ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Random.java
Revision: 1.1
Committed: Tue May 27 15:49:59 2003 UTC (20 years, 11 months ago) by dl
Branch: MAIN
CVS Tags: JSR166_CR1, JSR166_PRELIMINARY_TEST_RELEASE_1, JSR166_PRELIMINARY_TEST_RELEASE_2, JSR166_PRERELEASE_0_1
Log Message:
Initial implementations

File Contents

# User Rev Content
1 dl 1.1 /*
2     * @(#)Random.java 1.38 02/03/04
3     *
4     * Copyright 2002 Sun Microsystems, Inc. All rights reserved.
5     * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9     import java.io.*;
10     import sun.misc.Unsafe;
11    
12     /**
13     * An instance of this class is used to generate a stream of
14     * pseudorandom numbers. The class uses a 48-bit seed, which is
15     * modified using a linear congruential formula. (See Donald Knuth,
16     * <i>The Art of Computer Programming, Volume 2</i>, Section 3.2.1.)
17     * <p>
18     * If two instances of <code>Random</code> are created with the same
19     * seed, and the same sequence of method calls is made for each, they
20     * will generate and return identical sequences of numbers. In order to
21     * guarantee this property, particular algorithms are specified for the
22     * class <tt>Random</tt>. Java implementations must use all the algorithms
23     * shown here for the class <tt>Random</tt>, for the sake of absolute
24     * portability of Java code. However, subclasses of class <tt>Random</tt>
25     * are permitted to use other algorithms, so long as they adhere to the
26     * general contracts for all the methods.
27     * <p>
28     * The algorithms implemented by class <tt>Random</tt> use a
29     * <tt>protected</tt> utility method that on each invocation can supply
30     * up to 32 pseudorandomly generated bits.
31     * <p>
32     * Many applications will find the <code>random</code> method in
33     * class <code>Math</code> simpler to use.
34     *
35     * @author Frank Yellin
36     * @version 1.38, 03/04/02
37     * @see java.lang.Math#random()
38     * @since JDK1.0
39     */
40     public
41     class Random implements java.io.Serializable {
42     /** use serialVersionUID from JDK 1.1 for interoperability */
43     static final long serialVersionUID = 3905348978240129619L;
44    
45     // Setup to use Unsafe.compareAndSwapLong to update seed.
46     private static final Unsafe unsafe = Unsafe.getUnsafe();
47     private static final long seedOffset;
48     static {
49     try {
50     seedOffset =
51     unsafe.objectFieldOffset(Random.class.getDeclaredField("seed"));
52     }
53     catch(Exception ex) { throw new Error(ex); }
54     }
55    
56     /**
57     * The internal state associated with this pseudorandom number generator.
58     * (The specs for the methods in this class describe the ongoing
59     * computation of this value.)
60     *
61     * @serial
62     */
63     private volatile long seed;
64    
65     private final static long multiplier = 0x5DEECE66DL;
66     private final static long addend = 0xBL;
67     private final static long mask = (1L << 48) - 1;
68    
69     /**
70     * Creates a new random number generator. Its seed is initialized to
71     * a value based on the current time:
72     * <blockquote><pre>
73     * public Random() { this(System.currentTimeMillis()); }</pre></blockquote>
74     * Two Random objects created within the same millisecond will have
75     * the same sequence of random numbers.
76     *
77     * @see java.lang.System#currentTimeMillis()
78     */
79     public Random() { this(System.currentTimeMillis()); }
80    
81     /**
82     * Creates a new random number generator using a single
83     * <code>long</code> seed:
84     * <blockquote><pre>
85     * public Random(long seed) { setSeed(seed); }</pre></blockquote>
86     * Used by method <tt>next</tt> to hold
87     * the state of the pseudorandom number generator.
88     *
89     * @param seed the initial seed.
90     * @see java.util.Random#setSeed(long)
91     */
92     public Random(long seed) {
93     setSeed(seed);
94     }
95    
96     /**
97     * Sets the seed of this random number generator using a single
98     * <code>long</code> seed. The general contract of <tt>setSeed</tt>
99     * is that it alters the state of this random number generator
100     * object so as to be in exactly the same state as if it had just
101     * been created with the argument <tt>seed</tt> as a seed. The method
102     * <tt>setSeed</tt> is implemented by class Random as follows:
103     * <blockquote><pre>
104     * synchronized public void setSeed(long seed) {
105     * this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);
106     * haveNextNextGaussian = false;
107     * }</pre></blockquote>
108     * The implementation of <tt>setSeed</tt> by class <tt>Random</tt>
109     * happens to use only 48 bits of the given seed. In general, however,
110     * an overriding method may use all 64 bits of the long argument
111     * as a seed value.
112     *
113     * Note: Even though seed is updated atomically, this method
114     * must still be synchronized to ensure correct semantics
115     * of haveNextNextGaussian.
116     *
117     * @param seed the initial seed.
118     */
119     synchronized public void setSeed(long seed) {
120     this.seed = (seed ^ multiplier) & mask;
121     haveNextNextGaussian = false;
122     }
123    
124     /**
125     * Generates the next pseudorandom number. Subclass should
126     * override this, as this is used by all other methods.<p>
127     * The general contract of <tt>next</tt> is that it returns an
128     * <tt>int</tt> value and if the argument bits is between <tt>1</tt>
129     * and <tt>32</tt> (inclusive), then that many low-order bits of the
130     * returned value will be (approximately) independently chosen bit
131     * values, each of which is (approximately) equally likely to be
132     * <tt>0</tt> or <tt>1</tt>. The method <tt>next</tt> is implemented
133     * by class <tt>Random</tt> as follows:
134     * <blockquote><pre>
135     * synchronized protected int next(int bits) {
136     * seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
137     * return (int)(seed >>> (48 - bits));
138     * }</pre></blockquote>
139     * This is a linear congruential pseudorandom number generator, as
140     * defined by D. H. Lehmer and described by Donald E. Knuth in <i>The
141     * Art of Computer Programming,</i> Volume 2: <i>Seminumerical
142     * Algorithms</i>, section 3.2.1.
143     *
144     * @param bits random bits
145     * @return the next pseudorandom value from this random number generator's sequence.
146     * @since JDK1.1
147     */
148     protected int next(int bits) {
149     long oldseed, nextseed;
150     do {
151     oldseed = seed;
152     nextseed = (oldseed * multiplier + addend) & mask;
153     } while (!unsafe.compareAndSwapLong(this, seedOffset,
154     oldseed, nextseed));
155     return (int)(nextseed >>> (48 - bits));
156     }
157    
158     private static final int BITS_PER_BYTE = 8;
159     private static final int BYTES_PER_INT = 4;
160    
161     /**
162     * Generates random bytes and places them into a user-supplied
163     * byte array. The number of random bytes produced is equal to
164     * the length of the byte array.
165     *
166     * @param bytes the non-null byte array in which to put the
167     * random bytes.
168     * @since JDK1.1
169     */
170     public void nextBytes(byte[] bytes) {
171     int numRequested = bytes.length;
172    
173     int numGot = 0, rnd = 0;
174    
175     while (true) {
176     for (int i = 0; i < BYTES_PER_INT; i++) {
177     if (numGot == numRequested)
178     return;
179    
180     rnd = (i==0 ? next(BITS_PER_BYTE * BYTES_PER_INT)
181     : rnd >> BITS_PER_BYTE);
182     bytes[numGot++] = (byte)rnd;
183     }
184     }
185     }
186    
187     /**
188     * Returns the next pseudorandom, uniformly distributed <code>int</code>
189     * value from this random number generator's sequence. The general
190     * contract of <tt>nextInt</tt> is that one <tt>int</tt> value is
191     * pseudorandomly generated and returned. All 2<font size="-1"><sup>32
192     * </sup></font> possible <tt>int</tt> values are produced with
193     * (approximately) equal probability. The method <tt>nextInt</tt> is
194     * implemented by class <tt>Random</tt> as follows:
195     * <blockquote><pre>
196     * public int nextInt() { return next(32); }</pre></blockquote>
197     *
198     * @return the next pseudorandom, uniformly distributed <code>int</code>
199     * value from this random number generator's sequence.
200     */
201     public int nextInt() { return next(32); }
202    
203     /**
204     * Returns a pseudorandom, uniformly distributed <tt>int</tt> value
205     * between 0 (inclusive) and the specified value (exclusive), drawn from
206     * this random number generator's sequence. The general contract of
207     * <tt>nextInt</tt> is that one <tt>int</tt> value in the specified range
208     * is pseudorandomly generated and returned. All <tt>n</tt> possible
209     * <tt>int</tt> values are produced with (approximately) equal
210     * probability. The method <tt>nextInt(int n)</tt> is implemented by
211     * class <tt>Random</tt> as follows:
212     * <blockquote><pre>
213     * public int nextInt(int n) {
214     * if (n<=0)
215     * throw new IllegalArgumentException("n must be positive");
216     *
217     * if ((n & -n) == n) // i.e., n is a power of 2
218     * return (int)((n * (long)next(31)) >> 31);
219     *
220     * int bits, val;
221     * do {
222     * bits = next(31);
223     * val = bits % n;
224     * } while(bits - val + (n-1) < 0);
225     * return val;
226     * }
227     * </pre></blockquote>
228     * <p>
229     * The hedge "approximately" is used in the foregoing description only
230     * because the next method is only approximately an unbiased source of
231     * independently chosen bits. If it were a perfect source of randomly
232     * chosen bits, then the algorithm shown would choose <tt>int</tt>
233     * values from the stated range with perfect uniformity.
234     * <p>
235     * The algorithm is slightly tricky. It rejects values that would result
236     * in an uneven distribution (due to the fact that 2^31 is not divisible
237     * by n). The probability of a value being rejected depends on n. The
238     * worst case is n=2^30+1, for which the probability of a reject is 1/2,
239     * and the expected number of iterations before the loop terminates is 2.
240     * <p>
241     * The algorithm treats the case where n is a power of two specially: it
242     * returns the correct number of high-order bits from the underlying
243     * pseudo-random number generator. In the absence of special treatment,
244     * the correct number of <i>low-order</i> bits would be returned. Linear
245     * congruential pseudo-random number generators such as the one
246     * implemented by this class are known to have short periods in the
247     * sequence of values of their low-order bits. Thus, this special case
248     * greatly increases the length of the sequence of values returned by
249     * successive calls to this method if n is a small power of two.
250     *
251     * @param n the bound on the random number to be returned. Must be
252     * positive.
253     * @return a pseudorandom, uniformly distributed <tt>int</tt>
254     * value between 0 (inclusive) and n (exclusive).
255     * @exception IllegalArgumentException n is not positive.
256     * @since 1.2
257     */
258    
259     public int nextInt(int n) {
260     if (n<=0)
261     throw new IllegalArgumentException("n must be positive");
262    
263     if ((n & -n) == n) // i.e., n is a power of 2
264     return (int)((n * (long)next(31)) >> 31);
265    
266     int bits, val;
267     do {
268     bits = next(31);
269     val = bits % n;
270     } while(bits - val + (n-1) < 0);
271     return val;
272     }
273    
274     /**
275     * Returns the next pseudorandom, uniformly distributed <code>long</code>
276     * value from this random number generator's sequence. The general
277     * contract of <tt>nextLong</tt> is that one long value is pseudorandomly
278     * generated and returned. All 2<font size="-1"><sup>64</sup></font>
279     * possible <tt>long</tt> values are produced with (approximately) equal
280     * probability. The method <tt>nextLong</tt> is implemented by class
281     * <tt>Random</tt> as follows:
282     * <blockquote><pre>
283     * public long nextLong() {
284     * return ((long)next(32) << 32) + next(32);
285     * }</pre></blockquote>
286     *
287     * @return the next pseudorandom, uniformly distributed <code>long</code>
288     * value from this random number generator's sequence.
289     */
290     public long nextLong() {
291     // it's okay that the bottom word remains signed.
292     return ((long)(next(32)) << 32) + next(32);
293     }
294    
295     /**
296     * Returns the next pseudorandom, uniformly distributed
297     * <code>boolean</code> value from this random number generator's
298     * sequence. The general contract of <tt>nextBoolean</tt> is that one
299     * <tt>boolean</tt> value is pseudorandomly generated and returned. The
300     * values <code>true</code> and <code>false</code> are produced with
301     * (approximately) equal probability. The method <tt>nextBoolean</tt> is
302     * implemented by class <tt>Random</tt> as follows:
303     * <blockquote><pre>
304     * public boolean nextBoolean() {return next(1) != 0;}
305     * </pre></blockquote>
306     * @return the next pseudorandom, uniformly distributed
307     * <code>boolean</code> value from this random number generator's
308     * sequence.
309     * @since 1.2
310     */
311     public boolean nextBoolean() {return next(1) != 0;}
312    
313     /**
314     * Returns the next pseudorandom, uniformly distributed <code>float</code>
315     * value between <code>0.0</code> and <code>1.0</code> from this random
316     * number generator's sequence. <p>
317     * The general contract of <tt>nextFloat</tt> is that one <tt>float</tt>
318     * value, chosen (approximately) uniformly from the range <tt>0.0f</tt>
319     * (inclusive) to <tt>1.0f</tt> (exclusive), is pseudorandomly
320     * generated and returned. All 2<font size="-1"><sup>24</sup></font>
321     * possible <tt>float</tt> values of the form
322     * <i>m&nbsp;x&nbsp</i>2<font size="-1"><sup>-24</sup></font>, where
323     * <i>m</i> is a positive integer less than 2<font size="-1"><sup>24</sup>
324     * </font>, are produced with (approximately) equal probability. The
325     * method <tt>nextFloat</tt> is implemented by class <tt>Random</tt> as
326     * follows:
327     * <blockquote><pre>
328     * public float nextFloat() {
329     * return next(24) / ((float)(1 << 24));
330     * }</pre></blockquote>
331     * The hedge "approximately" is used in the foregoing description only
332     * because the next method is only approximately an unbiased source of
333     * independently chosen bits. If it were a perfect source or randomly
334     * chosen bits, then the algorithm shown would choose <tt>float</tt>
335     * values from the stated range with perfect uniformity.<p>
336     * [In early versions of Java, the result was incorrectly calculated as:
337     * <blockquote><pre>
338     * return next(30) / ((float)(1 << 30));</pre></blockquote>
339     * This might seem to be equivalent, if not better, but in fact it
340     * introduced a slight nonuniformity because of the bias in the rounding
341     * of floating-point numbers: it was slightly more likely that the
342     * low-order bit of the significand would be 0 than that it would be 1.]
343     *
344     * @return the next pseudorandom, uniformly distributed <code>float</code>
345     * value between <code>0.0</code> and <code>1.0</code> from this
346     * random number generator's sequence.
347     */
348     public float nextFloat() {
349     int i = next(24);
350     return i / ((float)(1 << 24));
351     }
352    
353     /**
354     * Returns the next pseudorandom, uniformly distributed
355     * <code>double</code> value between <code>0.0</code> and
356     * <code>1.0</code> from this random number generator's sequence. <p>
357     * The general contract of <tt>nextDouble</tt> is that one
358     * <tt>double</tt> value, chosen (approximately) uniformly from the
359     * range <tt>0.0d</tt> (inclusive) to <tt>1.0d</tt> (exclusive), is
360     * pseudorandomly generated and returned. All
361     * 2<font size="-1"><sup>53</sup></font> possible <tt>float</tt>
362     * values of the form <i>m&nbsp;x&nbsp;</i>2<font size="-1"><sup>-53</sup>
363     * </font>, where <i>m</i> is a positive integer less than
364     * 2<font size="-1"><sup>53</sup></font>, are produced with
365     * (approximately) equal probability. The method <tt>nextDouble</tt> is
366     * implemented by class <tt>Random</tt> as follows:
367     * <blockquote><pre>
368     * public double nextDouble() {
369     * return (((long)next(26) << 27) + next(27))
370     * / (double)(1L << 53);
371     * }</pre></blockquote><p>
372     * The hedge "approximately" is used in the foregoing description only
373     * because the <tt>next</tt> method is only approximately an unbiased
374     * source of independently chosen bits. If it were a perfect source or
375     * randomly chosen bits, then the algorithm shown would choose
376     * <tt>double</tt> values from the stated range with perfect uniformity.
377     * <p>[In early versions of Java, the result was incorrectly calculated as:
378     * <blockquote><pre>
379     * return (((long)next(27) << 27) + next(27))
380     * / (double)(1L << 54);</pre></blockquote>
381     * This might seem to be equivalent, if not better, but in fact it
382     * introduced a large nonuniformity because of the bias in the rounding
383     * of floating-point numbers: it was three times as likely that the
384     * low-order bit of the significand would be 0 than that it would be
385     * 1! This nonuniformity probably doesn't matter much in practice, but
386     * we strive for perfection.]
387     *
388     * @return the next pseudorandom, uniformly distributed
389     * <code>double</code> value between <code>0.0</code> and
390     * <code>1.0</code> from this random number generator's sequence.
391     */
392     public double nextDouble() {
393     long l = ((long)(next(26)) << 27) + next(27);
394     return l / (double)(1L << 53);
395     }
396    
397     private double nextNextGaussian;
398     private boolean haveNextNextGaussian = false;
399    
400     /**
401     * Returns the next pseudorandom, Gaussian ("normally") distributed
402     * <code>double</code> value with mean <code>0.0</code> and standard
403     * deviation <code>1.0</code> from this random number generator's sequence.
404     * <p>
405     * The general contract of <tt>nextGaussian</tt> is that one
406     * <tt>double</tt> value, chosen from (approximately) the usual
407     * normal distribution with mean <tt>0.0</tt> and standard deviation
408     * <tt>1.0</tt>, is pseudorandomly generated and returned. The method
409     * <tt>nextGaussian</tt> is implemented by class <tt>Random</tt> as follows:
410     * <blockquote><pre>
411     * synchronized public double nextGaussian() {
412     * if (haveNextNextGaussian) {
413     * haveNextNextGaussian = false;
414     * return nextNextGaussian;
415     * } else {
416     * double v1, v2, s;
417     * do {
418     * v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0
419     * v2 = 2 * nextDouble() - 1; // between -1.0 and 1.0
420     * s = v1 * v1 + v2 * v2;
421     * } while (s >= 1 || s == 0);
422     * double multiplier = Math.sqrt(-2 * Math.log(s)/s);
423     * nextNextGaussian = v2 * multiplier;
424     * haveNextNextGaussian = true;
425     * return v1 * multiplier;
426     * }
427     * }</pre></blockquote>
428     * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
429     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
430     * Computer Programming</i>, Volume 2: <i>Seminumerical Algorithms</i>,
431     * section 3.4.1, subsection C, algorithm P. Note that it generates two
432     * independent values at the cost of only one call to <tt>Math.log</tt>
433     * and one call to <tt>Math.sqrt</tt>.
434     *
435     * @return the next pseudorandom, Gaussian ("normally") distributed
436     * <code>double</code> value with mean <code>0.0</code> and
437     * standard deviation <code>1.0</code> from this random number
438     * generator's sequence.
439     */
440     synchronized public double nextGaussian() {
441     // See Knuth, ACP, Section 3.4.1 Algorithm C.
442     if (haveNextNextGaussian) {
443     haveNextNextGaussian = false;
444     return nextNextGaussian;
445     } else {
446     double v1, v2, s;
447     do {
448     v1 = 2 * nextDouble() - 1; // between -1 and 1
449     v2 = 2 * nextDouble() - 1; // between -1 and 1
450     s = v1 * v1 + v2 * v2;
451     } while (s >= 1 || s == 0);
452     double multiplier = Math.sqrt(-2 * Math.log(s)/s);
453     nextNextGaussian = v2 * multiplier;
454     haveNextNextGaussian = true;
455     return v1 * multiplier;
456     }
457     }
458    
459     /**
460     * Serializable fields for Random.
461     *
462     * @serialField seed long;
463     * seed for random computations
464     * @serialField nextNextGaussian double;
465     * next Gaussian to be returned
466     * @serialField haveNextNextGaussian boolean
467     * nextNextGaussian is valid
468     */
469     private static final ObjectStreamField[] serialPersistentFields = {
470     new ObjectStreamField("seed", Long.TYPE),
471     new ObjectStreamField("nextNextGaussian", Double.TYPE),
472     new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
473     };
474    
475     /**
476     * Reconstitute the <tt>Random</tt> instance from a stream (that is,
477     * deserialize it). The seed is read in as long for
478     * historical reasons, but it is converted to an AtomicLong.
479     */
480     private void readObject(java.io.ObjectInputStream s)
481     throws java.io.IOException, ClassNotFoundException {
482    
483     ObjectInputStream.GetField fields = s.readFields();
484     long seedVal;
485    
486     seedVal = (long) fields.get("seed", -1L);
487     if (seedVal < 0)
488     throw new java.io.StreamCorruptedException(
489     "Random: invalid seed");
490     seed = seedVal;
491     nextNextGaussian = fields.get("nextNextGaussian", 0.0);
492     haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
493     }
494    
495    
496     /**
497     * Save the <tt>Random</tt> instance to a stream.
498     * The seed of a Random is serialized as a long for
499     * historical reasons.
500     *
501     */
502     synchronized private void writeObject(ObjectOutputStream s) throws IOException {
503     // set the values of the Serializable fields
504     ObjectOutputStream.PutField fields = s.putFields();
505     fields.put("seed", seed);
506     fields.put("nextNextGaussian", nextNextGaussian);
507     fields.put("haveNextNextGaussian", haveNextNextGaussian);
508    
509     // save them
510     s.writeFields();
511    
512     }
513    
514     }