ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Random.java
Revision: 1.16
Committed: Thu Feb 16 08:30:29 2006 UTC (18 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.15: +1 -2 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2 jsr166 1.15 * %W% %E%
3 dl 1.1 *
4 dl 1.14 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 dl 1.1 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9     import java.io.*;
10 dl 1.3 import java.util.concurrent.atomic.AtomicLong;
11 dl 1.14 import sun.misc.Unsafe;
12 dl 1.1
13     /**
14 jsr166 1.11 * An instance of this class is used to generate a stream of
15     * pseudorandom numbers. The class uses a 48-bit seed, which is
16     * modified using a linear congruential formula. (See Donald Knuth,
17 jsr166 1.12 * <i>The Art of Computer Programming, Volume 3</i>, Section 3.2.1.)
18 dl 1.1 * <p>
19 jsr166 1.12 * If two instances of {@code Random} are created with the same
20 jsr166 1.11 * seed, and the same sequence of method calls is made for each, they
21     * will generate and return identical sequences of numbers. In order to
22     * guarantee this property, particular algorithms are specified for the
23 jsr166 1.12 * class {@code Random}. Java implementations must use all the algorithms
24     * shown here for the class {@code Random}, for the sake of absolute
25     * portability of Java code. However, subclasses of class {@code Random}
26 jsr166 1.11 * are permitted to use other algorithms, so long as they adhere to the
27 dl 1.1 * general contracts for all the methods.
28     * <p>
29 jsr166 1.12 * The algorithms implemented by class {@code Random} use a
30     * {@code protected} utility method that on each invocation can supply
31 dl 1.1 * up to 32 pseudorandomly generated bits.
32     * <p>
33 jsr166 1.12 * Many applications will find the method {@link Math#random} simpler to use.
34 dl 1.1 *
35     * @author Frank Yellin
36 jsr166 1.15 * @version %I%, %G%
37 jsr166 1.12 * @since 1.0
38 dl 1.1 */
39     public
40     class Random implements java.io.Serializable {
41     /** use serialVersionUID from JDK 1.1 for interoperability */
42     static final long serialVersionUID = 3905348978240129619L;
43    
44     /**
45     * The internal state associated with this pseudorandom number generator.
46     * (The specs for the methods in this class describe the ongoing
47     * computation of this value.)
48     *
49     * @serial
50     */
51 dl 1.14 private final AtomicLong seed;
52 dl 1.1
53     private final static long multiplier = 0x5DEECE66DL;
54     private final static long addend = 0xBL;
55     private final static long mask = (1L << 48) - 1;
56    
57 jsr166 1.4 /**
58     * Creates a new random number generator. This constructor sets
59     * the seed of the random number generator to a value very likely
60     * to be distinct from any other invocation of this constructor.
61 dl 1.1 */
62 jsr166 1.4 public Random() { this(++seedUniquifier + System.nanoTime()); }
63     private static volatile long seedUniquifier = 8682522807148012L;
64 dl 1.1
65 jsr166 1.11 /**
66 jsr166 1.12 * Creates a new random number generator using a single {@code long} seed.
67     * The seed is the initial value of the internal state of the pseudorandom
68     * number generator which is maintained by method {@link #next}.
69     *
70     * <p>The invocation {@code new Random(seed)} is equivalent to:
71     * <pre> {@code
72     * Random rnd = new Random();
73     * rnd.setSeed(seed);}</pre>
74 dl 1.1 *
75 jsr166 1.12 * @param seed the initial seed
76     * @see #setSeed(long)
77 dl 1.1 */
78     public Random(long seed) {
79 dl 1.3 this.seed = new AtomicLong(0L);
80 dl 1.1 setSeed(seed);
81     }
82    
83     /**
84 dl 1.9 * Sets the seed of this random number generator using a single
85 jsr166 1.12 * {@code long} seed. The general contract of {@code setSeed} is
86     * that it alters the state of this random number generator object
87     * so as to be in exactly the same state as if it had just been
88     * created with the argument {@code seed} as a seed. The method
89     * {@code setSeed} is implemented by class {@code Random} by
90     * atomically updating the seed to
91     * <pre>{@code (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)}</pre>
92     * and clearing the {@code haveNextNextGaussian} flag used by {@link
93     * #nextGaussian}.
94     *
95     * <p>The implementation of {@code setSeed} by class {@code Random}
96     * happens to use only 48 bits of the given seed. In general, however,
97     * an overriding method may use all 64 bits of the {@code long}
98     * argument as a seed value.
99 dl 1.1 *
100 jsr166 1.12 * @param seed the initial seed
101 dl 1.1 */
102     synchronized public void setSeed(long seed) {
103 dl 1.3 seed = (seed ^ multiplier) & mask;
104     this.seed.set(seed);
105 dl 1.1 haveNextNextGaussian = false;
106     }
107    
108     /**
109 jsr166 1.12 * Generates the next pseudorandom number. Subclasses should
110     * override this, as this is used by all other methods.
111     *
112     * <p>The general contract of {@code next} is that it returns an
113     * {@code int} value and if the argument {@code bits} is between
114     * {@code 1} and {@code 32} (inclusive), then that many low-order
115     * bits of the returned value will be (approximately) independently
116     * chosen bit values, each of which is (approximately) equally
117     * likely to be {@code 0} or {@code 1}. The method {@code next} is
118     * implemented by class {@code Random} by atomically updating the seed to
119     * <pre>{@code (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)}</pre>
120     * and returning
121     * <pre>{@code (int)(seed >>> (48 - bits))}.</pre>
122     *
123     * This is a linear congruential pseudorandom number generator, as
124     * defined by D. H. Lehmer and described by Donald E. Knuth in
125     * <i>The Art of Computer Programming,</i> Volume 3:
126     * <i>Seminumerical Algorithms</i>, section 3.2.1.
127     *
128     * @param bits random bits
129     * @return the next pseudorandom value from this random number
130     * generator's sequence
131     * @since 1.1
132 dl 1.1 */
133     protected int next(int bits) {
134     long oldseed, nextseed;
135 dl 1.6 AtomicLong seed = this.seed;
136 dl 1.1 do {
137 dl 1.9 oldseed = seed.get();
138     nextseed = (oldseed * multiplier + addend) & mask;
139 dl 1.3 } while (!seed.compareAndSet(oldseed, nextseed));
140 dl 1.1 return (int)(nextseed >>> (48 - bits));
141     }
142    
143     /**
144 jsr166 1.11 * Generates random bytes and places them into a user-supplied
145     * byte array. The number of random bytes produced is equal to
146 dl 1.1 * the length of the byte array.
147 jsr166 1.11 *
148 jsr166 1.12 * <p>The method {@code nextBytes} is implemented by class {@code Random}
149     * as if by:
150     * <pre> {@code
151     * public void nextBytes(byte[] bytes) {
152     * for (int i = 0; i < bytes.length; )
153     * for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
154     * n-- > 0; rnd >>= 8)
155     * bytes[i++] = (byte)rnd;
156     * }}</pre>
157     *
158     * @param bytes the byte array to fill with random bytes
159     * @throws NullPointerException if the byte array is null
160     * @since 1.1
161 dl 1.1 */
162     public void nextBytes(byte[] bytes) {
163 jsr166 1.12 for (int i = 0, len = bytes.length; i < len; )
164     for (int rnd = nextInt(),
165     n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
166     n-- > 0; rnd >>= Byte.SIZE)
167     bytes[i++] = (byte)rnd;
168 dl 1.1 }
169    
170     /**
171 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code int}
172 jsr166 1.11 * value from this random number generator's sequence. The general
173 jsr166 1.12 * contract of {@code nextInt} is that one {@code int} value is
174 dl 1.1 * pseudorandomly generated and returned. All 2<font size="-1"><sup>32
175 jsr166 1.12 * </sup></font> possible {@code int} values are produced with
176     * (approximately) equal probability.
177     *
178     * <p>The method {@code nextInt} is implemented by class {@code Random}
179     * as if by:
180     * <pre> {@code
181     * public int nextInt() {
182     * return next(32);
183     * }}</pre>
184 dl 1.1 *
185 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code int}
186     * value from this random number generator's sequence
187 dl 1.1 */
188 jsr166 1.12 public int nextInt() {
189     return next(32);
190     }
191 dl 1.1
192     /**
193 jsr166 1.12 * Returns a pseudorandom, uniformly distributed {@code int} value
194 dl 1.1 * between 0 (inclusive) and the specified value (exclusive), drawn from
195     * this random number generator's sequence. The general contract of
196 jsr166 1.12 * {@code nextInt} is that one {@code int} value in the specified range
197     * is pseudorandomly generated and returned. All {@code n} possible
198     * {@code int} values are produced with (approximately) equal
199     * probability. The method {@code nextInt(int n)} is implemented by
200     * class {@code Random} as if by:
201     * <pre> {@code
202 dl 1.1 * public int nextInt(int n) {
203 jsr166 1.12 * if (n <= 0)
204     * throw new IllegalArgumentException("n must be positive");
205     *
206     * if ((n & -n) == n) // i.e., n is a power of 2
207     * return (int)((n * (long)next(31)) >> 31);
208 dl 1.1 *
209 jsr166 1.12 * int bits, val;
210     * do {
211     * bits = next(31);
212     * val = bits % n;
213     * } while (bits - val + (n-1) < 0);
214     * return val;
215     * }}</pre>
216 dl 1.1 *
217 jsr166 1.12 * <p>The hedge "approximately" is used in the foregoing description only
218 dl 1.1 * because the next method is only approximately an unbiased source of
219 jsr166 1.11 * independently chosen bits. If it were a perfect source of randomly
220 jsr166 1.12 * chosen bits, then the algorithm shown would choose {@code int}
221 dl 1.1 * values from the stated range with perfect uniformity.
222     * <p>
223     * The algorithm is slightly tricky. It rejects values that would result
224     * in an uneven distribution (due to the fact that 2^31 is not divisible
225     * by n). The probability of a value being rejected depends on n. The
226     * worst case is n=2^30+1, for which the probability of a reject is 1/2,
227     * and the expected number of iterations before the loop terminates is 2.
228     * <p>
229     * The algorithm treats the case where n is a power of two specially: it
230     * returns the correct number of high-order bits from the underlying
231     * pseudo-random number generator. In the absence of special treatment,
232     * the correct number of <i>low-order</i> bits would be returned. Linear
233     * congruential pseudo-random number generators such as the one
234     * implemented by this class are known to have short periods in the
235     * sequence of values of their low-order bits. Thus, this special case
236     * greatly increases the length of the sequence of values returned by
237     * successive calls to this method if n is a small power of two.
238     *
239     * @param n the bound on the random number to be returned. Must be
240     * positive.
241 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code int}
242     * value between {@code 0} (inclusive) and {@code n} (exclusive)
243     * from this random number generator's sequence
244     * @exception IllegalArgumentException if n is not positive
245 dl 1.1 * @since 1.2
246     */
247    
248     public int nextInt(int n) {
249 jsr166 1.12 if (n <= 0)
250 dl 1.1 throw new IllegalArgumentException("n must be positive");
251    
252     if ((n & -n) == n) // i.e., n is a power of 2
253     return (int)((n * (long)next(31)) >> 31);
254    
255     int bits, val;
256     do {
257     bits = next(31);
258     val = bits % n;
259 jsr166 1.12 } while (bits - val + (n-1) < 0);
260 dl 1.1 return val;
261     }
262    
263     /**
264 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code long}
265 jsr166 1.11 * value from this random number generator's sequence. The general
266 jsr166 1.12 * contract of {@code nextLong} is that one {@code long} value is
267     * pseudorandomly generated and returned.
268     *
269     * <p>The method {@code nextLong} is implemented by class {@code Random}
270     * as if by:
271     * <pre> {@code
272 dl 1.1 * public long nextLong() {
273 jsr166 1.12 * return ((long)next(32) << 32) + next(32);
274     * }}</pre>
275 dl 1.1 *
276 jsr166 1.12 * Because class {@code Random} uses a seed with only 48 bits,
277     * this algorithm will not return all possible {@code long} values.
278     *
279     * @return the next pseudorandom, uniformly distributed {@code long}
280     * value from this random number generator's sequence
281 dl 1.1 */
282     public long nextLong() {
283     // it's okay that the bottom word remains signed.
284     return ((long)(next(32)) << 32) + next(32);
285     }
286    
287     /**
288     * Returns the next pseudorandom, uniformly distributed
289 jsr166 1.12 * {@code boolean} value from this random number generator's
290     * sequence. The general contract of {@code nextBoolean} is that one
291     * {@code boolean} value is pseudorandomly generated and returned. The
292     * values {@code true} and {@code false} are produced with
293     * (approximately) equal probability.
294     *
295     * <p>The method {@code nextBoolean} is implemented by class {@code Random}
296     * as if by:
297     * <pre> {@code
298     * public boolean nextBoolean() {
299     * return next(1) != 0;
300     * }}</pre>
301     *
302     * @return the next pseudorandom, uniformly distributed
303     * {@code boolean} value from this random number generator's
304     * sequence
305 dl 1.1 * @since 1.2
306     */
307 jsr166 1.12 public boolean nextBoolean() {
308     return next(1) != 0;
309     }
310 dl 1.1
311     /**
312 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code float}
313     * value between {@code 0.0} and {@code 1.0} from this random
314     * number generator's sequence.
315     *
316     * <p>The general contract of {@code nextFloat} is that one
317     * {@code float} value, chosen (approximately) uniformly from the
318     * range {@code 0.0f} (inclusive) to {@code 1.0f} (exclusive), is
319     * pseudorandomly generated and returned. All 2<font
320     * size="-1"><sup>24</sup></font> possible {@code float} values
321     * of the form <i>m&nbsp;x&nbsp</i>2<font
322     * size="-1"><sup>-24</sup></font>, where <i>m</i> is a positive
323     * integer less than 2<font size="-1"><sup>24</sup> </font>, are
324     * produced with (approximately) equal probability.
325     *
326     * <p>The method {@code nextFloat} is implemented by class {@code Random}
327     * as if by:
328     * <pre> {@code
329 dl 1.1 * public float nextFloat() {
330 jsr166 1.12 * return next(24) / ((float)(1 << 24));
331     * }}</pre>
332     *
333     * <p>The hedge "approximately" is used in the foregoing description only
334 jsr166 1.11 * because the next method is only approximately an unbiased source of
335 jsr166 1.12 * independently chosen bits. If it were a perfect source of randomly
336     * chosen bits, then the algorithm shown would choose {@code float}
337 dl 1.1 * values from the stated range with perfect uniformity.<p>
338     * [In early versions of Java, the result was incorrectly calculated as:
339 jsr166 1.12 * <pre> {@code
340     * return next(30) / ((float)(1 << 30));}</pre>
341 jsr166 1.11 * This might seem to be equivalent, if not better, but in fact it
342     * introduced a slight nonuniformity because of the bias in the rounding
343     * of floating-point numbers: it was slightly more likely that the
344     * low-order bit of the significand would be 0 than that it would be 1.]
345 dl 1.1 *
346 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code float}
347     * value between {@code 0.0} and {@code 1.0} from this
348     * random number generator's sequence
349 dl 1.1 */
350     public float nextFloat() {
351 jsr166 1.12 return next(24) / ((float)(1 << 24));
352 dl 1.1 }
353    
354     /**
355 jsr166 1.11 * Returns the next pseudorandom, uniformly distributed
356 jsr166 1.12 * {@code double} value between {@code 0.0} and
357     * {@code 1.0} from this random number generator's sequence.
358     *
359     * <p>The general contract of {@code nextDouble} is that one
360     * {@code double} value, chosen (approximately) uniformly from the
361     * range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
362     * pseudorandomly generated and returned.
363     *
364     * <p>The method {@code nextDouble} is implemented by class {@code Random}
365     * as if by:
366     * <pre> {@code
367 dl 1.1 * public double nextDouble() {
368 jsr166 1.12 * return (((long)next(26) << 27) + next(27))
369     * / (double)(1L << 53);
370     * }}</pre>
371     *
372     * <p>The hedge "approximately" is used in the foregoing description only
373     * because the {@code next} method is only approximately an unbiased
374     * source of independently chosen bits. If it were a perfect source of
375 jsr166 1.11 * randomly chosen bits, then the algorithm shown would choose
376 jsr166 1.12 * {@code double} values from the stated range with perfect uniformity.
377 dl 1.1 * <p>[In early versions of Java, the result was incorrectly calculated as:
378 jsr166 1.12 * <pre> {@code
379     * return (((long)next(27) << 27) + next(27))
380     * / (double)(1L << 54);}</pre>
381 jsr166 1.11 * This might seem to be equivalent, if not better, but in fact it
382     * introduced a large nonuniformity because of the bias in the rounding
383     * of floating-point numbers: it was three times as likely that the
384 jsr166 1.12 * low-order bit of the significand would be 0 than that it would be 1!
385     * This nonuniformity probably doesn't matter much in practice, but we
386     * strive for perfection.]
387     *
388     * @return the next pseudorandom, uniformly distributed {@code double}
389     * value between {@code 0.0} and {@code 1.0} from this
390     * random number generator's sequence
391     * @see Math#random
392 dl 1.1 */
393     public double nextDouble() {
394 jsr166 1.12 return (((long)(next(26)) << 27) + next(27))
395     / (double)(1L << 53);
396 dl 1.1 }
397    
398     private double nextNextGaussian;
399     private boolean haveNextNextGaussian = false;
400    
401     /**
402     * Returns the next pseudorandom, Gaussian ("normally") distributed
403 jsr166 1.12 * {@code double} value with mean {@code 0.0} and standard
404     * deviation {@code 1.0} from this random number generator's sequence.
405 dl 1.1 * <p>
406 jsr166 1.12 * The general contract of {@code nextGaussian} is that one
407     * {@code double} value, chosen from (approximately) the usual
408     * normal distribution with mean {@code 0.0} and standard deviation
409     * {@code 1.0}, is pseudorandomly generated and returned.
410     *
411     * <p>The method {@code nextGaussian} is implemented by class
412     * {@code Random} as if by a threadsafe version of the following:
413     * <pre> {@code
414     * private double nextNextGaussian;
415     * private boolean haveNextNextGaussian = false;
416     *
417 dl 1.9 * public double nextGaussian() {
418 jsr166 1.12 * if (haveNextNextGaussian) {
419     * haveNextNextGaussian = false;
420     * return nextNextGaussian;
421     * } else {
422     * double v1, v2, s;
423     * do {
424     * v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0
425     * v2 = 2 * nextDouble() - 1; // between -1.0 and 1.0
426     * s = v1 * v1 + v2 * v2;
427     * } while (s >= 1 || s == 0);
428     * double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
429     * nextNextGaussian = v2 * multiplier;
430     * haveNextNextGaussian = true;
431     * return v1 * multiplier;
432     * }
433     * }}</pre>
434 jsr166 1.11 * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
435     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
436 jsr166 1.12 * Computer Programming</i>, Volume 3: <i>Seminumerical Algorithms</i>,
437 dl 1.1 * section 3.4.1, subsection C, algorithm P. Note that it generates two
438 jsr166 1.12 * independent values at the cost of only one call to {@code StrictMath.log}
439     * and one call to {@code StrictMath.sqrt}.
440 dl 1.1 *
441 jsr166 1.12 * @return the next pseudorandom, Gaussian ("normally") distributed
442     * {@code double} value with mean {@code 0.0} and
443     * standard deviation {@code 1.0} from this random number
444     * generator's sequence
445 dl 1.1 */
446     synchronized public double nextGaussian() {
447     // See Knuth, ACP, Section 3.4.1 Algorithm C.
448     if (haveNextNextGaussian) {
449     haveNextNextGaussian = false;
450     return nextNextGaussian;
451     } else {
452     double v1, v2, s;
453 jsr166 1.11 do {
454 dl 1.1 v1 = 2 * nextDouble() - 1; // between -1 and 1
455 jsr166 1.11 v2 = 2 * nextDouble() - 1; // between -1 and 1
456 dl 1.1 s = v1 * v1 + v2 * v2;
457     } while (s >= 1 || s == 0);
458 dl 1.9 double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
459 dl 1.1 nextNextGaussian = v2 * multiplier;
460     haveNextNextGaussian = true;
461     return v1 * multiplier;
462     }
463     }
464    
465     /**
466     * Serializable fields for Random.
467     *
468     * @serialField seed long;
469     * seed for random computations
470     * @serialField nextNextGaussian double;
471     * next Gaussian to be returned
472     * @serialField haveNextNextGaussian boolean
473     * nextNextGaussian is valid
474     */
475     private static final ObjectStreamField[] serialPersistentFields = {
476     new ObjectStreamField("seed", Long.TYPE),
477     new ObjectStreamField("nextNextGaussian", Double.TYPE),
478     new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
479 jsr166 1.12 };
480 dl 1.1
481     /**
482 jsr166 1.12 * Reconstitute the {@code Random} instance from a stream (that is,
483     * deserialize it).
484 dl 1.1 */
485     private void readObject(java.io.ObjectInputStream s)
486     throws java.io.IOException, ClassNotFoundException {
487    
488     ObjectInputStream.GetField fields = s.readFields();
489    
490 jsr166 1.12 // The seed is read in as {@code long} for
491     // historical reasons, but it is converted to an AtomicLong.
492     long seedVal = (long) fields.get("seed", -1L);
493 dl 1.1 if (seedVal < 0)
494     throw new java.io.StreamCorruptedException(
495     "Random: invalid seed");
496 dl 1.14 resetSeed(seedVal);
497 dl 1.1 nextNextGaussian = fields.get("nextNextGaussian", 0.0);
498     haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
499     }
500    
501     /**
502 jsr166 1.12 * Save the {@code Random} instance to a stream.
503 dl 1.1 */
504 jsr166 1.12 synchronized private void writeObject(ObjectOutputStream s)
505     throws IOException {
506    
507 dl 1.1 // set the values of the Serializable fields
508     ObjectOutputStream.PutField fields = s.putFields();
509 jsr166 1.12
510     // The seed is serialized as a long for historical reasons.
511 dl 1.3 fields.put("seed", seed.get());
512 dl 1.1 fields.put("nextNextGaussian", nextNextGaussian);
513     fields.put("haveNextNextGaussian", haveNextNextGaussian);
514    
515     // save them
516     s.writeFields();
517     }
518    
519 dl 1.14 // Support for resetting seed while deserializing
520     private static final Unsafe unsafe = Unsafe.getUnsafe();
521     private static final long seedOffset;
522     static {
523     try {
524     seedOffset = unsafe.objectFieldOffset
525     (Random.class.getDeclaredField("seed"));
526 jsr166 1.16 } catch (Exception ex) { throw new Error(ex); }
527 dl 1.14 }
528     private void resetSeed(long seedVal) {
529     unsafe.putObjectVolatile(this, seedOffset, new AtomicLong(seedVal));
530     }
531 jsr166 1.11 }