MAX_ARRAY_SIZE > 0)
288 newCapacity = hugeCapacity(minCapacity);
289 queue = Arrays.copyOf(queue, newCapacity);
290 }
291
292 private static int hugeCapacity(int minCapacity) {
293 if (minCapacity < 0) // overflow
294 throw new OutOfMemoryError();
295 return (minCapacity > MAX_ARRAY_SIZE) ?
296 Integer.MAX_VALUE :
297 MAX_ARRAY_SIZE;
298 }
299
300 /**
301 * Inserts the specified element into this priority queue.
302 *
303 * @return {@code true} (as specified by {@link Collection#add})
304 * @throws ClassCastException if the specified element cannot be
305 * compared with elements currently in this priority queue
306 * according to the priority queue's ordering
307 * @throws NullPointerException if the specified element is null
308 */
309 public boolean add(E e) {
310 return offer(e);
311 }
312
313 /**
314 * Inserts the specified element into this priority queue.
315 *
316 * @return {@code true} (as specified by {@link Queue#offer})
317 * @throws ClassCastException if the specified element cannot be
318 * compared with elements currently in this priority queue
319 * according to the priority queue's ordering
320 * @throws NullPointerException if the specified element is null
321 */
322 public boolean offer(E e) {
323 if (e == null)
324 throw new NullPointerException();
325 modCount++;
326 int i = size;
327 if (i >= queue.length)
328 grow(i + 1);
329 size = i + 1;
330 if (i == 0)
331 queue[0] = e;
332 else
333 siftUp(i, e);
334 return true;
335 }
336
337 @SuppressWarnings("unchecked")
338 public E peek() {
339 return (size == 0) ? null : (E) queue[0];
340 }
341
342 private int indexOf(Object o) {
343 if (o != null) {
344 for (int i = 0; i < size; i++)
345 if (o.equals(queue[i]))
346 return i;
347 }
348 return -1;
349 }
350
351 /**
352 * Removes a single instance of the specified element from this queue,
353 * if it is present. More formally, removes an element {@code e} such
354 * that {@code o.equals(e)}, if this queue contains one or more such
355 * elements. Returns {@code true} if and only if this queue contained
356 * the specified element (or equivalently, if this queue changed as a
357 * result of the call).
358 *
359 * @param o element to be removed from this queue, if present
360 * @return {@code true} if this queue changed as a result of the call
361 */
362 public boolean remove(Object o) {
363 int i = indexOf(o);
364 if (i == -1)
365 return false;
366 else {
367 removeAt(i);
368 return true;
369 }
370 }
371
372 /**
373 * Version of remove using reference equality, not equals.
374 * Needed by iterator.remove.
375 *
376 * @param o element to be removed from this queue, if present
377 * @return {@code true} if removed
378 */
379 boolean removeEq(Object o) {
380 for (int i = 0; i < size; i++) {
381 if (o == queue[i]) {
382 removeAt(i);
383 return true;
384 }
385 }
386 return false;
387 }
388
389 /**
390 * Returns {@code true} if this queue contains the specified element.
391 * More formally, returns {@code true} if and only if this queue contains
392 * at least one element {@code e} such that {@code o.equals(e)}.
393 *
394 * @param o object to be checked for containment in this queue
395 * @return {@code true} if this queue contains the specified element
396 */
397 public boolean contains(Object o) {
398 return indexOf(o) != -1;
399 }
400
401 /**
402 * Returns an array containing all of the elements in this queue.
403 * The elements are in no particular order.
404 *
405 * <p>The returned array will be "safe" in that no references to it are
406 * maintained by this queue. (In other words, this method must allocate
407 * a new array). The caller is thus free to modify the returned array.
408 *
409 * <p>This method acts as bridge between array-based and collection-based
410 * APIs.
411 *
412 * @return an array containing all of the elements in this queue
413 */
414 public Object[] toArray() {
415 return Arrays.copyOf(queue, size);
416 }
417
418 /**
419 * Returns an array containing all of the elements in this queue; the
420 * runtime type of the returned array is that of the specified array.
421 * The returned array elements are in no particular order.
422 * If the queue fits in the specified array, it is returned therein.
423 * Otherwise, a new array is allocated with the runtime type of the
424 * specified array and the size of this queue.
425 *
426 * <p>If the queue fits in the specified array with room to spare
427 * (i.e., the array has more elements than the queue), the element in
428 * the array immediately following the end of the collection is set to
429 * {@code null}.
430 *
431 * <p>Like the {@link #toArray()} method, this method acts as bridge between
432 * array-based and collection-based APIs. Further, this method allows
433 * precise control over the runtime type of the output array, and may,
434 * under certain circumstances, be used to save allocation costs.
435 *
436 * <p>Suppose {@code x} is a queue known to contain only strings.
437 * The following code can be used to dump the queue into a newly
438 * allocated array of {@code String}:
439 *
440 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
441 *
442 * Note that {@code toArray(new Object[0])} is identical in function to
443 * {@code toArray()}.
444 *
445 * @param a the array into which the elements of the queue are to
446 * be stored, if it is big enough; otherwise, a new array of the
447 * same runtime type is allocated for this purpose.
448 * @return an array containing all of the elements in this queue
449 * @throws ArrayStoreException if the runtime type of the specified array
450 * is not a supertype of the runtime type of every element in
451 * this queue
452 * @throws NullPointerException if the specified array is null
453 */
454 public <T> T[] toArray(T[] a) {
455 if (a.length < size)
456 // Make a new array of a's runtime type, but my contents:
457 return (T[]) Arrays.copyOf(queue, size, a.getClass());
458 System.arraycopy(queue, 0, a, 0, size);
459 if (a.length > size)
460 a[size] = null;
461 return a;
462 }
463
464 /**
465 * Returns an iterator over the elements in this queue. The iterator
466 * does not return the elements in any particular order.
467 *
468 * @return an iterator over the elements in this queue
469 */
470 public Iterator<E> iterator() {
471 return new Itr();
472 }
473
474 private final class Itr implements Iterator<E> {
475 /**
476 * Index (into queue array) of element to be returned by
477 * subsequent call to next.
478 */
479 private int cursor = 0;
480
481 /**
482 * Index of element returned by most recent call to next,
483 * unless that element came from the forgetMeNot list.
484 * Set to -1 if element is deleted by a call to remove.
485 */
486 private int lastRet = -1;
487
488 /**
489 * A queue of elements that were moved from the unvisited portion of
490 * the heap into the visited portion as a result of "unlucky" element
491 * removals during the iteration. (Unlucky element removals are those
492 * that require a siftup instead of a siftdown.) We must visit all of
493 * the elements in this list to complete the iteration. We do this
494 * after we've completed the "normal" iteration.
495 *
496 * We expect that most iterations, even those involving removals,
497 * will not need to store elements in this field.
498 */
499 private ArrayDeque<E> forgetMeNot = null;
500
501 /**
502 * Element returned by the most recent call to next iff that
503 * element was drawn from the forgetMeNot list.
504 */
505 private E lastRetElt = null;
506
507 /**
508 * The modCount value that the iterator believes that the backing
509 * Queue should have. If this expectation is violated, the iterator
510 * has detected concurrent modification.
511 */
512 private int expectedModCount = modCount;
513
514 public boolean hasNext() {
515 return cursor < size ||
516 (forgetMeNot != null && !forgetMeNot.isEmpty());
517 }
518
519 @SuppressWarnings("unchecked")
520 public E next() {
521 if (expectedModCount != modCount)
522 throw new ConcurrentModificationException();
523 if (cursor < size)
524 return (E) queue[lastRet = cursor++];
525 if (forgetMeNot != null) {
526 lastRet = -1;
527 lastRetElt = forgetMeNot.poll();
528 if (lastRetElt != null)
529 return lastRetElt;
530 }
531 throw new NoSuchElementException();
532 }
533
534 public void remove() {
535 if (expectedModCount != modCount)
536 throw new ConcurrentModificationException();
537 if (lastRet != -1) {
538 E moved = PriorityQueue.this.removeAt(lastRet);
539 lastRet = -1;
540 if (moved == null)
541 cursor--;
542 else {
543 if (forgetMeNot == null)
544 forgetMeNot = new ArrayDeque<E>();
545 forgetMeNot.add(moved);
546 }
547 } else if (lastRetElt != null) {
548 PriorityQueue.this.removeEq(lastRetElt);
549 lastRetElt = null;
550 } else {
551 throw new IllegalStateException();
552 }
553 expectedModCount = modCount;
554 }
555 }
556
557 public int size() {
558 return size;
559 }
560
561 /**
562 * Removes all of the elements from this priority queue.
563 * The queue will be empty after this call returns.
564 */
565 public void clear() {
566 modCount++;
567 for (int i = 0; i < size; i++)
568 queue[i] = null;
569 size = 0;
570 }
571
572 @SuppressWarnings("unchecked")
573 public E poll() {
574 if (size == 0)
575 return null;
576 int s = --size;
577 modCount++;
578 E result = (E) queue[0];
579 E x = (E) queue[s];
580 queue[s] = null;
581 if (s != 0)
582 siftDown(0, x);
583 return result;
584 }
585
586 /**
587 * Removes the ith element from queue.
588 *
589 * Normally this method leaves the elements at up to i-1,
590 * inclusive, untouched. Under these circumstances, it returns
591 * null. Occasionally, in order to maintain the heap invariant,
592 * it must swap a later element of the list with one earlier than
593 * i. Under these circumstances, this method returns the element
594 * that was previously at the end of the list and is now at some
595 * position before i. This fact is used by iterator.remove so as to
596 * avoid missing traversing elements.
597 */
598 @SuppressWarnings("unchecked")
599 private E removeAt(int i) {
600 // assert i >= 0 && i < size;
601 modCount++;
602 int s = --size;
603 if (s == i) // removed last element
604 queue[i] = null;
605 else {
606 E moved = (E) queue[s];
607 queue[s] = null;
608 siftDown(i, moved);
609 if (queue[i] == moved) {
610 siftUp(i, moved);
611 if (queue[i] != moved)
612 return moved;
613 }
614 }
615 return null;
616 }
617
618 /**
619 * Inserts item x at position k, maintaining heap invariant by
620 * promoting x up the tree until it is greater than or equal to
621 * its parent, or is the root.
622 *
623 * To simplify and speed up coercions and comparisons. the
624 * Comparable and Comparator versions are separated into different
625 * methods that are otherwise identical. (Similarly for siftDown.)
626 *
627 * @param k the position to fill
628 * @param x the item to insert
629 */
630 private void siftUp(int k, E x) {
631 if (comparator != null)
632 siftUpUsingComparator(k, x);
633 else
634 siftUpComparable(k, x);
635 }
636
637 @SuppressWarnings("unchecked")
638 private void siftUpComparable(int k, E x) {
639 Comparable<? super E> key = (Comparable<? super E>) x;
640 while (k > 0) {
641 int parent = (k - 1) >>> 1;
642 Object e = queue[parent];
643 if (key.compareTo((E) e) >= 0)
644 break;
645 queue[k] = e;
646 k = parent;
647 }
648 queue[k] = key;
649 }
650
651 @SuppressWarnings("unchecked")
652 private void siftUpUsingComparator(int k, E x) {
653 while (k > 0) {
654 int parent = (k - 1) >>> 1;
655 Object e = queue[parent];
656 if (comparator.compare(x, (E) e) >= 0)
657 break;
658 queue[k] = e;
659 k = parent;
660 }
661 queue[k] = x;
662 }
663
664 /**
665 * Inserts item x at position k, maintaining heap invariant by
666 * demoting x down the tree repeatedly until it is less than or
667 * equal to its children or is a leaf.
668 *
669 * @param k the position to fill
670 * @param x the item to insert
671 */
672 private void siftDown(int k, E x) {
673 if (comparator != null)
674 siftDownUsingComparator(k, x);
675 else
676 siftDownComparable(k, x);
677 }
678
679 @SuppressWarnings("unchecked")
680 private void siftDownComparable(int k, E x) {
681 Comparable<? super E> key = (Comparable<? super E>)x;
682 int half = size >>> 1; // loop while a non-leaf
683 while (k < half) {
684 int child = (k << 1) + 1; // assume left child is least
685 Object c = queue[child];
686 int right = child + 1;
687 if (right < size &&
688 ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
689 c = queue[child = right];
690 if (key.compareTo((E) c) <= 0)
691 break;
692 queue[k] = c;
693 k = child;
694 }
695 queue[k] = key;
696 }
697
698 @SuppressWarnings("unchecked")
699 private void siftDownUsingComparator(int k, E x) {
700 int half = size >>> 1;
701 while (k < half) {
702 int child = (k << 1) + 1;
703 Object c = queue[child];
704 int right = child + 1;
705 if (right < size &&
706 comparator.compare((E) c, (E) queue[right]) > 0)
707 c = queue[child = right];
708 if (comparator.compare(x, (E) c) <= 0)
709 break;
710 queue[k] = c;
711 k = child;
712 }
713 queue[k] = x;
714 }
715
716 /**
717 * Establishes the heap invariant (described above) in the entire tree,
718 * assuming nothing about the order of the elements prior to the call.
719 */
720 @SuppressWarnings("unchecked")
721 private void heapify() {
722 for (int i = (size >>> 1) - 1; i >= 0; i--)
723 siftDown(i, (E) queue[i]);
724 }
725
726 /**
727 * Returns the comparator used to order the elements in this
728 * queue, or {@code null} if this queue is sorted according to
729 * the {@linkplain Comparable natural ordering} of its elements.
730 *
731 * @return the comparator used to order this queue, or
732 * {@code null} if this queue is sorted according to the
733 * natural ordering of its elements
734 */
735 public Comparator<? super E> comparator() {
736 return comparator;
737 }
738
739 /**
740 * Saves this queue to a stream (that is, serializes it).
741 *
742 * @serialData The length of the array backing the instance is
743 * emitted (int), followed by all of its elements
744 * (each an {@code Object}) in the proper order.
745 * @param s the stream
746 */
747 private void writeObject(java.io.ObjectOutputStream s)
748 throws java.io.IOException {
749 // Write out element count, and any hidden stuff
750 s.defaultWriteObject();
751
752 // Write out array length, for compatibility with 1.5 version
753 s.writeInt(Math.max(2, size + 1));
754
755 // Write out all elements in the "proper order".
756 for (int i = 0; i < size; i++)
757 s.writeObject(queue[i]);
758 }
759
760 /**
761 * Reconstitutes the {@code PriorityQueue} instance from a stream
762 * (that is, deserializes it).
763 *
764 * @param s the stream
765 */
766 private void readObject(java.io.ObjectInputStream s)
767 throws java.io.IOException, ClassNotFoundException {
768 // Read in size, and any hidden stuff
769 s.defaultReadObject();
770
771 // Read in (and discard) array length
772 s.readInt();
773
774 queue = new Object[size];
775
776 // Read in all elements.
777 for (int i = 0; i < size; i++)
778 queue[i] = s.readObject();
779
780 // Elements are guaranteed to be in "proper order", but the
781 // spec has never explained what that might be.
782 heapify();
783 }
784
785 // wrapping constructor in method avoids transient javac problems
786 final PriorityQueueSpliterator<E> spliterator(int origin, int fence,
787 int expectedModCount) {
788 return new PriorityQueueSpliterator(this, origin, fence,
789 expectedModCount);
790 }
791
792 public Stream<E> stream() {
793 int flags = Streams.STREAM_IS_SIZED;
794 return Streams.stream
795 (() -> spliterator(0, size, modCount), flags);
796 }
797 public Stream<E> parallelStream() {
798 int flags = Streams.STREAM_IS_SIZED;
799 return Streams.parallelStream
800 (() -> spliterator(0, size, modCount), flags);
801 }
802
803 /** Index-based split-by-two Spliterator */
804 static final class PriorityQueueSpliterator<E>
805 implements Spliterator<E>, Iterator<E> {
806 private final PriorityQueue<E> pq;
807 private int index; // current index, modified on advance/split
808 private final int fence; // one past last index
809 private final int expectedModCount; // for comodification checks
810
811 /** Create new spliterator covering the given range */
812 PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
813 int expectedModCount) {
814 this.pq = pq; this.index = origin; this.fence = fence;
815 this.expectedModCount = expectedModCount;
816 }
817
818 public PriorityQueueSpliterator<E> trySplit() {
819 int lo = index, mid = (lo + fence) >>> 1;
820 return (lo >= mid) ? null :
821 new PriorityQueueSpliterator<E>(pq, lo, index = mid,
822 expectedModCount);
823 }
824
825 public void forEach(Block<? super E> block) {
826 Object[] a; int i, hi; // hoist accesses and checks from loop
827 if (block == null)
828 throw new NullPointerException();
829 if ((a = pq.queue).length >= (hi = fence) &&
830 (i = index) >= 0 && i < hi) {
831 index = hi;
832 do {
833 @SuppressWarnings("unchecked") E e = (E) a[i];
834 block.accept(e);
835 } while (++i < hi);
836 if (pq.modCount != expectedModCount)
837 throw new ConcurrentModificationException();
838 }
839 }
840
841 public boolean tryAdvance(Block<? super E> block) {
842 if (index >= 0 && index < fence) {
843 if (pq.modCount != expectedModCount)
844 throw new ConcurrentModificationException();
845 @SuppressWarnings("unchecked") E e =
846 (E)pq.queue[index++];
847 block.accept(e);
848 return true;
849 }
850 return false;
851 }
852
853 public long estimateSize() { return (long)(fence - index); }
854 public boolean hasExactSize() { return true; }
855 public boolean hasExactSplits() { return true; }
856
857 // Iterator support
858 public Iterator<E> iterator() { return this; }
859 public void remove() { throw new UnsupportedOperationException(); }
860 public boolean hasNext() { return index >= 0 && index < fence; }
861
862 public E next() {
863 if (index < 0 || index >= fence)
864 throw new NoSuchElementException();
865 if (pq.modCount != expectedModCount)
866 throw new ConcurrentModificationException();
867 @SuppressWarnings("unchecked") E e =
868 (E) pq.queue[index++];
869 return e;
870 }
871 }
872 }