ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Random.java
Revision: 1.19
Committed: Tue Jan 30 03:46:41 2007 UTC (17 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.18: +3 -5 lines
Log Message:
6485719: Random javadoc serialization doc fixes

File Contents

# User Rev Content
1 dl 1.1 /*
2 jsr166 1.15 * %W% %E%
3 dl 1.1 *
4 jsr166 1.18 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
5 dl 1.1 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9     import java.io.*;
10 dl 1.3 import java.util.concurrent.atomic.AtomicLong;
11 dl 1.14 import sun.misc.Unsafe;
12 dl 1.1
13     /**
14 jsr166 1.11 * An instance of this class is used to generate a stream of
15     * pseudorandom numbers. The class uses a 48-bit seed, which is
16     * modified using a linear congruential formula. (See Donald Knuth,
17 jsr166 1.12 * <i>The Art of Computer Programming, Volume 3</i>, Section 3.2.1.)
18 dl 1.1 * <p>
19 jsr166 1.12 * If two instances of {@code Random} are created with the same
20 jsr166 1.11 * seed, and the same sequence of method calls is made for each, they
21     * will generate and return identical sequences of numbers. In order to
22     * guarantee this property, particular algorithms are specified for the
23 jsr166 1.12 * class {@code Random}. Java implementations must use all the algorithms
24     * shown here for the class {@code Random}, for the sake of absolute
25     * portability of Java code. However, subclasses of class {@code Random}
26 jsr166 1.11 * are permitted to use other algorithms, so long as they adhere to the
27 dl 1.1 * general contracts for all the methods.
28     * <p>
29 jsr166 1.12 * The algorithms implemented by class {@code Random} use a
30     * {@code protected} utility method that on each invocation can supply
31 dl 1.1 * up to 32 pseudorandomly generated bits.
32     * <p>
33 jsr166 1.12 * Many applications will find the method {@link Math#random} simpler to use.
34 dl 1.1 *
35     * @author Frank Yellin
36 jsr166 1.15 * @version %I%, %G%
37 jsr166 1.12 * @since 1.0
38 dl 1.1 */
39     public
40     class Random implements java.io.Serializable {
41     /** use serialVersionUID from JDK 1.1 for interoperability */
42     static final long serialVersionUID = 3905348978240129619L;
43    
44     /**
45     * The internal state associated with this pseudorandom number generator.
46     * (The specs for the methods in this class describe the ongoing
47     * computation of this value.)
48     */
49 dl 1.14 private final AtomicLong seed;
50 dl 1.1
51     private final static long multiplier = 0x5DEECE66DL;
52     private final static long addend = 0xBL;
53     private final static long mask = (1L << 48) - 1;
54    
55 jsr166 1.4 /**
56     * Creates a new random number generator. This constructor sets
57     * the seed of the random number generator to a value very likely
58     * to be distinct from any other invocation of this constructor.
59 dl 1.1 */
60 jsr166 1.4 public Random() { this(++seedUniquifier + System.nanoTime()); }
61     private static volatile long seedUniquifier = 8682522807148012L;
62 dl 1.1
63 jsr166 1.11 /**
64 jsr166 1.12 * Creates a new random number generator using a single {@code long} seed.
65     * The seed is the initial value of the internal state of the pseudorandom
66     * number generator which is maintained by method {@link #next}.
67     *
68     * <p>The invocation {@code new Random(seed)} is equivalent to:
69     * <pre> {@code
70     * Random rnd = new Random();
71     * rnd.setSeed(seed);}</pre>
72 dl 1.1 *
73 jsr166 1.12 * @param seed the initial seed
74     * @see #setSeed(long)
75 dl 1.1 */
76     public Random(long seed) {
77 dl 1.3 this.seed = new AtomicLong(0L);
78 dl 1.1 setSeed(seed);
79     }
80    
81     /**
82 dl 1.9 * Sets the seed of this random number generator using a single
83 jsr166 1.12 * {@code long} seed. The general contract of {@code setSeed} is
84     * that it alters the state of this random number generator object
85     * so as to be in exactly the same state as if it had just been
86     * created with the argument {@code seed} as a seed. The method
87     * {@code setSeed} is implemented by class {@code Random} by
88     * atomically updating the seed to
89     * <pre>{@code (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)}</pre>
90     * and clearing the {@code haveNextNextGaussian} flag used by {@link
91     * #nextGaussian}.
92     *
93     * <p>The implementation of {@code setSeed} by class {@code Random}
94     * happens to use only 48 bits of the given seed. In general, however,
95     * an overriding method may use all 64 bits of the {@code long}
96     * argument as a seed value.
97 dl 1.1 *
98 jsr166 1.12 * @param seed the initial seed
99 dl 1.1 */
100     synchronized public void setSeed(long seed) {
101 dl 1.3 seed = (seed ^ multiplier) & mask;
102     this.seed.set(seed);
103 dl 1.1 haveNextNextGaussian = false;
104     }
105    
106     /**
107 jsr166 1.12 * Generates the next pseudorandom number. Subclasses should
108     * override this, as this is used by all other methods.
109     *
110     * <p>The general contract of {@code next} is that it returns an
111     * {@code int} value and if the argument {@code bits} is between
112     * {@code 1} and {@code 32} (inclusive), then that many low-order
113     * bits of the returned value will be (approximately) independently
114     * chosen bit values, each of which is (approximately) equally
115     * likely to be {@code 0} or {@code 1}. The method {@code next} is
116     * implemented by class {@code Random} by atomically updating the seed to
117     * <pre>{@code (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)}</pre>
118     * and returning
119     * <pre>{@code (int)(seed >>> (48 - bits))}.</pre>
120     *
121     * This is a linear congruential pseudorandom number generator, as
122     * defined by D. H. Lehmer and described by Donald E. Knuth in
123     * <i>The Art of Computer Programming,</i> Volume 3:
124     * <i>Seminumerical Algorithms</i>, section 3.2.1.
125     *
126     * @param bits random bits
127     * @return the next pseudorandom value from this random number
128     * generator's sequence
129     * @since 1.1
130 dl 1.1 */
131     protected int next(int bits) {
132     long oldseed, nextseed;
133 dl 1.6 AtomicLong seed = this.seed;
134 dl 1.1 do {
135 dl 1.9 oldseed = seed.get();
136     nextseed = (oldseed * multiplier + addend) & mask;
137 jsr166 1.19 } while (!seed.compareAndSet(oldseed, nextseed));
138 dl 1.1 return (int)(nextseed >>> (48 - bits));
139     }
140    
141     /**
142 jsr166 1.11 * Generates random bytes and places them into a user-supplied
143     * byte array. The number of random bytes produced is equal to
144 dl 1.1 * the length of the byte array.
145 jsr166 1.11 *
146 jsr166 1.12 * <p>The method {@code nextBytes} is implemented by class {@code Random}
147     * as if by:
148     * <pre> {@code
149     * public void nextBytes(byte[] bytes) {
150     * for (int i = 0; i < bytes.length; )
151     * for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
152     * n-- > 0; rnd >>= 8)
153     * bytes[i++] = (byte)rnd;
154     * }}</pre>
155     *
156     * @param bytes the byte array to fill with random bytes
157     * @throws NullPointerException if the byte array is null
158     * @since 1.1
159 dl 1.1 */
160     public void nextBytes(byte[] bytes) {
161 jsr166 1.12 for (int i = 0, len = bytes.length; i < len; )
162     for (int rnd = nextInt(),
163     n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
164     n-- > 0; rnd >>= Byte.SIZE)
165     bytes[i++] = (byte)rnd;
166 dl 1.1 }
167    
168     /**
169 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code int}
170 jsr166 1.11 * value from this random number generator's sequence. The general
171 jsr166 1.12 * contract of {@code nextInt} is that one {@code int} value is
172 dl 1.1 * pseudorandomly generated and returned. All 2<font size="-1"><sup>32
173 jsr166 1.12 * </sup></font> possible {@code int} values are produced with
174     * (approximately) equal probability.
175     *
176     * <p>The method {@code nextInt} is implemented by class {@code Random}
177     * as if by:
178     * <pre> {@code
179     * public int nextInt() {
180     * return next(32);
181     * }}</pre>
182 dl 1.1 *
183 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code int}
184     * value from this random number generator's sequence
185 dl 1.1 */
186 jsr166 1.12 public int nextInt() {
187     return next(32);
188     }
189 dl 1.1
190     /**
191 jsr166 1.12 * Returns a pseudorandom, uniformly distributed {@code int} value
192 dl 1.1 * between 0 (inclusive) and the specified value (exclusive), drawn from
193     * this random number generator's sequence. The general contract of
194 jsr166 1.12 * {@code nextInt} is that one {@code int} value in the specified range
195     * is pseudorandomly generated and returned. All {@code n} possible
196     * {@code int} values are produced with (approximately) equal
197     * probability. The method {@code nextInt(int n)} is implemented by
198     * class {@code Random} as if by:
199     * <pre> {@code
200 dl 1.1 * public int nextInt(int n) {
201 jsr166 1.12 * if (n <= 0)
202     * throw new IllegalArgumentException("n must be positive");
203     *
204     * if ((n & -n) == n) // i.e., n is a power of 2
205     * return (int)((n * (long)next(31)) >> 31);
206 dl 1.1 *
207 jsr166 1.12 * int bits, val;
208     * do {
209     * bits = next(31);
210     * val = bits % n;
211     * } while (bits - val + (n-1) < 0);
212     * return val;
213     * }}</pre>
214 dl 1.1 *
215 jsr166 1.12 * <p>The hedge "approximately" is used in the foregoing description only
216 dl 1.1 * because the next method is only approximately an unbiased source of
217 jsr166 1.11 * independently chosen bits. If it were a perfect source of randomly
218 jsr166 1.12 * chosen bits, then the algorithm shown would choose {@code int}
219 dl 1.1 * values from the stated range with perfect uniformity.
220     * <p>
221     * The algorithm is slightly tricky. It rejects values that would result
222     * in an uneven distribution (due to the fact that 2^31 is not divisible
223     * by n). The probability of a value being rejected depends on n. The
224     * worst case is n=2^30+1, for which the probability of a reject is 1/2,
225     * and the expected number of iterations before the loop terminates is 2.
226     * <p>
227     * The algorithm treats the case where n is a power of two specially: it
228     * returns the correct number of high-order bits from the underlying
229     * pseudo-random number generator. In the absence of special treatment,
230     * the correct number of <i>low-order</i> bits would be returned. Linear
231     * congruential pseudo-random number generators such as the one
232     * implemented by this class are known to have short periods in the
233     * sequence of values of their low-order bits. Thus, this special case
234     * greatly increases the length of the sequence of values returned by
235     * successive calls to this method if n is a small power of two.
236     *
237     * @param n the bound on the random number to be returned. Must be
238     * positive.
239 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code int}
240     * value between {@code 0} (inclusive) and {@code n} (exclusive)
241     * from this random number generator's sequence
242     * @exception IllegalArgumentException if n is not positive
243 dl 1.1 * @since 1.2
244     */
245    
246     public int nextInt(int n) {
247 jsr166 1.12 if (n <= 0)
248 dl 1.1 throw new IllegalArgumentException("n must be positive");
249    
250     if ((n & -n) == n) // i.e., n is a power of 2
251     return (int)((n * (long)next(31)) >> 31);
252    
253     int bits, val;
254     do {
255     bits = next(31);
256     val = bits % n;
257 jsr166 1.12 } while (bits - val + (n-1) < 0);
258 dl 1.1 return val;
259     }
260    
261     /**
262 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code long}
263 jsr166 1.11 * value from this random number generator's sequence. The general
264 jsr166 1.12 * contract of {@code nextLong} is that one {@code long} value is
265     * pseudorandomly generated and returned.
266     *
267     * <p>The method {@code nextLong} is implemented by class {@code Random}
268     * as if by:
269     * <pre> {@code
270 dl 1.1 * public long nextLong() {
271 jsr166 1.12 * return ((long)next(32) << 32) + next(32);
272     * }}</pre>
273 dl 1.1 *
274 jsr166 1.12 * Because class {@code Random} uses a seed with only 48 bits,
275     * this algorithm will not return all possible {@code long} values.
276     *
277     * @return the next pseudorandom, uniformly distributed {@code long}
278     * value from this random number generator's sequence
279 dl 1.1 */
280     public long nextLong() {
281     // it's okay that the bottom word remains signed.
282     return ((long)(next(32)) << 32) + next(32);
283     }
284    
285     /**
286     * Returns the next pseudorandom, uniformly distributed
287 jsr166 1.12 * {@code boolean} value from this random number generator's
288     * sequence. The general contract of {@code nextBoolean} is that one
289     * {@code boolean} value is pseudorandomly generated and returned. The
290     * values {@code true} and {@code false} are produced with
291     * (approximately) equal probability.
292     *
293     * <p>The method {@code nextBoolean} is implemented by class {@code Random}
294     * as if by:
295     * <pre> {@code
296     * public boolean nextBoolean() {
297     * return next(1) != 0;
298     * }}</pre>
299     *
300     * @return the next pseudorandom, uniformly distributed
301     * {@code boolean} value from this random number generator's
302     * sequence
303 dl 1.1 * @since 1.2
304     */
305 jsr166 1.12 public boolean nextBoolean() {
306     return next(1) != 0;
307     }
308 dl 1.1
309     /**
310 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code float}
311     * value between {@code 0.0} and {@code 1.0} from this random
312     * number generator's sequence.
313     *
314     * <p>The general contract of {@code nextFloat} is that one
315     * {@code float} value, chosen (approximately) uniformly from the
316     * range {@code 0.0f} (inclusive) to {@code 1.0f} (exclusive), is
317     * pseudorandomly generated and returned. All 2<font
318     * size="-1"><sup>24</sup></font> possible {@code float} values
319     * of the form <i>m&nbsp;x&nbsp</i>2<font
320     * size="-1"><sup>-24</sup></font>, where <i>m</i> is a positive
321     * integer less than 2<font size="-1"><sup>24</sup> </font>, are
322     * produced with (approximately) equal probability.
323     *
324     * <p>The method {@code nextFloat} is implemented by class {@code Random}
325     * as if by:
326     * <pre> {@code
327 dl 1.1 * public float nextFloat() {
328 jsr166 1.12 * return next(24) / ((float)(1 << 24));
329     * }}</pre>
330     *
331     * <p>The hedge "approximately" is used in the foregoing description only
332 jsr166 1.11 * because the next method is only approximately an unbiased source of
333 jsr166 1.12 * independently chosen bits. If it were a perfect source of randomly
334     * chosen bits, then the algorithm shown would choose {@code float}
335 dl 1.1 * values from the stated range with perfect uniformity.<p>
336     * [In early versions of Java, the result was incorrectly calculated as:
337 jsr166 1.12 * <pre> {@code
338     * return next(30) / ((float)(1 << 30));}</pre>
339 jsr166 1.11 * This might seem to be equivalent, if not better, but in fact it
340     * introduced a slight nonuniformity because of the bias in the rounding
341     * of floating-point numbers: it was slightly more likely that the
342     * low-order bit of the significand would be 0 than that it would be 1.]
343 dl 1.1 *
344 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code float}
345     * value between {@code 0.0} and {@code 1.0} from this
346     * random number generator's sequence
347 dl 1.1 */
348     public float nextFloat() {
349 jsr166 1.12 return next(24) / ((float)(1 << 24));
350 dl 1.1 }
351    
352     /**
353 jsr166 1.11 * Returns the next pseudorandom, uniformly distributed
354 jsr166 1.12 * {@code double} value between {@code 0.0} and
355     * {@code 1.0} from this random number generator's sequence.
356     *
357     * <p>The general contract of {@code nextDouble} is that one
358     * {@code double} value, chosen (approximately) uniformly from the
359     * range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
360     * pseudorandomly generated and returned.
361     *
362     * <p>The method {@code nextDouble} is implemented by class {@code Random}
363     * as if by:
364     * <pre> {@code
365 dl 1.1 * public double nextDouble() {
366 jsr166 1.12 * return (((long)next(26) << 27) + next(27))
367     * / (double)(1L << 53);
368     * }}</pre>
369     *
370     * <p>The hedge "approximately" is used in the foregoing description only
371     * because the {@code next} method is only approximately an unbiased
372     * source of independently chosen bits. If it were a perfect source of
373 jsr166 1.11 * randomly chosen bits, then the algorithm shown would choose
374 jsr166 1.12 * {@code double} values from the stated range with perfect uniformity.
375 dl 1.1 * <p>[In early versions of Java, the result was incorrectly calculated as:
376 jsr166 1.12 * <pre> {@code
377     * return (((long)next(27) << 27) + next(27))
378     * / (double)(1L << 54);}</pre>
379 jsr166 1.11 * This might seem to be equivalent, if not better, but in fact it
380     * introduced a large nonuniformity because of the bias in the rounding
381     * of floating-point numbers: it was three times as likely that the
382 jsr166 1.12 * low-order bit of the significand would be 0 than that it would be 1!
383     * This nonuniformity probably doesn't matter much in practice, but we
384     * strive for perfection.]
385     *
386     * @return the next pseudorandom, uniformly distributed {@code double}
387     * value between {@code 0.0} and {@code 1.0} from this
388     * random number generator's sequence
389     * @see Math#random
390 dl 1.1 */
391     public double nextDouble() {
392 jsr166 1.12 return (((long)(next(26)) << 27) + next(27))
393     / (double)(1L << 53);
394 dl 1.1 }
395    
396     private double nextNextGaussian;
397     private boolean haveNextNextGaussian = false;
398    
399     /**
400     * Returns the next pseudorandom, Gaussian ("normally") distributed
401 jsr166 1.12 * {@code double} value with mean {@code 0.0} and standard
402     * deviation {@code 1.0} from this random number generator's sequence.
403 dl 1.1 * <p>
404 jsr166 1.12 * The general contract of {@code nextGaussian} is that one
405     * {@code double} value, chosen from (approximately) the usual
406     * normal distribution with mean {@code 0.0} and standard deviation
407     * {@code 1.0}, is pseudorandomly generated and returned.
408     *
409     * <p>The method {@code nextGaussian} is implemented by class
410     * {@code Random} as if by a threadsafe version of the following:
411     * <pre> {@code
412     * private double nextNextGaussian;
413     * private boolean haveNextNextGaussian = false;
414     *
415 dl 1.9 * public double nextGaussian() {
416 jsr166 1.12 * if (haveNextNextGaussian) {
417     * haveNextNextGaussian = false;
418     * return nextNextGaussian;
419     * } else {
420     * double v1, v2, s;
421     * do {
422     * v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0
423     * v2 = 2 * nextDouble() - 1; // between -1.0 and 1.0
424     * s = v1 * v1 + v2 * v2;
425     * } while (s >= 1 || s == 0);
426     * double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
427     * nextNextGaussian = v2 * multiplier;
428     * haveNextNextGaussian = true;
429     * return v1 * multiplier;
430     * }
431     * }}</pre>
432 jsr166 1.11 * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
433     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
434 jsr166 1.12 * Computer Programming</i>, Volume 3: <i>Seminumerical Algorithms</i>,
435 dl 1.1 * section 3.4.1, subsection C, algorithm P. Note that it generates two
436 jsr166 1.12 * independent values at the cost of only one call to {@code StrictMath.log}
437     * and one call to {@code StrictMath.sqrt}.
438 dl 1.1 *
439 jsr166 1.12 * @return the next pseudorandom, Gaussian ("normally") distributed
440     * {@code double} value with mean {@code 0.0} and
441     * standard deviation {@code 1.0} from this random number
442     * generator's sequence
443 dl 1.1 */
444     synchronized public double nextGaussian() {
445     // See Knuth, ACP, Section 3.4.1 Algorithm C.
446     if (haveNextNextGaussian) {
447     haveNextNextGaussian = false;
448     return nextNextGaussian;
449     } else {
450     double v1, v2, s;
451 jsr166 1.11 do {
452 dl 1.1 v1 = 2 * nextDouble() - 1; // between -1 and 1
453 jsr166 1.11 v2 = 2 * nextDouble() - 1; // between -1 and 1
454 dl 1.1 s = v1 * v1 + v2 * v2;
455     } while (s >= 1 || s == 0);
456 dl 1.9 double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
457 dl 1.1 nextNextGaussian = v2 * multiplier;
458     haveNextNextGaussian = true;
459     return v1 * multiplier;
460     }
461     }
462    
463     /**
464     * Serializable fields for Random.
465     *
466 jsr166 1.19 * @serialField seed long
467 dl 1.1 * seed for random computations
468 jsr166 1.19 * @serialField nextNextGaussian double
469 dl 1.1 * next Gaussian to be returned
470     * @serialField haveNextNextGaussian boolean
471     * nextNextGaussian is valid
472     */
473     private static final ObjectStreamField[] serialPersistentFields = {
474     new ObjectStreamField("seed", Long.TYPE),
475     new ObjectStreamField("nextNextGaussian", Double.TYPE),
476     new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
477 jsr166 1.12 };
478 dl 1.1
479     /**
480 jsr166 1.12 * Reconstitute the {@code Random} instance from a stream (that is,
481     * deserialize it).
482 dl 1.1 */
483     private void readObject(java.io.ObjectInputStream s)
484     throws java.io.IOException, ClassNotFoundException {
485    
486     ObjectInputStream.GetField fields = s.readFields();
487    
488 jsr166 1.12 // The seed is read in as {@code long} for
489     // historical reasons, but it is converted to an AtomicLong.
490     long seedVal = (long) fields.get("seed", -1L);
491 dl 1.1 if (seedVal < 0)
492     throw new java.io.StreamCorruptedException(
493     "Random: invalid seed");
494 dl 1.14 resetSeed(seedVal);
495 dl 1.1 nextNextGaussian = fields.get("nextNextGaussian", 0.0);
496     haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
497     }
498    
499     /**
500 jsr166 1.12 * Save the {@code Random} instance to a stream.
501 dl 1.1 */
502 jsr166 1.12 synchronized private void writeObject(ObjectOutputStream s)
503     throws IOException {
504    
505 dl 1.1 // set the values of the Serializable fields
506     ObjectOutputStream.PutField fields = s.putFields();
507 jsr166 1.12
508     // The seed is serialized as a long for historical reasons.
509 dl 1.3 fields.put("seed", seed.get());
510 dl 1.1 fields.put("nextNextGaussian", nextNextGaussian);
511     fields.put("haveNextNextGaussian", haveNextNextGaussian);
512    
513     // save them
514     s.writeFields();
515     }
516    
517 dl 1.14 // Support for resetting seed while deserializing
518     private static final Unsafe unsafe = Unsafe.getUnsafe();
519     private static final long seedOffset;
520     static {
521     try {
522     seedOffset = unsafe.objectFieldOffset
523     (Random.class.getDeclaredField("seed"));
524 jsr166 1.16 } catch (Exception ex) { throw new Error(ex); }
525 dl 1.14 }
526     private void resetSeed(long seedVal) {
527     unsafe.putObjectVolatile(this, seedOffset, new AtomicLong(seedVal));
528     }
529 jsr166 1.11 }