ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Random.java
Revision: 1.20
Committed: Sun May 20 07:54:01 2007 UTC (17 years ago) by jsr166
Branch: MAIN
Changes since 1.19: +21 -3 lines
Log Message:
License update

File Contents

# User Rev Content
1 dl 1.1 /*
2 jsr166 1.20 * Copyright 1995-2007 Sun Microsystems, Inc. All Rights Reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 dl 1.1 *
5 jsr166 1.20 * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Sun designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Sun in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22     * CA 95054 USA or visit www.sun.com if you need additional information or
23     * have any questions.
24 dl 1.1 */
25    
26     package java.util;
27     import java.io.*;
28 dl 1.3 import java.util.concurrent.atomic.AtomicLong;
29 dl 1.14 import sun.misc.Unsafe;
30 dl 1.1
31     /**
32 jsr166 1.11 * An instance of this class is used to generate a stream of
33     * pseudorandom numbers. The class uses a 48-bit seed, which is
34     * modified using a linear congruential formula. (See Donald Knuth,
35 jsr166 1.12 * <i>The Art of Computer Programming, Volume 3</i>, Section 3.2.1.)
36 dl 1.1 * <p>
37 jsr166 1.12 * If two instances of {@code Random} are created with the same
38 jsr166 1.11 * seed, and the same sequence of method calls is made for each, they
39     * will generate and return identical sequences of numbers. In order to
40     * guarantee this property, particular algorithms are specified for the
41 jsr166 1.12 * class {@code Random}. Java implementations must use all the algorithms
42     * shown here for the class {@code Random}, for the sake of absolute
43     * portability of Java code. However, subclasses of class {@code Random}
44 jsr166 1.11 * are permitted to use other algorithms, so long as they adhere to the
45 dl 1.1 * general contracts for all the methods.
46     * <p>
47 jsr166 1.12 * The algorithms implemented by class {@code Random} use a
48     * {@code protected} utility method that on each invocation can supply
49 dl 1.1 * up to 32 pseudorandomly generated bits.
50     * <p>
51 jsr166 1.12 * Many applications will find the method {@link Math#random} simpler to use.
52 dl 1.1 *
53     * @author Frank Yellin
54 jsr166 1.15 * @version %I%, %G%
55 jsr166 1.12 * @since 1.0
56 dl 1.1 */
57     public
58     class Random implements java.io.Serializable {
59     /** use serialVersionUID from JDK 1.1 for interoperability */
60     static final long serialVersionUID = 3905348978240129619L;
61    
62     /**
63     * The internal state associated with this pseudorandom number generator.
64     * (The specs for the methods in this class describe the ongoing
65     * computation of this value.)
66     */
67 dl 1.14 private final AtomicLong seed;
68 dl 1.1
69     private final static long multiplier = 0x5DEECE66DL;
70     private final static long addend = 0xBL;
71     private final static long mask = (1L << 48) - 1;
72    
73 jsr166 1.4 /**
74     * Creates a new random number generator. This constructor sets
75     * the seed of the random number generator to a value very likely
76     * to be distinct from any other invocation of this constructor.
77 dl 1.1 */
78 jsr166 1.4 public Random() { this(++seedUniquifier + System.nanoTime()); }
79     private static volatile long seedUniquifier = 8682522807148012L;
80 dl 1.1
81 jsr166 1.11 /**
82 jsr166 1.12 * Creates a new random number generator using a single {@code long} seed.
83     * The seed is the initial value of the internal state of the pseudorandom
84     * number generator which is maintained by method {@link #next}.
85     *
86     * <p>The invocation {@code new Random(seed)} is equivalent to:
87     * <pre> {@code
88     * Random rnd = new Random();
89     * rnd.setSeed(seed);}</pre>
90 dl 1.1 *
91 jsr166 1.12 * @param seed the initial seed
92     * @see #setSeed(long)
93 dl 1.1 */
94     public Random(long seed) {
95 dl 1.3 this.seed = new AtomicLong(0L);
96 dl 1.1 setSeed(seed);
97     }
98    
99     /**
100 dl 1.9 * Sets the seed of this random number generator using a single
101 jsr166 1.12 * {@code long} seed. The general contract of {@code setSeed} is
102     * that it alters the state of this random number generator object
103     * so as to be in exactly the same state as if it had just been
104     * created with the argument {@code seed} as a seed. The method
105     * {@code setSeed} is implemented by class {@code Random} by
106     * atomically updating the seed to
107     * <pre>{@code (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)}</pre>
108     * and clearing the {@code haveNextNextGaussian} flag used by {@link
109     * #nextGaussian}.
110     *
111     * <p>The implementation of {@code setSeed} by class {@code Random}
112     * happens to use only 48 bits of the given seed. In general, however,
113     * an overriding method may use all 64 bits of the {@code long}
114     * argument as a seed value.
115 dl 1.1 *
116 jsr166 1.12 * @param seed the initial seed
117 dl 1.1 */
118     synchronized public void setSeed(long seed) {
119 dl 1.3 seed = (seed ^ multiplier) & mask;
120     this.seed.set(seed);
121 dl 1.1 haveNextNextGaussian = false;
122     }
123    
124     /**
125 jsr166 1.12 * Generates the next pseudorandom number. Subclasses should
126     * override this, as this is used by all other methods.
127     *
128     * <p>The general contract of {@code next} is that it returns an
129     * {@code int} value and if the argument {@code bits} is between
130     * {@code 1} and {@code 32} (inclusive), then that many low-order
131     * bits of the returned value will be (approximately) independently
132     * chosen bit values, each of which is (approximately) equally
133     * likely to be {@code 0} or {@code 1}. The method {@code next} is
134     * implemented by class {@code Random} by atomically updating the seed to
135     * <pre>{@code (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)}</pre>
136     * and returning
137     * <pre>{@code (int)(seed >>> (48 - bits))}.</pre>
138     *
139     * This is a linear congruential pseudorandom number generator, as
140     * defined by D. H. Lehmer and described by Donald E. Knuth in
141     * <i>The Art of Computer Programming,</i> Volume 3:
142     * <i>Seminumerical Algorithms</i>, section 3.2.1.
143     *
144     * @param bits random bits
145     * @return the next pseudorandom value from this random number
146     * generator's sequence
147     * @since 1.1
148 dl 1.1 */
149     protected int next(int bits) {
150     long oldseed, nextseed;
151 dl 1.6 AtomicLong seed = this.seed;
152 dl 1.1 do {
153 dl 1.9 oldseed = seed.get();
154     nextseed = (oldseed * multiplier + addend) & mask;
155 jsr166 1.19 } while (!seed.compareAndSet(oldseed, nextseed));
156 dl 1.1 return (int)(nextseed >>> (48 - bits));
157     }
158    
159     /**
160 jsr166 1.11 * Generates random bytes and places them into a user-supplied
161     * byte array. The number of random bytes produced is equal to
162 dl 1.1 * the length of the byte array.
163 jsr166 1.11 *
164 jsr166 1.12 * <p>The method {@code nextBytes} is implemented by class {@code Random}
165     * as if by:
166     * <pre> {@code
167     * public void nextBytes(byte[] bytes) {
168     * for (int i = 0; i < bytes.length; )
169     * for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
170     * n-- > 0; rnd >>= 8)
171     * bytes[i++] = (byte)rnd;
172     * }}</pre>
173     *
174     * @param bytes the byte array to fill with random bytes
175     * @throws NullPointerException if the byte array is null
176     * @since 1.1
177 dl 1.1 */
178     public void nextBytes(byte[] bytes) {
179 jsr166 1.12 for (int i = 0, len = bytes.length; i < len; )
180     for (int rnd = nextInt(),
181     n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
182     n-- > 0; rnd >>= Byte.SIZE)
183     bytes[i++] = (byte)rnd;
184 dl 1.1 }
185    
186     /**
187 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code int}
188 jsr166 1.11 * value from this random number generator's sequence. The general
189 jsr166 1.12 * contract of {@code nextInt} is that one {@code int} value is
190 dl 1.1 * pseudorandomly generated and returned. All 2<font size="-1"><sup>32
191 jsr166 1.12 * </sup></font> possible {@code int} values are produced with
192     * (approximately) equal probability.
193     *
194     * <p>The method {@code nextInt} is implemented by class {@code Random}
195     * as if by:
196     * <pre> {@code
197     * public int nextInt() {
198     * return next(32);
199     * }}</pre>
200 dl 1.1 *
201 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code int}
202     * value from this random number generator's sequence
203 dl 1.1 */
204 jsr166 1.12 public int nextInt() {
205     return next(32);
206     }
207 dl 1.1
208     /**
209 jsr166 1.12 * Returns a pseudorandom, uniformly distributed {@code int} value
210 dl 1.1 * between 0 (inclusive) and the specified value (exclusive), drawn from
211     * this random number generator's sequence. The general contract of
212 jsr166 1.12 * {@code nextInt} is that one {@code int} value in the specified range
213     * is pseudorandomly generated and returned. All {@code n} possible
214     * {@code int} values are produced with (approximately) equal
215     * probability. The method {@code nextInt(int n)} is implemented by
216     * class {@code Random} as if by:
217     * <pre> {@code
218 dl 1.1 * public int nextInt(int n) {
219 jsr166 1.12 * if (n <= 0)
220     * throw new IllegalArgumentException("n must be positive");
221     *
222     * if ((n & -n) == n) // i.e., n is a power of 2
223     * return (int)((n * (long)next(31)) >> 31);
224 dl 1.1 *
225 jsr166 1.12 * int bits, val;
226     * do {
227     * bits = next(31);
228     * val = bits % n;
229     * } while (bits - val + (n-1) < 0);
230     * return val;
231     * }}</pre>
232 dl 1.1 *
233 jsr166 1.12 * <p>The hedge "approximately" is used in the foregoing description only
234 dl 1.1 * because the next method is only approximately an unbiased source of
235 jsr166 1.11 * independently chosen bits. If it were a perfect source of randomly
236 jsr166 1.12 * chosen bits, then the algorithm shown would choose {@code int}
237 dl 1.1 * values from the stated range with perfect uniformity.
238     * <p>
239     * The algorithm is slightly tricky. It rejects values that would result
240     * in an uneven distribution (due to the fact that 2^31 is not divisible
241     * by n). The probability of a value being rejected depends on n. The
242     * worst case is n=2^30+1, for which the probability of a reject is 1/2,
243     * and the expected number of iterations before the loop terminates is 2.
244     * <p>
245     * The algorithm treats the case where n is a power of two specially: it
246     * returns the correct number of high-order bits from the underlying
247     * pseudo-random number generator. In the absence of special treatment,
248     * the correct number of <i>low-order</i> bits would be returned. Linear
249     * congruential pseudo-random number generators such as the one
250     * implemented by this class are known to have short periods in the
251     * sequence of values of their low-order bits. Thus, this special case
252     * greatly increases the length of the sequence of values returned by
253     * successive calls to this method if n is a small power of two.
254     *
255     * @param n the bound on the random number to be returned. Must be
256     * positive.
257 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code int}
258     * value between {@code 0} (inclusive) and {@code n} (exclusive)
259     * from this random number generator's sequence
260     * @exception IllegalArgumentException if n is not positive
261 dl 1.1 * @since 1.2
262     */
263    
264     public int nextInt(int n) {
265 jsr166 1.12 if (n <= 0)
266 dl 1.1 throw new IllegalArgumentException("n must be positive");
267    
268     if ((n & -n) == n) // i.e., n is a power of 2
269     return (int)((n * (long)next(31)) >> 31);
270    
271     int bits, val;
272     do {
273     bits = next(31);
274     val = bits % n;
275 jsr166 1.12 } while (bits - val + (n-1) < 0);
276 dl 1.1 return val;
277     }
278    
279     /**
280 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code long}
281 jsr166 1.11 * value from this random number generator's sequence. The general
282 jsr166 1.12 * contract of {@code nextLong} is that one {@code long} value is
283     * pseudorandomly generated and returned.
284     *
285     * <p>The method {@code nextLong} is implemented by class {@code Random}
286     * as if by:
287     * <pre> {@code
288 dl 1.1 * public long nextLong() {
289 jsr166 1.12 * return ((long)next(32) << 32) + next(32);
290     * }}</pre>
291 dl 1.1 *
292 jsr166 1.12 * Because class {@code Random} uses a seed with only 48 bits,
293     * this algorithm will not return all possible {@code long} values.
294     *
295     * @return the next pseudorandom, uniformly distributed {@code long}
296     * value from this random number generator's sequence
297 dl 1.1 */
298     public long nextLong() {
299     // it's okay that the bottom word remains signed.
300     return ((long)(next(32)) << 32) + next(32);
301     }
302    
303     /**
304     * Returns the next pseudorandom, uniformly distributed
305 jsr166 1.12 * {@code boolean} value from this random number generator's
306     * sequence. The general contract of {@code nextBoolean} is that one
307     * {@code boolean} value is pseudorandomly generated and returned. The
308     * values {@code true} and {@code false} are produced with
309     * (approximately) equal probability.
310     *
311     * <p>The method {@code nextBoolean} is implemented by class {@code Random}
312     * as if by:
313     * <pre> {@code
314     * public boolean nextBoolean() {
315     * return next(1) != 0;
316     * }}</pre>
317     *
318     * @return the next pseudorandom, uniformly distributed
319     * {@code boolean} value from this random number generator's
320     * sequence
321 dl 1.1 * @since 1.2
322     */
323 jsr166 1.12 public boolean nextBoolean() {
324     return next(1) != 0;
325     }
326 dl 1.1
327     /**
328 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code float}
329     * value between {@code 0.0} and {@code 1.0} from this random
330     * number generator's sequence.
331     *
332     * <p>The general contract of {@code nextFloat} is that one
333     * {@code float} value, chosen (approximately) uniformly from the
334     * range {@code 0.0f} (inclusive) to {@code 1.0f} (exclusive), is
335     * pseudorandomly generated and returned. All 2<font
336     * size="-1"><sup>24</sup></font> possible {@code float} values
337     * of the form <i>m&nbsp;x&nbsp</i>2<font
338     * size="-1"><sup>-24</sup></font>, where <i>m</i> is a positive
339     * integer less than 2<font size="-1"><sup>24</sup> </font>, are
340     * produced with (approximately) equal probability.
341     *
342     * <p>The method {@code nextFloat} is implemented by class {@code Random}
343     * as if by:
344     * <pre> {@code
345 dl 1.1 * public float nextFloat() {
346 jsr166 1.12 * return next(24) / ((float)(1 << 24));
347     * }}</pre>
348     *
349     * <p>The hedge "approximately" is used in the foregoing description only
350 jsr166 1.11 * because the next method is only approximately an unbiased source of
351 jsr166 1.12 * independently chosen bits. If it were a perfect source of randomly
352     * chosen bits, then the algorithm shown would choose {@code float}
353 dl 1.1 * values from the stated range with perfect uniformity.<p>
354     * [In early versions of Java, the result was incorrectly calculated as:
355 jsr166 1.12 * <pre> {@code
356     * return next(30) / ((float)(1 << 30));}</pre>
357 jsr166 1.11 * This might seem to be equivalent, if not better, but in fact it
358     * introduced a slight nonuniformity because of the bias in the rounding
359     * of floating-point numbers: it was slightly more likely that the
360     * low-order bit of the significand would be 0 than that it would be 1.]
361 dl 1.1 *
362 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code float}
363     * value between {@code 0.0} and {@code 1.0} from this
364     * random number generator's sequence
365 dl 1.1 */
366     public float nextFloat() {
367 jsr166 1.12 return next(24) / ((float)(1 << 24));
368 dl 1.1 }
369    
370     /**
371 jsr166 1.11 * Returns the next pseudorandom, uniformly distributed
372 jsr166 1.12 * {@code double} value between {@code 0.0} and
373     * {@code 1.0} from this random number generator's sequence.
374     *
375     * <p>The general contract of {@code nextDouble} is that one
376     * {@code double} value, chosen (approximately) uniformly from the
377     * range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
378     * pseudorandomly generated and returned.
379     *
380     * <p>The method {@code nextDouble} is implemented by class {@code Random}
381     * as if by:
382     * <pre> {@code
383 dl 1.1 * public double nextDouble() {
384 jsr166 1.12 * return (((long)next(26) << 27) + next(27))
385     * / (double)(1L << 53);
386     * }}</pre>
387     *
388     * <p>The hedge "approximately" is used in the foregoing description only
389     * because the {@code next} method is only approximately an unbiased
390     * source of independently chosen bits. If it were a perfect source of
391 jsr166 1.11 * randomly chosen bits, then the algorithm shown would choose
392 jsr166 1.12 * {@code double} values from the stated range with perfect uniformity.
393 dl 1.1 * <p>[In early versions of Java, the result was incorrectly calculated as:
394 jsr166 1.12 * <pre> {@code
395     * return (((long)next(27) << 27) + next(27))
396     * / (double)(1L << 54);}</pre>
397 jsr166 1.11 * This might seem to be equivalent, if not better, but in fact it
398     * introduced a large nonuniformity because of the bias in the rounding
399     * of floating-point numbers: it was three times as likely that the
400 jsr166 1.12 * low-order bit of the significand would be 0 than that it would be 1!
401     * This nonuniformity probably doesn't matter much in practice, but we
402     * strive for perfection.]
403     *
404     * @return the next pseudorandom, uniformly distributed {@code double}
405     * value between {@code 0.0} and {@code 1.0} from this
406     * random number generator's sequence
407     * @see Math#random
408 dl 1.1 */
409     public double nextDouble() {
410 jsr166 1.12 return (((long)(next(26)) << 27) + next(27))
411     / (double)(1L << 53);
412 dl 1.1 }
413    
414     private double nextNextGaussian;
415     private boolean haveNextNextGaussian = false;
416    
417     /**
418     * Returns the next pseudorandom, Gaussian ("normally") distributed
419 jsr166 1.12 * {@code double} value with mean {@code 0.0} and standard
420     * deviation {@code 1.0} from this random number generator's sequence.
421 dl 1.1 * <p>
422 jsr166 1.12 * The general contract of {@code nextGaussian} is that one
423     * {@code double} value, chosen from (approximately) the usual
424     * normal distribution with mean {@code 0.0} and standard deviation
425     * {@code 1.0}, is pseudorandomly generated and returned.
426     *
427     * <p>The method {@code nextGaussian} is implemented by class
428     * {@code Random} as if by a threadsafe version of the following:
429     * <pre> {@code
430     * private double nextNextGaussian;
431     * private boolean haveNextNextGaussian = false;
432     *
433 dl 1.9 * public double nextGaussian() {
434 jsr166 1.12 * if (haveNextNextGaussian) {
435     * haveNextNextGaussian = false;
436     * return nextNextGaussian;
437     * } else {
438     * double v1, v2, s;
439     * do {
440     * v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0
441     * v2 = 2 * nextDouble() - 1; // between -1.0 and 1.0
442     * s = v1 * v1 + v2 * v2;
443     * } while (s >= 1 || s == 0);
444     * double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
445     * nextNextGaussian = v2 * multiplier;
446     * haveNextNextGaussian = true;
447     * return v1 * multiplier;
448     * }
449     * }}</pre>
450 jsr166 1.11 * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
451     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
452 jsr166 1.12 * Computer Programming</i>, Volume 3: <i>Seminumerical Algorithms</i>,
453 dl 1.1 * section 3.4.1, subsection C, algorithm P. Note that it generates two
454 jsr166 1.12 * independent values at the cost of only one call to {@code StrictMath.log}
455     * and one call to {@code StrictMath.sqrt}.
456 dl 1.1 *
457 jsr166 1.12 * @return the next pseudorandom, Gaussian ("normally") distributed
458     * {@code double} value with mean {@code 0.0} and
459     * standard deviation {@code 1.0} from this random number
460     * generator's sequence
461 dl 1.1 */
462     synchronized public double nextGaussian() {
463     // See Knuth, ACP, Section 3.4.1 Algorithm C.
464     if (haveNextNextGaussian) {
465     haveNextNextGaussian = false;
466     return nextNextGaussian;
467     } else {
468     double v1, v2, s;
469 jsr166 1.11 do {
470 dl 1.1 v1 = 2 * nextDouble() - 1; // between -1 and 1
471 jsr166 1.11 v2 = 2 * nextDouble() - 1; // between -1 and 1
472 dl 1.1 s = v1 * v1 + v2 * v2;
473     } while (s >= 1 || s == 0);
474 dl 1.9 double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
475 dl 1.1 nextNextGaussian = v2 * multiplier;
476     haveNextNextGaussian = true;
477     return v1 * multiplier;
478     }
479     }
480    
481     /**
482     * Serializable fields for Random.
483     *
484 jsr166 1.19 * @serialField seed long
485 dl 1.1 * seed for random computations
486 jsr166 1.19 * @serialField nextNextGaussian double
487 dl 1.1 * next Gaussian to be returned
488     * @serialField haveNextNextGaussian boolean
489     * nextNextGaussian is valid
490     */
491     private static final ObjectStreamField[] serialPersistentFields = {
492     new ObjectStreamField("seed", Long.TYPE),
493     new ObjectStreamField("nextNextGaussian", Double.TYPE),
494     new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
495 jsr166 1.12 };
496 dl 1.1
497     /**
498 jsr166 1.12 * Reconstitute the {@code Random} instance from a stream (that is,
499     * deserialize it).
500 dl 1.1 */
501     private void readObject(java.io.ObjectInputStream s)
502     throws java.io.IOException, ClassNotFoundException {
503    
504     ObjectInputStream.GetField fields = s.readFields();
505    
506 jsr166 1.12 // The seed is read in as {@code long} for
507     // historical reasons, but it is converted to an AtomicLong.
508     long seedVal = (long) fields.get("seed", -1L);
509 dl 1.1 if (seedVal < 0)
510     throw new java.io.StreamCorruptedException(
511     "Random: invalid seed");
512 dl 1.14 resetSeed(seedVal);
513 dl 1.1 nextNextGaussian = fields.get("nextNextGaussian", 0.0);
514     haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
515     }
516    
517     /**
518 jsr166 1.12 * Save the {@code Random} instance to a stream.
519 dl 1.1 */
520 jsr166 1.12 synchronized private void writeObject(ObjectOutputStream s)
521     throws IOException {
522    
523 dl 1.1 // set the values of the Serializable fields
524     ObjectOutputStream.PutField fields = s.putFields();
525 jsr166 1.12
526     // The seed is serialized as a long for historical reasons.
527 dl 1.3 fields.put("seed", seed.get());
528 dl 1.1 fields.put("nextNextGaussian", nextNextGaussian);
529     fields.put("haveNextNextGaussian", haveNextNextGaussian);
530    
531     // save them
532     s.writeFields();
533     }
534    
535 dl 1.14 // Support for resetting seed while deserializing
536     private static final Unsafe unsafe = Unsafe.getUnsafe();
537     private static final long seedOffset;
538     static {
539     try {
540     seedOffset = unsafe.objectFieldOffset
541     (Random.class.getDeclaredField("seed"));
542 jsr166 1.16 } catch (Exception ex) { throw new Error(ex); }
543 dl 1.14 }
544     private void resetSeed(long seedVal) {
545     unsafe.putObjectVolatile(this, seedOffset, new AtomicLong(seedVal));
546     }
547 jsr166 1.11 }