ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Random.java
Revision: 1.24
Committed: Wed Jul 22 00:00:54 2009 UTC (14 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.23: +2 -2 lines
Log Message:
6655123: Incorrect ref to The Art of Computer Programming in doc for java.util.Random

File Contents

# User Rev Content
1 dl 1.1 /*
2 jsr166 1.24 * Copyright 1995-2008 Sun Microsystems, Inc. All Rights Reserved.
3 jsr166 1.20 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 dl 1.1 *
5 jsr166 1.20 * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Sun designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Sun in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22     * CA 95054 USA or visit www.sun.com if you need additional information or
23     * have any questions.
24 dl 1.1 */
25    
26     package java.util;
27     import java.io.*;
28 dl 1.3 import java.util.concurrent.atomic.AtomicLong;
29 dl 1.14 import sun.misc.Unsafe;
30 dl 1.1
31     /**
32 jsr166 1.11 * An instance of this class is used to generate a stream of
33     * pseudorandom numbers. The class uses a 48-bit seed, which is
34     * modified using a linear congruential formula. (See Donald Knuth,
35 jsr166 1.24 * <i>The Art of Computer Programming, Volume 2</i>, Section 3.2.1.)
36 dl 1.1 * <p>
37 jsr166 1.12 * If two instances of {@code Random} are created with the same
38 jsr166 1.11 * seed, and the same sequence of method calls is made for each, they
39     * will generate and return identical sequences of numbers. In order to
40     * guarantee this property, particular algorithms are specified for the
41 jsr166 1.12 * class {@code Random}. Java implementations must use all the algorithms
42     * shown here for the class {@code Random}, for the sake of absolute
43     * portability of Java code. However, subclasses of class {@code Random}
44 jsr166 1.11 * are permitted to use other algorithms, so long as they adhere to the
45 dl 1.1 * general contracts for all the methods.
46     * <p>
47 jsr166 1.12 * The algorithms implemented by class {@code Random} use a
48     * {@code protected} utility method that on each invocation can supply
49 dl 1.1 * up to 32 pseudorandomly generated bits.
50     * <p>
51 jsr166 1.12 * Many applications will find the method {@link Math#random} simpler to use.
52 dl 1.1 *
53     * @author Frank Yellin
54 jsr166 1.12 * @since 1.0
55 dl 1.1 */
56     public
57     class Random implements java.io.Serializable {
58     /** use serialVersionUID from JDK 1.1 for interoperability */
59     static final long serialVersionUID = 3905348978240129619L;
60    
61     /**
62     * The internal state associated with this pseudorandom number generator.
63     * (The specs for the methods in this class describe the ongoing
64     * computation of this value.)
65     */
66 dl 1.14 private final AtomicLong seed;
67 dl 1.1
68     private final static long multiplier = 0x5DEECE66DL;
69     private final static long addend = 0xBL;
70     private final static long mask = (1L << 48) - 1;
71    
72 jsr166 1.4 /**
73     * Creates a new random number generator. This constructor sets
74     * the seed of the random number generator to a value very likely
75     * to be distinct from any other invocation of this constructor.
76 dl 1.1 */
77 jsr166 1.4 public Random() { this(++seedUniquifier + System.nanoTime()); }
78     private static volatile long seedUniquifier = 8682522807148012L;
79 dl 1.1
80 jsr166 1.11 /**
81 jsr166 1.12 * Creates a new random number generator using a single {@code long} seed.
82     * The seed is the initial value of the internal state of the pseudorandom
83     * number generator which is maintained by method {@link #next}.
84     *
85     * <p>The invocation {@code new Random(seed)} is equivalent to:
86     * <pre> {@code
87     * Random rnd = new Random();
88     * rnd.setSeed(seed);}</pre>
89 dl 1.1 *
90 jsr166 1.12 * @param seed the initial seed
91     * @see #setSeed(long)
92 dl 1.1 */
93     public Random(long seed) {
94 dl 1.3 this.seed = new AtomicLong(0L);
95 dl 1.1 setSeed(seed);
96     }
97    
98     /**
99 dl 1.9 * Sets the seed of this random number generator using a single
100 jsr166 1.12 * {@code long} seed. The general contract of {@code setSeed} is
101     * that it alters the state of this random number generator object
102     * so as to be in exactly the same state as if it had just been
103     * created with the argument {@code seed} as a seed. The method
104     * {@code setSeed} is implemented by class {@code Random} by
105     * atomically updating the seed to
106     * <pre>{@code (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)}</pre>
107     * and clearing the {@code haveNextNextGaussian} flag used by {@link
108     * #nextGaussian}.
109     *
110     * <p>The implementation of {@code setSeed} by class {@code Random}
111     * happens to use only 48 bits of the given seed. In general, however,
112     * an overriding method may use all 64 bits of the {@code long}
113     * argument as a seed value.
114 dl 1.1 *
115 jsr166 1.12 * @param seed the initial seed
116 dl 1.1 */
117     synchronized public void setSeed(long seed) {
118 dl 1.3 seed = (seed ^ multiplier) & mask;
119     this.seed.set(seed);
120 jsr166 1.21 haveNextNextGaussian = false;
121 dl 1.1 }
122    
123     /**
124 jsr166 1.12 * Generates the next pseudorandom number. Subclasses should
125     * override this, as this is used by all other methods.
126     *
127     * <p>The general contract of {@code next} is that it returns an
128     * {@code int} value and if the argument {@code bits} is between
129     * {@code 1} and {@code 32} (inclusive), then that many low-order
130     * bits of the returned value will be (approximately) independently
131     * chosen bit values, each of which is (approximately) equally
132     * likely to be {@code 0} or {@code 1}. The method {@code next} is
133     * implemented by class {@code Random} by atomically updating the seed to
134     * <pre>{@code (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)}</pre>
135     * and returning
136     * <pre>{@code (int)(seed >>> (48 - bits))}.</pre>
137     *
138     * This is a linear congruential pseudorandom number generator, as
139     * defined by D. H. Lehmer and described by Donald E. Knuth in
140     * <i>The Art of Computer Programming,</i> Volume 3:
141     * <i>Seminumerical Algorithms</i>, section 3.2.1.
142     *
143     * @param bits random bits
144     * @return the next pseudorandom value from this random number
145     * generator's sequence
146     * @since 1.1
147 dl 1.1 */
148     protected int next(int bits) {
149     long oldseed, nextseed;
150 dl 1.6 AtomicLong seed = this.seed;
151 dl 1.1 do {
152 jsr166 1.21 oldseed = seed.get();
153     nextseed = (oldseed * multiplier + addend) & mask;
154 jsr166 1.19 } while (!seed.compareAndSet(oldseed, nextseed));
155 dl 1.1 return (int)(nextseed >>> (48 - bits));
156     }
157    
158     /**
159 jsr166 1.11 * Generates random bytes and places them into a user-supplied
160     * byte array. The number of random bytes produced is equal to
161 dl 1.1 * the length of the byte array.
162 jsr166 1.11 *
163 jsr166 1.12 * <p>The method {@code nextBytes} is implemented by class {@code Random}
164     * as if by:
165     * <pre> {@code
166     * public void nextBytes(byte[] bytes) {
167     * for (int i = 0; i < bytes.length; )
168     * for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
169     * n-- > 0; rnd >>= 8)
170     * bytes[i++] = (byte)rnd;
171     * }}</pre>
172     *
173     * @param bytes the byte array to fill with random bytes
174     * @throws NullPointerException if the byte array is null
175     * @since 1.1
176 dl 1.1 */
177     public void nextBytes(byte[] bytes) {
178 jsr166 1.21 for (int i = 0, len = bytes.length; i < len; )
179     for (int rnd = nextInt(),
180     n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
181     n-- > 0; rnd >>= Byte.SIZE)
182     bytes[i++] = (byte)rnd;
183 dl 1.1 }
184    
185     /**
186 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code int}
187 jsr166 1.11 * value from this random number generator's sequence. The general
188 jsr166 1.12 * contract of {@code nextInt} is that one {@code int} value is
189 dl 1.1 * pseudorandomly generated and returned. All 2<font size="-1"><sup>32
190 jsr166 1.12 * </sup></font> possible {@code int} values are produced with
191     * (approximately) equal probability.
192     *
193     * <p>The method {@code nextInt} is implemented by class {@code Random}
194     * as if by:
195     * <pre> {@code
196     * public int nextInt() {
197     * return next(32);
198     * }}</pre>
199 dl 1.1 *
200 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code int}
201     * value from this random number generator's sequence
202 dl 1.1 */
203 jsr166 1.12 public int nextInt() {
204 jsr166 1.21 return next(32);
205 jsr166 1.12 }
206 dl 1.1
207     /**
208 jsr166 1.12 * Returns a pseudorandom, uniformly distributed {@code int} value
209 dl 1.1 * between 0 (inclusive) and the specified value (exclusive), drawn from
210     * this random number generator's sequence. The general contract of
211 jsr166 1.12 * {@code nextInt} is that one {@code int} value in the specified range
212     * is pseudorandomly generated and returned. All {@code n} possible
213     * {@code int} values are produced with (approximately) equal
214     * probability. The method {@code nextInt(int n)} is implemented by
215     * class {@code Random} as if by:
216     * <pre> {@code
217 dl 1.1 * public int nextInt(int n) {
218 jsr166 1.12 * if (n <= 0)
219     * throw new IllegalArgumentException("n must be positive");
220     *
221     * if ((n & -n) == n) // i.e., n is a power of 2
222     * return (int)((n * (long)next(31)) >> 31);
223 dl 1.1 *
224 jsr166 1.12 * int bits, val;
225     * do {
226     * bits = next(31);
227     * val = bits % n;
228     * } while (bits - val + (n-1) < 0);
229     * return val;
230     * }}</pre>
231 dl 1.1 *
232 jsr166 1.12 * <p>The hedge "approximately" is used in the foregoing description only
233 dl 1.1 * because the next method is only approximately an unbiased source of
234 jsr166 1.11 * independently chosen bits. If it were a perfect source of randomly
235 jsr166 1.12 * chosen bits, then the algorithm shown would choose {@code int}
236 dl 1.1 * values from the stated range with perfect uniformity.
237     * <p>
238     * The algorithm is slightly tricky. It rejects values that would result
239     * in an uneven distribution (due to the fact that 2^31 is not divisible
240     * by n). The probability of a value being rejected depends on n. The
241     * worst case is n=2^30+1, for which the probability of a reject is 1/2,
242     * and the expected number of iterations before the loop terminates is 2.
243     * <p>
244     * The algorithm treats the case where n is a power of two specially: it
245     * returns the correct number of high-order bits from the underlying
246     * pseudo-random number generator. In the absence of special treatment,
247     * the correct number of <i>low-order</i> bits would be returned. Linear
248     * congruential pseudo-random number generators such as the one
249     * implemented by this class are known to have short periods in the
250     * sequence of values of their low-order bits. Thus, this special case
251     * greatly increases the length of the sequence of values returned by
252     * successive calls to this method if n is a small power of two.
253     *
254     * @param n the bound on the random number to be returned. Must be
255 jsr166 1.21 * positive.
256 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code int}
257     * value between {@code 0} (inclusive) and {@code n} (exclusive)
258     * from this random number generator's sequence
259     * @exception IllegalArgumentException if n is not positive
260 dl 1.1 * @since 1.2
261     */
262    
263     public int nextInt(int n) {
264 jsr166 1.12 if (n <= 0)
265 dl 1.1 throw new IllegalArgumentException("n must be positive");
266    
267     if ((n & -n) == n) // i.e., n is a power of 2
268     return (int)((n * (long)next(31)) >> 31);
269    
270     int bits, val;
271     do {
272     bits = next(31);
273     val = bits % n;
274 jsr166 1.12 } while (bits - val + (n-1) < 0);
275 dl 1.1 return val;
276     }
277    
278     /**
279 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code long}
280 jsr166 1.11 * value from this random number generator's sequence. The general
281 jsr166 1.12 * contract of {@code nextLong} is that one {@code long} value is
282     * pseudorandomly generated and returned.
283     *
284     * <p>The method {@code nextLong} is implemented by class {@code Random}
285     * as if by:
286     * <pre> {@code
287 dl 1.1 * public long nextLong() {
288 jsr166 1.12 * return ((long)next(32) << 32) + next(32);
289     * }}</pre>
290 dl 1.1 *
291 jsr166 1.12 * Because class {@code Random} uses a seed with only 48 bits,
292     * this algorithm will not return all possible {@code long} values.
293     *
294     * @return the next pseudorandom, uniformly distributed {@code long}
295     * value from this random number generator's sequence
296 dl 1.1 */
297     public long nextLong() {
298     // it's okay that the bottom word remains signed.
299     return ((long)(next(32)) << 32) + next(32);
300     }
301    
302     /**
303     * Returns the next pseudorandom, uniformly distributed
304 jsr166 1.12 * {@code boolean} value from this random number generator's
305     * sequence. The general contract of {@code nextBoolean} is that one
306     * {@code boolean} value is pseudorandomly generated and returned. The
307     * values {@code true} and {@code false} are produced with
308     * (approximately) equal probability.
309     *
310     * <p>The method {@code nextBoolean} is implemented by class {@code Random}
311     * as if by:
312     * <pre> {@code
313     * public boolean nextBoolean() {
314     * return next(1) != 0;
315     * }}</pre>
316     *
317     * @return the next pseudorandom, uniformly distributed
318     * {@code boolean} value from this random number generator's
319 jsr166 1.21 * sequence
320 dl 1.1 * @since 1.2
321     */
322 jsr166 1.12 public boolean nextBoolean() {
323 jsr166 1.21 return next(1) != 0;
324 jsr166 1.12 }
325 dl 1.1
326     /**
327 jsr166 1.12 * Returns the next pseudorandom, uniformly distributed {@code float}
328     * value between {@code 0.0} and {@code 1.0} from this random
329     * number generator's sequence.
330     *
331     * <p>The general contract of {@code nextFloat} is that one
332     * {@code float} value, chosen (approximately) uniformly from the
333     * range {@code 0.0f} (inclusive) to {@code 1.0f} (exclusive), is
334     * pseudorandomly generated and returned. All 2<font
335     * size="-1"><sup>24</sup></font> possible {@code float} values
336     * of the form <i>m&nbsp;x&nbsp</i>2<font
337     * size="-1"><sup>-24</sup></font>, where <i>m</i> is a positive
338     * integer less than 2<font size="-1"><sup>24</sup> </font>, are
339     * produced with (approximately) equal probability.
340     *
341     * <p>The method {@code nextFloat} is implemented by class {@code Random}
342     * as if by:
343     * <pre> {@code
344 dl 1.1 * public float nextFloat() {
345 jsr166 1.12 * return next(24) / ((float)(1 << 24));
346     * }}</pre>
347     *
348     * <p>The hedge "approximately" is used in the foregoing description only
349 jsr166 1.11 * because the next method is only approximately an unbiased source of
350 jsr166 1.12 * independently chosen bits. If it were a perfect source of randomly
351     * chosen bits, then the algorithm shown would choose {@code float}
352 dl 1.1 * values from the stated range with perfect uniformity.<p>
353     * [In early versions of Java, the result was incorrectly calculated as:
354 jsr166 1.12 * <pre> {@code
355     * return next(30) / ((float)(1 << 30));}</pre>
356 jsr166 1.11 * This might seem to be equivalent, if not better, but in fact it
357     * introduced a slight nonuniformity because of the bias in the rounding
358     * of floating-point numbers: it was slightly more likely that the
359     * low-order bit of the significand would be 0 than that it would be 1.]
360 dl 1.1 *
361 jsr166 1.12 * @return the next pseudorandom, uniformly distributed {@code float}
362     * value between {@code 0.0} and {@code 1.0} from this
363     * random number generator's sequence
364 dl 1.1 */
365     public float nextFloat() {
366 jsr166 1.12 return next(24) / ((float)(1 << 24));
367 dl 1.1 }
368    
369     /**
370 jsr166 1.11 * Returns the next pseudorandom, uniformly distributed
371 jsr166 1.12 * {@code double} value between {@code 0.0} and
372     * {@code 1.0} from this random number generator's sequence.
373     *
374     * <p>The general contract of {@code nextDouble} is that one
375     * {@code double} value, chosen (approximately) uniformly from the
376     * range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
377     * pseudorandomly generated and returned.
378     *
379     * <p>The method {@code nextDouble} is implemented by class {@code Random}
380     * as if by:
381     * <pre> {@code
382 dl 1.1 * public double nextDouble() {
383 jsr166 1.12 * return (((long)next(26) << 27) + next(27))
384     * / (double)(1L << 53);
385     * }}</pre>
386     *
387     * <p>The hedge "approximately" is used in the foregoing description only
388     * because the {@code next} method is only approximately an unbiased
389     * source of independently chosen bits. If it were a perfect source of
390 jsr166 1.11 * randomly chosen bits, then the algorithm shown would choose
391 jsr166 1.12 * {@code double} values from the stated range with perfect uniformity.
392 dl 1.1 * <p>[In early versions of Java, the result was incorrectly calculated as:
393 jsr166 1.12 * <pre> {@code
394     * return (((long)next(27) << 27) + next(27))
395     * / (double)(1L << 54);}</pre>
396 jsr166 1.11 * This might seem to be equivalent, if not better, but in fact it
397     * introduced a large nonuniformity because of the bias in the rounding
398     * of floating-point numbers: it was three times as likely that the
399 jsr166 1.12 * low-order bit of the significand would be 0 than that it would be 1!
400     * This nonuniformity probably doesn't matter much in practice, but we
401     * strive for perfection.]
402     *
403     * @return the next pseudorandom, uniformly distributed {@code double}
404     * value between {@code 0.0} and {@code 1.0} from this
405     * random number generator's sequence
406     * @see Math#random
407 dl 1.1 */
408     public double nextDouble() {
409 jsr166 1.12 return (((long)(next(26)) << 27) + next(27))
410 jsr166 1.21 / (double)(1L << 53);
411 dl 1.1 }
412    
413     private double nextNextGaussian;
414     private boolean haveNextNextGaussian = false;
415    
416     /**
417     * Returns the next pseudorandom, Gaussian ("normally") distributed
418 jsr166 1.12 * {@code double} value with mean {@code 0.0} and standard
419     * deviation {@code 1.0} from this random number generator's sequence.
420 dl 1.1 * <p>
421 jsr166 1.12 * The general contract of {@code nextGaussian} is that one
422     * {@code double} value, chosen from (approximately) the usual
423     * normal distribution with mean {@code 0.0} and standard deviation
424     * {@code 1.0}, is pseudorandomly generated and returned.
425     *
426     * <p>The method {@code nextGaussian} is implemented by class
427     * {@code Random} as if by a threadsafe version of the following:
428     * <pre> {@code
429     * private double nextNextGaussian;
430     * private boolean haveNextNextGaussian = false;
431     *
432 dl 1.9 * public double nextGaussian() {
433 jsr166 1.12 * if (haveNextNextGaussian) {
434     * haveNextNextGaussian = false;
435     * return nextNextGaussian;
436     * } else {
437     * double v1, v2, s;
438     * do {
439     * v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0
440     * v2 = 2 * nextDouble() - 1; // between -1.0 and 1.0
441     * s = v1 * v1 + v2 * v2;
442     * } while (s >= 1 || s == 0);
443     * double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
444     * nextNextGaussian = v2 * multiplier;
445     * haveNextNextGaussian = true;
446     * return v1 * multiplier;
447     * }
448     * }}</pre>
449 jsr166 1.11 * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
450     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
451 jsr166 1.12 * Computer Programming</i>, Volume 3: <i>Seminumerical Algorithms</i>,
452 dl 1.1 * section 3.4.1, subsection C, algorithm P. Note that it generates two
453 jsr166 1.12 * independent values at the cost of only one call to {@code StrictMath.log}
454     * and one call to {@code StrictMath.sqrt}.
455 dl 1.1 *
456 jsr166 1.12 * @return the next pseudorandom, Gaussian ("normally") distributed
457     * {@code double} value with mean {@code 0.0} and
458     * standard deviation {@code 1.0} from this random number
459     * generator's sequence
460 dl 1.1 */
461     synchronized public double nextGaussian() {
462     // See Knuth, ACP, Section 3.4.1 Algorithm C.
463     if (haveNextNextGaussian) {
464 jsr166 1.21 haveNextNextGaussian = false;
465     return nextNextGaussian;
466     } else {
467 dl 1.1 double v1, v2, s;
468 jsr166 1.21 do {
469 dl 1.1 v1 = 2 * nextDouble() - 1; // between -1 and 1
470 jsr166 1.21 v2 = 2 * nextDouble() - 1; // between -1 and 1
471 dl 1.1 s = v1 * v1 + v2 * v2;
472 jsr166 1.21 } while (s >= 1 || s == 0);
473     double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
474     nextNextGaussian = v2 * multiplier;
475     haveNextNextGaussian = true;
476     return v1 * multiplier;
477 dl 1.1 }
478     }
479    
480     /**
481     * Serializable fields for Random.
482     *
483 jsr166 1.19 * @serialField seed long
484 dl 1.1 * seed for random computations
485 jsr166 1.19 * @serialField nextNextGaussian double
486 dl 1.1 * next Gaussian to be returned
487     * @serialField haveNextNextGaussian boolean
488     * nextNextGaussian is valid
489     */
490     private static final ObjectStreamField[] serialPersistentFields = {
491     new ObjectStreamField("seed", Long.TYPE),
492     new ObjectStreamField("nextNextGaussian", Double.TYPE),
493     new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
494 jsr166 1.12 };
495 dl 1.1
496     /**
497 jsr166 1.12 * Reconstitute the {@code Random} instance from a stream (that is,
498     * deserialize it).
499 dl 1.1 */
500     private void readObject(java.io.ObjectInputStream s)
501     throws java.io.IOException, ClassNotFoundException {
502    
503     ObjectInputStream.GetField fields = s.readFields();
504    
505 jsr166 1.21 // The seed is read in as {@code long} for
506     // historical reasons, but it is converted to an AtomicLong.
507 jsr166 1.23 long seedVal = fields.get("seed", -1L);
508 dl 1.1 if (seedVal < 0)
509     throw new java.io.StreamCorruptedException(
510     "Random: invalid seed");
511 dl 1.14 resetSeed(seedVal);
512 dl 1.1 nextNextGaussian = fields.get("nextNextGaussian", 0.0);
513     haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
514     }
515    
516     /**
517 jsr166 1.12 * Save the {@code Random} instance to a stream.
518 dl 1.1 */
519 jsr166 1.12 synchronized private void writeObject(ObjectOutputStream s)
520 jsr166 1.21 throws IOException {
521 jsr166 1.12
522 dl 1.1 // set the values of the Serializable fields
523     ObjectOutputStream.PutField fields = s.putFields();
524 jsr166 1.12
525 jsr166 1.21 // The seed is serialized as a long for historical reasons.
526 dl 1.3 fields.put("seed", seed.get());
527 dl 1.1 fields.put("nextNextGaussian", nextNextGaussian);
528     fields.put("haveNextNextGaussian", haveNextNextGaussian);
529    
530     // save them
531     s.writeFields();
532     }
533    
534 dl 1.14 // Support for resetting seed while deserializing
535     private static final Unsafe unsafe = Unsafe.getUnsafe();
536     private static final long seedOffset;
537     static {
538     try {
539     seedOffset = unsafe.objectFieldOffset
540     (Random.class.getDeclaredField("seed"));
541 jsr166 1.21 } catch (Exception ex) { throw new Error(ex); }
542 dl 1.14 }
543     private void resetSeed(long seedVal) {
544     unsafe.putObjectVolatile(this, seedOffset, new AtomicLong(seedVal));
545     }
546 jsr166 1.11 }