ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Random.java
Revision: 1.11
Committed: Sun Oct 2 07:10:59 2005 UTC (18 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.10: +83 -83 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2 jsr166 1.10 * %W% %E%
3 dl 1.1 *
4 jsr166 1.10 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 dl 1.1 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9     import java.io.*;
10 dl 1.3 import java.util.concurrent.atomic.AtomicLong;
11 dl 1.1
12     /**
13 jsr166 1.11 * An instance of this class is used to generate a stream of
14     * pseudorandom numbers. The class uses a 48-bit seed, which is
15     * modified using a linear congruential formula. (See Donald Knuth,
16     * <i>The Art of Computer Programming, Volume 2</i>, Section 3.2.1.)
17 dl 1.1 * <p>
18 jsr166 1.11 * If two instances of <code>Random</code> are created with the same
19     * seed, and the same sequence of method calls is made for each, they
20     * will generate and return identical sequences of numbers. In order to
21     * guarantee this property, particular algorithms are specified for the
22     * class <tt>Random</tt>. Java implementations must use all the algorithms
23     * shown here for the class <tt>Random</tt>, for the sake of absolute
24     * portability of Java code. However, subclasses of class <tt>Random</tt>
25     * are permitted to use other algorithms, so long as they adhere to the
26 dl 1.1 * general contracts for all the methods.
27     * <p>
28 jsr166 1.11 * The algorithms implemented by class <tt>Random</tt> use a
29     * <tt>protected</tt> utility method that on each invocation can supply
30 dl 1.1 * up to 32 pseudorandomly generated bits.
31     * <p>
32 jsr166 1.11 * Many applications will find the <code>random</code> method in
33 dl 1.1 * class <code>Math</code> simpler to use.
34     *
35     * @author Frank Yellin
36 jsr166 1.10 * @version %I%, %G%
37 dl 1.1 * @see java.lang.Math#random()
38     * @since JDK1.0
39     */
40     public
41     class Random implements java.io.Serializable {
42     /** use serialVersionUID from JDK 1.1 for interoperability */
43     static final long serialVersionUID = 3905348978240129619L;
44    
45     /**
46     * The internal state associated with this pseudorandom number generator.
47     * (The specs for the methods in this class describe the ongoing
48     * computation of this value.)
49     *
50     * @serial
51     */
52 dl 1.3 private AtomicLong seed;
53 dl 1.1
54     private final static long multiplier = 0x5DEECE66DL;
55     private final static long addend = 0xBL;
56     private final static long mask = (1L << 48) - 1;
57    
58 jsr166 1.4 /**
59     * Creates a new random number generator. This constructor sets
60     * the seed of the random number generator to a value very likely
61     * to be distinct from any other invocation of this constructor.
62 dl 1.1 */
63 jsr166 1.4 public Random() { this(++seedUniquifier + System.nanoTime()); }
64     private static volatile long seedUniquifier = 8682522807148012L;
65 dl 1.1
66 jsr166 1.11 /**
67     * Creates a new random number generator using a single
68 dl 1.1 * <code>long</code> seed:
69     * <blockquote><pre>
70     * public Random(long seed) { setSeed(seed); }</pre></blockquote>
71 jsr166 1.11 * Used by method <tt>next</tt> to hold
72 dl 1.1 * the state of the pseudorandom number generator.
73     *
74     * @param seed the initial seed.
75     * @see java.util.Random#setSeed(long)
76     */
77     public Random(long seed) {
78 dl 1.3 this.seed = new AtomicLong(0L);
79 dl 1.1 setSeed(seed);
80     }
81    
82     /**
83 dl 1.9 * Sets the seed of this random number generator using a single
84     * <code>long</code> seed. The general contract of
85     * <tt>setSeed</tt> is that it alters the state of this random
86     * number generator object so as to be in exactly the same state
87     * as if it had just been created with the argument <tt>seed</tt>
88     * as a seed. The method <tt>setSeed</tt> is implemented by class
89     * Random using a thread-safe update of the seed to <code> (seed *
90     * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)</code> and clearing the
91     * <code>haveNextNextGaussian</code> flag used by {@link
92     * #nextGaussian}. The implementation of <tt>setSeed</tt> by class
93     * <tt>Random</tt> happens to use only 48 bits of the given
94     * seed. In general, however, an overriding method may use all 64
95     * bits of the long argument as a seed value.
96 dl 1.1 *
97     * @param seed the initial seed.
98     */
99     synchronized public void setSeed(long seed) {
100 dl 1.3 seed = (seed ^ multiplier) & mask;
101     this.seed.set(seed);
102 dl 1.1 haveNextNextGaussian = false;
103     }
104    
105     /**
106     * Generates the next pseudorandom number. Subclass should
107 dl 1.9 * override this, as this is used by all other methods.<p> The
108     * general contract of <tt>next</tt> is that it returns an
109     * <tt>int</tt> value and if the argument bits is between
110     * <tt>1</tt> and <tt>32</tt> (inclusive), then that many
111     * low-order bits of the returned value will be (approximately)
112     * independently chosen bit values, each of which is
113     * (approximately) equally likely to be <tt>0</tt> or
114     * <tt>1</tt>. The method <tt>next</tt> is implemented by class
115     * <tt>Random</tt> using a thread-safe update of the seed to <code>
116     * (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)</code> and
117     * returning <code>(int)(seed >>> (48 - bits))</code>. This is a
118     * linear congruential pseudorandom number generator, as defined
119     * by D. H. Lehmer and described by Donald E. Knuth in <i>The Art
120     * of Computer Programming,</i> Volume 2: <i>Seminumerical
121 dl 1.1 * Algorithms</i>, section 3.2.1.
122     *
123     * @param bits random bits
124     * @return the next pseudorandom value from this random number generator's sequence.
125     * @since JDK1.1
126     */
127     protected int next(int bits) {
128     long oldseed, nextseed;
129 dl 1.6 AtomicLong seed = this.seed;
130 dl 1.1 do {
131 dl 1.9 oldseed = seed.get();
132     nextseed = (oldseed * multiplier + addend) & mask;
133 dl 1.3 } while (!seed.compareAndSet(oldseed, nextseed));
134 dl 1.1 return (int)(nextseed >>> (48 - bits));
135     }
136    
137     private static final int BITS_PER_BYTE = 8;
138     private static final int BYTES_PER_INT = 4;
139    
140     /**
141 jsr166 1.11 * Generates random bytes and places them into a user-supplied
142     * byte array. The number of random bytes produced is equal to
143 dl 1.1 * the length of the byte array.
144 jsr166 1.11 *
145     * @param bytes the non-null byte array in which to put the
146 dl 1.1 * random bytes.
147     * @since JDK1.1
148     */
149     public void nextBytes(byte[] bytes) {
150     int numRequested = bytes.length;
151    
152     int numGot = 0, rnd = 0;
153    
154     while (true) {
155     for (int i = 0; i < BYTES_PER_INT; i++) {
156     if (numGot == numRequested)
157     return;
158    
159     rnd = (i==0 ? next(BITS_PER_BYTE * BYTES_PER_INT)
160     : rnd >> BITS_PER_BYTE);
161     bytes[numGot++] = (byte)rnd;
162     }
163     }
164     }
165    
166     /**
167     * Returns the next pseudorandom, uniformly distributed <code>int</code>
168 jsr166 1.11 * value from this random number generator's sequence. The general
169     * contract of <tt>nextInt</tt> is that one <tt>int</tt> value is
170 dl 1.1 * pseudorandomly generated and returned. All 2<font size="-1"><sup>32
171 jsr166 1.11 * </sup></font> possible <tt>int</tt> values are produced with
172     * (approximately) equal probability. The method <tt>nextInt</tt> is
173 dl 1.1 * implemented by class <tt>Random</tt> as follows:
174     * <blockquote><pre>
175     * public int nextInt() { return next(32); }</pre></blockquote>
176     *
177     * @return the next pseudorandom, uniformly distributed <code>int</code>
178     * value from this random number generator's sequence.
179     */
180     public int nextInt() { return next(32); }
181    
182     /**
183     * Returns a pseudorandom, uniformly distributed <tt>int</tt> value
184     * between 0 (inclusive) and the specified value (exclusive), drawn from
185     * this random number generator's sequence. The general contract of
186     * <tt>nextInt</tt> is that one <tt>int</tt> value in the specified range
187     * is pseudorandomly generated and returned. All <tt>n</tt> possible
188     * <tt>int</tt> values are produced with (approximately) equal
189     * probability. The method <tt>nextInt(int n)</tt> is implemented by
190     * class <tt>Random</tt> as follows:
191     * <blockquote><pre>
192     * public int nextInt(int n) {
193     * if (n<=0)
194     * throw new IllegalArgumentException("n must be positive");
195     *
196     * if ((n & -n) == n) // i.e., n is a power of 2
197     * return (int)((n * (long)next(31)) >> 31);
198     *
199     * int bits, val;
200     * do {
201     * bits = next(31);
202     * val = bits % n;
203     * } while(bits - val + (n-1) < 0);
204     * return val;
205     * }
206     * </pre></blockquote>
207     * <p>
208 jsr166 1.11 * The hedge "approximately" is used in the foregoing description only
209 dl 1.1 * because the next method is only approximately an unbiased source of
210 jsr166 1.11 * independently chosen bits. If it were a perfect source of randomly
211     * chosen bits, then the algorithm shown would choose <tt>int</tt>
212 dl 1.1 * values from the stated range with perfect uniformity.
213     * <p>
214     * The algorithm is slightly tricky. It rejects values that would result
215     * in an uneven distribution (due to the fact that 2^31 is not divisible
216     * by n). The probability of a value being rejected depends on n. The
217     * worst case is n=2^30+1, for which the probability of a reject is 1/2,
218     * and the expected number of iterations before the loop terminates is 2.
219     * <p>
220     * The algorithm treats the case where n is a power of two specially: it
221     * returns the correct number of high-order bits from the underlying
222     * pseudo-random number generator. In the absence of special treatment,
223     * the correct number of <i>low-order</i> bits would be returned. Linear
224     * congruential pseudo-random number generators such as the one
225     * implemented by this class are known to have short periods in the
226     * sequence of values of their low-order bits. Thus, this special case
227     * greatly increases the length of the sequence of values returned by
228     * successive calls to this method if n is a small power of two.
229     *
230     * @param n the bound on the random number to be returned. Must be
231     * positive.
232     * @return a pseudorandom, uniformly distributed <tt>int</tt>
233     * value between 0 (inclusive) and n (exclusive).
234     * @exception IllegalArgumentException n is not positive.
235     * @since 1.2
236     */
237    
238     public int nextInt(int n) {
239     if (n<=0)
240     throw new IllegalArgumentException("n must be positive");
241    
242     if ((n & -n) == n) // i.e., n is a power of 2
243     return (int)((n * (long)next(31)) >> 31);
244    
245     int bits, val;
246     do {
247     bits = next(31);
248     val = bits % n;
249     } while(bits - val + (n-1) < 0);
250     return val;
251     }
252    
253     /**
254     * Returns the next pseudorandom, uniformly distributed <code>long</code>
255 jsr166 1.11 * value from this random number generator's sequence. The general
256     * contract of <tt>nextLong</tt> is that one long value is pseudorandomly
257     * generated and returned. All 2<font size="-1"><sup>64</sup></font>
258     * possible <tt>long</tt> values are produced with (approximately) equal
259     * probability. The method <tt>nextLong</tt> is implemented by class
260 dl 1.1 * <tt>Random</tt> as follows:
261     * <blockquote><pre>
262     * public long nextLong() {
263     * return ((long)next(32) << 32) + next(32);
264     * }</pre></blockquote>
265     *
266     * @return the next pseudorandom, uniformly distributed <code>long</code>
267     * value from this random number generator's sequence.
268     */
269     public long nextLong() {
270     // it's okay that the bottom word remains signed.
271     return ((long)(next(32)) << 32) + next(32);
272     }
273    
274     /**
275     * Returns the next pseudorandom, uniformly distributed
276     * <code>boolean</code> value from this random number generator's
277     * sequence. The general contract of <tt>nextBoolean</tt> is that one
278     * <tt>boolean</tt> value is pseudorandomly generated and returned. The
279     * values <code>true</code> and <code>false</code> are produced with
280     * (approximately) equal probability. The method <tt>nextBoolean</tt> is
281     * implemented by class <tt>Random</tt> as follows:
282     * <blockquote><pre>
283     * public boolean nextBoolean() {return next(1) != 0;}
284     * </pre></blockquote>
285     * @return the next pseudorandom, uniformly distributed
286     * <code>boolean</code> value from this random number generator's
287     * sequence.
288     * @since 1.2
289     */
290     public boolean nextBoolean() {return next(1) != 0;}
291    
292     /**
293     * Returns the next pseudorandom, uniformly distributed <code>float</code>
294     * value between <code>0.0</code> and <code>1.0</code> from this random
295     * number generator's sequence. <p>
296 jsr166 1.11 * The general contract of <tt>nextFloat</tt> is that one <tt>float</tt>
297     * value, chosen (approximately) uniformly from the range <tt>0.0f</tt>
298 dl 1.1 * (inclusive) to <tt>1.0f</tt> (exclusive), is pseudorandomly
299 jsr166 1.11 * generated and returned. All 2<font size="-1"><sup>24</sup></font>
300     * possible <tt>float</tt> values of the form
301     * <i>m&nbsp;x&nbsp</i>2<font size="-1"><sup>-24</sup></font>, where
302 dl 1.1 * <i>m</i> is a positive integer less than 2<font size="-1"><sup>24</sup>
303 jsr166 1.11 * </font>, are produced with (approximately) equal probability. The
304     * method <tt>nextFloat</tt> is implemented by class <tt>Random</tt> as
305 dl 1.1 * follows:
306     * <blockquote><pre>
307     * public float nextFloat() {
308     * return next(24) / ((float)(1 << 24));
309     * }</pre></blockquote>
310 jsr166 1.11 * The hedge "approximately" is used in the foregoing description only
311     * because the next method is only approximately an unbiased source of
312     * independently chosen bits. If it were a perfect source or randomly
313     * chosen bits, then the algorithm shown would choose <tt>float</tt>
314 dl 1.1 * values from the stated range with perfect uniformity.<p>
315     * [In early versions of Java, the result was incorrectly calculated as:
316     * <blockquote><pre>
317     * return next(30) / ((float)(1 << 30));</pre></blockquote>
318 jsr166 1.11 * This might seem to be equivalent, if not better, but in fact it
319     * introduced a slight nonuniformity because of the bias in the rounding
320     * of floating-point numbers: it was slightly more likely that the
321     * low-order bit of the significand would be 0 than that it would be 1.]
322 dl 1.1 *
323     * @return the next pseudorandom, uniformly distributed <code>float</code>
324     * value between <code>0.0</code> and <code>1.0</code> from this
325     * random number generator's sequence.
326     */
327     public float nextFloat() {
328     int i = next(24);
329     return i / ((float)(1 << 24));
330     }
331    
332     /**
333 jsr166 1.11 * Returns the next pseudorandom, uniformly distributed
334 dl 1.1 * <code>double</code> value between <code>0.0</code> and
335     * <code>1.0</code> from this random number generator's sequence. <p>
336 jsr166 1.11 * The general contract of <tt>nextDouble</tt> is that one
337     * <tt>double</tt> value, chosen (approximately) uniformly from the
338     * range <tt>0.0d</tt> (inclusive) to <tt>1.0d</tt> (exclusive), is
339     * pseudorandomly generated and returned. All
340     * 2<font size="-1"><sup>53</sup></font> possible <tt>float</tt>
341 dl 1.1 * values of the form <i>m&nbsp;x&nbsp;</i>2<font size="-1"><sup>-53</sup>
342 jsr166 1.11 * </font>, where <i>m</i> is a positive integer less than
343     * 2<font size="-1"><sup>53</sup></font>, are produced with
344     * (approximately) equal probability. The method <tt>nextDouble</tt> is
345 dl 1.1 * implemented by class <tt>Random</tt> as follows:
346     * <blockquote><pre>
347     * public double nextDouble() {
348     * return (((long)next(26) << 27) + next(27))
349     * / (double)(1L << 53);
350     * }</pre></blockquote><p>
351 jsr166 1.11 * The hedge "approximately" is used in the foregoing description only
352     * because the <tt>next</tt> method is only approximately an unbiased
353     * source of independently chosen bits. If it were a perfect source or
354     * randomly chosen bits, then the algorithm shown would choose
355     * <tt>double</tt> values from the stated range with perfect uniformity.
356 dl 1.1 * <p>[In early versions of Java, the result was incorrectly calculated as:
357     * <blockquote><pre>
358     * return (((long)next(27) << 27) + next(27))
359     * / (double)(1L << 54);</pre></blockquote>
360 jsr166 1.11 * This might seem to be equivalent, if not better, but in fact it
361     * introduced a large nonuniformity because of the bias in the rounding
362     * of floating-point numbers: it was three times as likely that the
363 dl 1.1 * low-order bit of the significand would be 0 than that it would be
364 jsr166 1.11 * 1! This nonuniformity probably doesn't matter much in practice, but
365     * we strive for perfection.]
366 dl 1.1 *
367 jsr166 1.11 * @return the next pseudorandom, uniformly distributed
368 dl 1.1 * <code>double</code> value between <code>0.0</code> and
369     * <code>1.0</code> from this random number generator's sequence.
370     */
371     public double nextDouble() {
372     long l = ((long)(next(26)) << 27) + next(27);
373     return l / (double)(1L << 53);
374     }
375    
376     private double nextNextGaussian;
377     private boolean haveNextNextGaussian = false;
378    
379     /**
380     * Returns the next pseudorandom, Gaussian ("normally") distributed
381     * <code>double</code> value with mean <code>0.0</code> and standard
382     * deviation <code>1.0</code> from this random number generator's sequence.
383     * <p>
384 jsr166 1.11 * The general contract of <tt>nextGaussian</tt> is that one
385     * <tt>double</tt> value, chosen from (approximately) the usual
386     * normal distribution with mean <tt>0.0</tt> and standard deviation
387     * <tt>1.0</tt>, is pseudorandomly generated and returned. The method
388     * <tt>nextGaussian</tt> is implemented by class <tt>Random</tt> as if
389 dl 1.9 * by a threadsafe version of the following:
390 dl 1.1 * <blockquote><pre>
391 dl 1.9 * public double nextGaussian() {
392 dl 1.1 * if (haveNextNextGaussian) {
393     * haveNextNextGaussian = false;
394     * return nextNextGaussian;
395     * } else {
396     * double v1, v2, s;
397 jsr166 1.11 * do {
398 dl 1.1 * v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0
399     * v2 = 2 * nextDouble() - 1; // between -1.0 and 1.0
400     * s = v1 * v1 + v2 * v2;
401     * } while (s >= 1 || s == 0);
402 dl 1.9 * double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
403 dl 1.1 * nextNextGaussian = v2 * multiplier;
404     * haveNextNextGaussian = true;
405     * return v1 * multiplier;
406     * }
407     * }</pre></blockquote>
408 jsr166 1.11 * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
409     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
410     * Computer Programming</i>, Volume 2: <i>Seminumerical Algorithms</i>,
411 dl 1.1 * section 3.4.1, subsection C, algorithm P. Note that it generates two
412 jsr166 1.11 * independent values at the cost of only one call to <tt>StrictMath.log</tt>
413     * and one call to <tt>StrictMath.sqrt</tt>.
414 dl 1.1 *
415     * @return the next pseudorandom, Gaussian ("normally") distributed
416     * <code>double</code> value with mean <code>0.0</code> and
417     * standard deviation <code>1.0</code> from this random number
418     * generator's sequence.
419     */
420     synchronized public double nextGaussian() {
421     // See Knuth, ACP, Section 3.4.1 Algorithm C.
422     if (haveNextNextGaussian) {
423     haveNextNextGaussian = false;
424     return nextNextGaussian;
425     } else {
426     double v1, v2, s;
427 jsr166 1.11 do {
428 dl 1.1 v1 = 2 * nextDouble() - 1; // between -1 and 1
429 jsr166 1.11 v2 = 2 * nextDouble() - 1; // between -1 and 1
430 dl 1.1 s = v1 * v1 + v2 * v2;
431     } while (s >= 1 || s == 0);
432 dl 1.9 double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
433 dl 1.1 nextNextGaussian = v2 * multiplier;
434     haveNextNextGaussian = true;
435     return v1 * multiplier;
436     }
437     }
438    
439     /**
440     * Serializable fields for Random.
441     *
442     * @serialField seed long;
443     * seed for random computations
444     * @serialField nextNextGaussian double;
445     * next Gaussian to be returned
446     * @serialField haveNextNextGaussian boolean
447     * nextNextGaussian is valid
448     */
449     private static final ObjectStreamField[] serialPersistentFields = {
450     new ObjectStreamField("seed", Long.TYPE),
451     new ObjectStreamField("nextNextGaussian", Double.TYPE),
452     new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
453     };
454    
455     /**
456     * Reconstitute the <tt>Random</tt> instance from a stream (that is,
457     * deserialize it). The seed is read in as long for
458     * historical reasons, but it is converted to an AtomicLong.
459     */
460     private void readObject(java.io.ObjectInputStream s)
461     throws java.io.IOException, ClassNotFoundException {
462    
463     ObjectInputStream.GetField fields = s.readFields();
464     long seedVal;
465    
466     seedVal = (long) fields.get("seed", -1L);
467     if (seedVal < 0)
468     throw new java.io.StreamCorruptedException(
469     "Random: invalid seed");
470 dl 1.3 seed = new AtomicLong(seedVal);
471 dl 1.1 nextNextGaussian = fields.get("nextNextGaussian", 0.0);
472     haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
473     }
474    
475    
476     /**
477     * Save the <tt>Random</tt> instance to a stream.
478     * The seed of a Random is serialized as a long for
479     * historical reasons.
480     *
481     */
482     synchronized private void writeObject(ObjectOutputStream s) throws IOException {
483     // set the values of the Serializable fields
484     ObjectOutputStream.PutField fields = s.putFields();
485 dl 1.3 fields.put("seed", seed.get());
486 dl 1.1 fields.put("nextNextGaussian", nextNextGaussian);
487     fields.put("haveNextNextGaussian", haveNextNextGaussian);
488    
489     // save them
490     s.writeFields();
491    
492     }
493    
494 jsr166 1.11 }