ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.92
Committed: Mon Feb 18 03:15:10 2013 UTC (11 years, 2 months ago) by jsr166
Branch: MAIN
Changes since 1.91: +1 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27 import java.util.function.Consumer;
28 import java.util.stream.Stream;
29 import java.util.stream.Streams;
30
31 /**
32 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 * The elements of the priority queue are ordered according to their
34 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 * provided at queue construction time, depending on which constructor is
36 * used. A priority queue does not permit {@code null} elements.
37 * A priority queue relying on natural ordering also does not permit
38 * insertion of non-comparable objects (doing so may result in
39 * {@code ClassCastException}).
40 *
41 * <p>The <em>head</em> of this queue is the <em>least</em> element
42 * with respect to the specified ordering. If multiple elements are
43 * tied for least value, the head is one of those elements -- ties are
44 * broken arbitrarily. The queue retrieval operations {@code poll},
45 * {@code remove}, {@code peek}, and {@code element} access the
46 * element at the head of the queue.
47 *
48 * <p>A priority queue is unbounded, but has an internal
49 * <i>capacity</i> governing the size of an array used to store the
50 * elements on the queue. It is always at least as large as the queue
51 * size. As elements are added to a priority queue, its capacity
52 * grows automatically. The details of the growth policy are not
53 * specified.
54 *
55 * <p>This class and its iterator implement all of the
56 * <em>optional</em> methods of the {@link Collection} and {@link
57 * Iterator} interfaces. The Iterator provided in method {@link
58 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
59 * the priority queue in any particular order. If you need ordered
60 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
61 *
62 * <p><strong>Note that this implementation is not synchronized.</strong>
63 * Multiple threads should not access a {@code PriorityQueue}
64 * instance concurrently if any of the threads modifies the queue.
65 * Instead, use the thread-safe {@link
66 * java.util.concurrent.PriorityBlockingQueue} class.
67 *
68 * <p>Implementation note: this implementation provides
69 * O(log(n)) time for the enqueing and dequeing methods
70 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
71 * linear time for the {@code remove(Object)} and {@code contains(Object)}
72 * methods; and constant time for the retrieval methods
73 * ({@code peek}, {@code element}, and {@code size}).
74 *
75 * <p>This class is a member of the
76 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
77 * Java Collections Framework</a>.
78 *
79 * @since 1.5
80 * @author Josh Bloch, Doug Lea
81 * @param <E> the type of elements held in this collection
82 */
83 public class PriorityQueue<E> extends AbstractQueue<E>
84 implements java.io.Serializable {
85
86 private static final long serialVersionUID = -7720805057305804111L;
87
88 private static final int DEFAULT_INITIAL_CAPACITY = 11;
89
90 /**
91 * Priority queue represented as a balanced binary heap: the two
92 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
93 * priority queue is ordered by comparator, or by the elements'
94 * natural ordering, if comparator is null: For each node n in the
95 * heap and each descendant d of n, n <= d. The element with the
96 * lowest value is in queue[0], assuming the queue is nonempty.
97 */
98 transient Object[] queue; // non-private to simplify nested class access
99
100 /**
101 * The number of elements in the priority queue.
102 */
103 private int size = 0;
104
105 /**
106 * The comparator, or null if priority queue uses elements'
107 * natural ordering.
108 */
109 private final Comparator<? super E> comparator;
110
111 /**
112 * The number of times this priority queue has been
113 * <i>structurally modified</i>. See AbstractList for gory details.
114 */
115 transient int modCount = 0; // non-private to simplify nested class access
116
117 /**
118 * Creates a {@code PriorityQueue} with the default initial
119 * capacity (11) that orders its elements according to their
120 * {@linkplain Comparable natural ordering}.
121 */
122 public PriorityQueue() {
123 this(DEFAULT_INITIAL_CAPACITY, null);
124 }
125
126 /**
127 * Creates a {@code PriorityQueue} with the specified initial
128 * capacity that orders its elements according to their
129 * {@linkplain Comparable natural ordering}.
130 *
131 * @param initialCapacity the initial capacity for this priority queue
132 * @throws IllegalArgumentException if {@code initialCapacity} is less
133 * than 1
134 */
135 public PriorityQueue(int initialCapacity) {
136 this(initialCapacity, null);
137 }
138
139 /**
140 * Creates a {@code PriorityQueue} with the specified initial capacity
141 * that orders its elements according to the specified comparator.
142 *
143 * @param initialCapacity the initial capacity for this priority queue
144 * @param comparator the comparator that will be used to order this
145 * priority queue. If {@code null}, the {@linkplain Comparable
146 * natural ordering} of the elements will be used.
147 * @throws IllegalArgumentException if {@code initialCapacity} is
148 * less than 1
149 */
150 public PriorityQueue(int initialCapacity,
151 Comparator<? super E> comparator) {
152 // Note: This restriction of at least one is not actually needed,
153 // but continues for 1.5 compatibility
154 if (initialCapacity < 1)
155 throw new IllegalArgumentException();
156 this.queue = new Object[initialCapacity];
157 this.comparator = comparator;
158 }
159
160 /**
161 * Creates a {@code PriorityQueue} containing the elements in the
162 * specified collection. If the specified collection is an instance of
163 * a {@link SortedSet} or is another {@code PriorityQueue}, this
164 * priority queue will be ordered according to the same ordering.
165 * Otherwise, this priority queue will be ordered according to the
166 * {@linkplain Comparable natural ordering} of its elements.
167 *
168 * @param c the collection whose elements are to be placed
169 * into this priority queue
170 * @throws ClassCastException if elements of the specified collection
171 * cannot be compared to one another according to the priority
172 * queue's ordering
173 * @throws NullPointerException if the specified collection or any
174 * of its elements are null
175 */
176 @SuppressWarnings("unchecked")
177 public PriorityQueue(Collection<? extends E> c) {
178 if (c instanceof SortedSet<?>) {
179 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
180 this.comparator = (Comparator<? super E>) ss.comparator();
181 initElementsFromCollection(ss);
182 }
183 else if (c instanceof PriorityQueue<?>) {
184 PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
185 this.comparator = (Comparator<? super E>) pq.comparator();
186 initFromPriorityQueue(pq);
187 }
188 else {
189 this.comparator = null;
190 initFromCollection(c);
191 }
192 }
193
194 /**
195 * Creates a {@code PriorityQueue} containing the elements in the
196 * specified priority queue. This priority queue will be
197 * ordered according to the same ordering as the given priority
198 * queue.
199 *
200 * @param c the priority queue whose elements are to be placed
201 * into this priority queue
202 * @throws ClassCastException if elements of {@code c} cannot be
203 * compared to one another according to {@code c}'s
204 * ordering
205 * @throws NullPointerException if the specified priority queue or any
206 * of its elements are null
207 */
208 @SuppressWarnings("unchecked")
209 public PriorityQueue(PriorityQueue<? extends E> c) {
210 this.comparator = (Comparator<? super E>) c.comparator();
211 initFromPriorityQueue(c);
212 }
213
214 /**
215 * Creates a {@code PriorityQueue} containing the elements in the
216 * specified sorted set. This priority queue will be ordered
217 * according to the same ordering as the given sorted set.
218 *
219 * @param c the sorted set whose elements are to be placed
220 * into this priority queue
221 * @throws ClassCastException if elements of the specified sorted
222 * set cannot be compared to one another according to the
223 * sorted set's ordering
224 * @throws NullPointerException if the specified sorted set or any
225 * of its elements are null
226 */
227 @SuppressWarnings("unchecked")
228 public PriorityQueue(SortedSet<? extends E> c) {
229 this.comparator = (Comparator<? super E>) c.comparator();
230 initElementsFromCollection(c);
231 }
232
233 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
234 if (c.getClass() == PriorityQueue.class) {
235 this.queue = c.toArray();
236 this.size = c.size();
237 } else {
238 initFromCollection(c);
239 }
240 }
241
242 private void initElementsFromCollection(Collection<? extends E> c) {
243 Object[] a = c.toArray();
244 // If c.toArray incorrectly doesn't return Object[], copy it.
245 if (a.getClass() != Object[].class)
246 a = Arrays.copyOf(a, a.length, Object[].class);
247 int len = a.length;
248 if (len == 1 || this.comparator != null)
249 for (int i = 0; i < len; i++)
250 if (a[i] == null)
251 throw new NullPointerException();
252 this.queue = a;
253 this.size = a.length;
254 }
255
256 /**
257 * Initializes queue array with elements from the given Collection.
258 *
259 * @param c the collection
260 */
261 private void initFromCollection(Collection<? extends E> c) {
262 initElementsFromCollection(c);
263 heapify();
264 }
265
266 /**
267 * The maximum size of array to allocate.
268 * Some VMs reserve some header words in an array.
269 * Attempts to allocate larger arrays may result in
270 * OutOfMemoryError: Requested array size exceeds VM limit
271 */
272 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
273
274 /**
275 * Increases the capacity of the array.
276 *
277 * @param minCapacity the desired minimum capacity
278 */
279 private void grow(int minCapacity) {
280 int oldCapacity = queue.length;
281 // Double size if small; else grow by 50%
282 int newCapacity = oldCapacity + ((oldCapacity < 64) ?
283 (oldCapacity + 2) :
284 (oldCapacity >> 1));
285 // overflow-conscious code
286 if (newCapacity - MAX_ARRAY_SIZE > 0)
287 newCapacity = hugeCapacity(minCapacity);
288 queue = Arrays.copyOf(queue, newCapacity);
289 }
290
291 private static int hugeCapacity(int minCapacity) {
292 if (minCapacity < 0) // overflow
293 throw new OutOfMemoryError();
294 return (minCapacity > MAX_ARRAY_SIZE) ?
295 Integer.MAX_VALUE :
296 MAX_ARRAY_SIZE;
297 }
298
299 /**
300 * Inserts the specified element into this priority queue.
301 *
302 * @return {@code true} (as specified by {@link Collection#add})
303 * @throws ClassCastException if the specified element cannot be
304 * compared with elements currently in this priority queue
305 * according to the priority queue's ordering
306 * @throws NullPointerException if the specified element is null
307 */
308 public boolean add(E e) {
309 return offer(e);
310 }
311
312 /**
313 * Inserts the specified element into this priority queue.
314 *
315 * @return {@code true} (as specified by {@link Queue#offer})
316 * @throws ClassCastException if the specified element cannot be
317 * compared with elements currently in this priority queue
318 * according to the priority queue's ordering
319 * @throws NullPointerException if the specified element is null
320 */
321 public boolean offer(E e) {
322 if (e == null)
323 throw new NullPointerException();
324 modCount++;
325 int i = size;
326 if (i >= queue.length)
327 grow(i + 1);
328 size = i + 1;
329 if (i == 0)
330 queue[0] = e;
331 else
332 siftUp(i, e);
333 return true;
334 }
335
336 @SuppressWarnings("unchecked")
337 public E peek() {
338 return (size == 0) ? null : (E) queue[0];
339 }
340
341 private int indexOf(Object o) {
342 if (o != null) {
343 for (int i = 0; i < size; i++)
344 if (o.equals(queue[i]))
345 return i;
346 }
347 return -1;
348 }
349
350 /**
351 * Removes a single instance of the specified element from this queue,
352 * if it is present. More formally, removes an element {@code e} such
353 * that {@code o.equals(e)}, if this queue contains one or more such
354 * elements. Returns {@code true} if and only if this queue contained
355 * the specified element (or equivalently, if this queue changed as a
356 * result of the call).
357 *
358 * @param o element to be removed from this queue, if present
359 * @return {@code true} if this queue changed as a result of the call
360 */
361 public boolean remove(Object o) {
362 int i = indexOf(o);
363 if (i == -1)
364 return false;
365 else {
366 removeAt(i);
367 return true;
368 }
369 }
370
371 /**
372 * Version of remove using reference equality, not equals.
373 * Needed by iterator.remove.
374 *
375 * @param o element to be removed from this queue, if present
376 * @return {@code true} if removed
377 */
378 boolean removeEq(Object o) {
379 for (int i = 0; i < size; i++) {
380 if (o == queue[i]) {
381 removeAt(i);
382 return true;
383 }
384 }
385 return false;
386 }
387
388 /**
389 * Returns {@code true} if this queue contains the specified element.
390 * More formally, returns {@code true} if and only if this queue contains
391 * at least one element {@code e} such that {@code o.equals(e)}.
392 *
393 * @param o object to be checked for containment in this queue
394 * @return {@code true} if this queue contains the specified element
395 */
396 public boolean contains(Object o) {
397 return indexOf(o) != -1;
398 }
399
400 /**
401 * Returns an array containing all of the elements in this queue.
402 * The elements are in no particular order.
403 *
404 * <p>The returned array will be "safe" in that no references to it are
405 * maintained by this queue. (In other words, this method must allocate
406 * a new array). The caller is thus free to modify the returned array.
407 *
408 * <p>This method acts as bridge between array-based and collection-based
409 * APIs.
410 *
411 * @return an array containing all of the elements in this queue
412 */
413 public Object[] toArray() {
414 return Arrays.copyOf(queue, size);
415 }
416
417 /**
418 * Returns an array containing all of the elements in this queue; the
419 * runtime type of the returned array is that of the specified array.
420 * The returned array elements are in no particular order.
421 * If the queue fits in the specified array, it is returned therein.
422 * Otherwise, a new array is allocated with the runtime type of the
423 * specified array and the size of this queue.
424 *
425 * <p>If the queue fits in the specified array with room to spare
426 * (i.e., the array has more elements than the queue), the element in
427 * the array immediately following the end of the collection is set to
428 * {@code null}.
429 *
430 * <p>Like the {@link #toArray()} method, this method acts as bridge between
431 * array-based and collection-based APIs. Further, this method allows
432 * precise control over the runtime type of the output array, and may,
433 * under certain circumstances, be used to save allocation costs.
434 *
435 * <p>Suppose {@code x} is a queue known to contain only strings.
436 * The following code can be used to dump the queue into a newly
437 * allocated array of {@code String}:
438 *
439 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
440 *
441 * Note that {@code toArray(new Object[0])} is identical in function to
442 * {@code toArray()}.
443 *
444 * @param a the array into which the elements of the queue are to
445 * be stored, if it is big enough; otherwise, a new array of the
446 * same runtime type is allocated for this purpose.
447 * @return an array containing all of the elements in this queue
448 * @throws ArrayStoreException if the runtime type of the specified array
449 * is not a supertype of the runtime type of every element in
450 * this queue
451 * @throws NullPointerException if the specified array is null
452 */
453 @SuppressWarnings("unchecked")
454 public <T> T[] toArray(T[] a) {
455 final int size = this.size;
456 if (a.length < size)
457 // Make a new array of a's runtime type, but my contents:
458 return (T[]) Arrays.copyOf(queue, size, a.getClass());
459 System.arraycopy(queue, 0, a, 0, size);
460 if (a.length > size)
461 a[size] = null;
462 return a;
463 }
464
465 /**
466 * Returns an iterator over the elements in this queue. The iterator
467 * does not return the elements in any particular order.
468 *
469 * @return an iterator over the elements in this queue
470 */
471 public Iterator<E> iterator() {
472 return new Itr();
473 }
474
475 private final class Itr implements Iterator<E> {
476 /**
477 * Index (into queue array) of element to be returned by
478 * subsequent call to next.
479 */
480 private int cursor = 0;
481
482 /**
483 * Index of element returned by most recent call to next,
484 * unless that element came from the forgetMeNot list.
485 * Set to -1 if element is deleted by a call to remove.
486 */
487 private int lastRet = -1;
488
489 /**
490 * A queue of elements that were moved from the unvisited portion of
491 * the heap into the visited portion as a result of "unlucky" element
492 * removals during the iteration. (Unlucky element removals are those
493 * that require a siftup instead of a siftdown.) We must visit all of
494 * the elements in this list to complete the iteration. We do this
495 * after we've completed the "normal" iteration.
496 *
497 * We expect that most iterations, even those involving removals,
498 * will not need to store elements in this field.
499 */
500 private ArrayDeque<E> forgetMeNot = null;
501
502 /**
503 * Element returned by the most recent call to next iff that
504 * element was drawn from the forgetMeNot list.
505 */
506 private E lastRetElt = null;
507
508 /**
509 * The modCount value that the iterator believes that the backing
510 * Queue should have. If this expectation is violated, the iterator
511 * has detected concurrent modification.
512 */
513 private int expectedModCount = modCount;
514
515 public boolean hasNext() {
516 return cursor < size ||
517 (forgetMeNot != null && !forgetMeNot.isEmpty());
518 }
519
520 @SuppressWarnings("unchecked")
521 public E next() {
522 if (expectedModCount != modCount)
523 throw new ConcurrentModificationException();
524 if (cursor < size)
525 return (E) queue[lastRet = cursor++];
526 if (forgetMeNot != null) {
527 lastRet = -1;
528 lastRetElt = forgetMeNot.poll();
529 if (lastRetElt != null)
530 return lastRetElt;
531 }
532 throw new NoSuchElementException();
533 }
534
535 public void remove() {
536 if (expectedModCount != modCount)
537 throw new ConcurrentModificationException();
538 if (lastRet != -1) {
539 E moved = PriorityQueue.this.removeAt(lastRet);
540 lastRet = -1;
541 if (moved == null)
542 cursor--;
543 else {
544 if (forgetMeNot == null)
545 forgetMeNot = new ArrayDeque<>();
546 forgetMeNot.add(moved);
547 }
548 } else if (lastRetElt != null) {
549 PriorityQueue.this.removeEq(lastRetElt);
550 lastRetElt = null;
551 } else {
552 throw new IllegalStateException();
553 }
554 expectedModCount = modCount;
555 }
556 }
557
558 public int size() {
559 return size;
560 }
561
562 /**
563 * Removes all of the elements from this priority queue.
564 * The queue will be empty after this call returns.
565 */
566 public void clear() {
567 modCount++;
568 for (int i = 0; i < size; i++)
569 queue[i] = null;
570 size = 0;
571 }
572
573 @SuppressWarnings("unchecked")
574 public E poll() {
575 if (size == 0)
576 return null;
577 int s = --size;
578 modCount++;
579 E result = (E) queue[0];
580 E x = (E) queue[s];
581 queue[s] = null;
582 if (s != 0)
583 siftDown(0, x);
584 return result;
585 }
586
587 /**
588 * Removes the ith element from queue.
589 *
590 * Normally this method leaves the elements at up to i-1,
591 * inclusive, untouched. Under these circumstances, it returns
592 * null. Occasionally, in order to maintain the heap invariant,
593 * it must swap a later element of the list with one earlier than
594 * i. Under these circumstances, this method returns the element
595 * that was previously at the end of the list and is now at some
596 * position before i. This fact is used by iterator.remove so as to
597 * avoid missing traversing elements.
598 */
599 @SuppressWarnings("unchecked")
600 private E removeAt(int i) {
601 // assert i >= 0 && i < size;
602 modCount++;
603 int s = --size;
604 if (s == i) // removed last element
605 queue[i] = null;
606 else {
607 E moved = (E) queue[s];
608 queue[s] = null;
609 siftDown(i, moved);
610 if (queue[i] == moved) {
611 siftUp(i, moved);
612 if (queue[i] != moved)
613 return moved;
614 }
615 }
616 return null;
617 }
618
619 /**
620 * Inserts item x at position k, maintaining heap invariant by
621 * promoting x up the tree until it is greater than or equal to
622 * its parent, or is the root.
623 *
624 * To simplify and speed up coercions and comparisons. the
625 * Comparable and Comparator versions are separated into different
626 * methods that are otherwise identical. (Similarly for siftDown.)
627 *
628 * @param k the position to fill
629 * @param x the item to insert
630 */
631 private void siftUp(int k, E x) {
632 if (comparator != null)
633 siftUpUsingComparator(k, x);
634 else
635 siftUpComparable(k, x);
636 }
637
638 @SuppressWarnings("unchecked")
639 private void siftUpComparable(int k, E x) {
640 Comparable<? super E> key = (Comparable<? super E>) x;
641 while (k > 0) {
642 int parent = (k - 1) >>> 1;
643 Object e = queue[parent];
644 if (key.compareTo((E) e) >= 0)
645 break;
646 queue[k] = e;
647 k = parent;
648 }
649 queue[k] = key;
650 }
651
652 @SuppressWarnings("unchecked")
653 private void siftUpUsingComparator(int k, E x) {
654 while (k > 0) {
655 int parent = (k - 1) >>> 1;
656 Object e = queue[parent];
657 if (comparator.compare(x, (E) e) >= 0)
658 break;
659 queue[k] = e;
660 k = parent;
661 }
662 queue[k] = x;
663 }
664
665 /**
666 * Inserts item x at position k, maintaining heap invariant by
667 * demoting x down the tree repeatedly until it is less than or
668 * equal to its children or is a leaf.
669 *
670 * @param k the position to fill
671 * @param x the item to insert
672 */
673 private void siftDown(int k, E x) {
674 if (comparator != null)
675 siftDownUsingComparator(k, x);
676 else
677 siftDownComparable(k, x);
678 }
679
680 @SuppressWarnings("unchecked")
681 private void siftDownComparable(int k, E x) {
682 Comparable<? super E> key = (Comparable<? super E>)x;
683 int half = size >>> 1; // loop while a non-leaf
684 while (k < half) {
685 int child = (k << 1) + 1; // assume left child is least
686 Object c = queue[child];
687 int right = child + 1;
688 if (right < size &&
689 ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
690 c = queue[child = right];
691 if (key.compareTo((E) c) <= 0)
692 break;
693 queue[k] = c;
694 k = child;
695 }
696 queue[k] = key;
697 }
698
699 @SuppressWarnings("unchecked")
700 private void siftDownUsingComparator(int k, E x) {
701 int half = size >>> 1;
702 while (k < half) {
703 int child = (k << 1) + 1;
704 Object c = queue[child];
705 int right = child + 1;
706 if (right < size &&
707 comparator.compare((E) c, (E) queue[right]) > 0)
708 c = queue[child = right];
709 if (comparator.compare(x, (E) c) <= 0)
710 break;
711 queue[k] = c;
712 k = child;
713 }
714 queue[k] = x;
715 }
716
717 /**
718 * Establishes the heap invariant (described above) in the entire tree,
719 * assuming nothing about the order of the elements prior to the call.
720 */
721 @SuppressWarnings("unchecked")
722 private void heapify() {
723 for (int i = (size >>> 1) - 1; i >= 0; i--)
724 siftDown(i, (E) queue[i]);
725 }
726
727 /**
728 * Returns the comparator used to order the elements in this
729 * queue, or {@code null} if this queue is sorted according to
730 * the {@linkplain Comparable natural ordering} of its elements.
731 *
732 * @return the comparator used to order this queue, or
733 * {@code null} if this queue is sorted according to the
734 * natural ordering of its elements
735 */
736 public Comparator<? super E> comparator() {
737 return comparator;
738 }
739
740 /**
741 * Saves this queue to a stream (that is, serializes it).
742 *
743 * @serialData The length of the array backing the instance is
744 * emitted (int), followed by all of its elements
745 * (each an {@code Object}) in the proper order.
746 * @param s the stream
747 */
748 private void writeObject(java.io.ObjectOutputStream s)
749 throws java.io.IOException {
750 // Write out element count, and any hidden stuff
751 s.defaultWriteObject();
752
753 // Write out array length, for compatibility with 1.5 version
754 s.writeInt(Math.max(2, size + 1));
755
756 // Write out all elements in the "proper order".
757 for (int i = 0; i < size; i++)
758 s.writeObject(queue[i]);
759 }
760
761 /**
762 * Reconstitutes the {@code PriorityQueue} instance from a stream
763 * (that is, deserializes it).
764 *
765 * @param s the stream
766 */
767 private void readObject(java.io.ObjectInputStream s)
768 throws java.io.IOException, ClassNotFoundException {
769 // Read in size, and any hidden stuff
770 s.defaultReadObject();
771
772 // Read in (and discard) array length
773 s.readInt();
774
775 queue = new Object[size];
776
777 // Read in all elements.
778 for (int i = 0; i < size; i++)
779 queue[i] = s.readObject();
780
781 // Elements are guaranteed to be in "proper order", but the
782 // spec has never explained what that might be.
783 heapify();
784 }
785
786 final Spliterator<E> spliterator() {
787 return new PriorityQueueSpliterator<E>(this, 0, -1, 0);
788 }
789
790 public Stream<E> stream() {
791 return Streams.stream(spliterator());
792 }
793
794 public Stream<E> parallelStream() {
795 return Streams.parallelStream(spliterator());
796 }
797
798 static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
799 /*
800 * This is very similar to ArrayList Spliterator, except for
801 * extra null checks.
802 */
803 private final PriorityQueue<E> pq;
804 private int index; // current index, modified on advance/split
805 private int fence; // -1 until first use
806 private int expectedModCount; // initialized when fence set
807
808 /** Creates new spliterator covering the given range */
809 PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
810 int expectedModCount) {
811 this.pq = pq;
812 this.index = origin;
813 this.fence = fence;
814 this.expectedModCount = expectedModCount;
815 }
816
817 private int getFence() { // initialize fence to size on first use
818 int hi;
819 if ((hi = fence) < 0) {
820 expectedModCount = pq.modCount;
821 hi = fence = pq.size;
822 }
823 return hi;
824 }
825
826 public PriorityQueueSpliterator<E> trySplit() {
827 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
828 return (lo >= mid) ? null :
829 new PriorityQueueSpliterator<E>(pq, lo, index = mid,
830 expectedModCount);
831 }
832
833 @SuppressWarnings("unchecked")
834 public void forEach(Consumer<? super E> action) {
835 int i, hi, mc; // hoist accesses and checks from loop
836 PriorityQueue<E> q; Object[] a;
837 if (action == null)
838 throw new NullPointerException();
839 if ((q = pq) != null && (a = q.queue) != null) {
840 if ((hi = fence) < 0) {
841 mc = q.modCount;
842 hi = q.size;
843 }
844 else
845 mc = expectedModCount;
846 if ((i = index) >= 0 && (index = hi) <= a.length) {
847 for (E e;; ++i) {
848 if (i < hi) {
849 if ((e = (E) a[i]) == null) // must be CME
850 break;
851 action.accept(e);
852 }
853 else if (q.modCount != mc)
854 break;
855 else
856 return;
857 }
858 }
859 }
860 throw new ConcurrentModificationException();
861 }
862
863 public boolean tryAdvance(Consumer<? super E> action) {
864 int hi = getFence(), lo = index;
865 if (lo >= 0 && lo < hi) {
866 index = lo + 1;
867 @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
868 if (e == null)
869 throw new ConcurrentModificationException();
870 action.accept(e);
871 if (pq.modCount != expectedModCount)
872 throw new ConcurrentModificationException();
873 return true;
874 }
875 return false;
876 }
877
878 public long estimateSize() {
879 return (long) (getFence() - index);
880 }
881
882 public int characteristics() {
883 return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
884 }
885 }
886 }