ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Random.java
(Generate patch)

Comparing jsr166/src/main/java/util/Random.java (file contents):
Revision 1.10 by jsr166, Sat Oct 1 22:42:00 2005 UTC vs.
Revision 1.22 by jsr166, Sun May 18 23:59:57 2008 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright 1995-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24   */
25  
26   package java.util;
27   import java.io.*;
28   import java.util.concurrent.atomic.AtomicLong;
29 + import sun.misc.Unsafe;
30  
31   /**
32 < * An instance of this class is used to generate a stream of
33 < * pseudorandom numbers. The class uses a 48-bit seed, which is
34 < * modified using a linear congruential formula. (See Donald Knuth,
35 < * <i>The Art of Computer Programming, Volume 2</i>, Section 3.2.1.)
32 > * An instance of this class is used to generate a stream of
33 > * pseudorandom numbers. The class uses a 48-bit seed, which is
34 > * modified using a linear congruential formula. (See Donald Knuth,
35 > * <i>The Art of Computer Programming, Volume 3</i>, Section 3.2.1.)
36   * <p>
37 < * If two instances of <code>Random</code> are created with the same
38 < * seed, and the same sequence of method calls is made for each, they
39 < * will generate and return identical sequences of numbers. In order to
40 < * guarantee this property, particular algorithms are specified for the
41 < * class <tt>Random</tt>. Java implementations must use all the algorithms
42 < * shown here for the class <tt>Random</tt>, for the sake of absolute
43 < * portability of Java code. However, subclasses of class <tt>Random</tt>
44 < * are permitted to use other algorithms, so long as they adhere to the
37 > * If two instances of {@code Random} are created with the same
38 > * seed, and the same sequence of method calls is made for each, they
39 > * will generate and return identical sequences of numbers. In order to
40 > * guarantee this property, particular algorithms are specified for the
41 > * class {@code Random}. Java implementations must use all the algorithms
42 > * shown here for the class {@code Random}, for the sake of absolute
43 > * portability of Java code. However, subclasses of class {@code Random}
44 > * are permitted to use other algorithms, so long as they adhere to the
45   * general contracts for all the methods.
46   * <p>
47 < * The algorithms implemented by class <tt>Random</tt> use a
48 < * <tt>protected</tt> utility method that on each invocation can supply
47 > * The algorithms implemented by class {@code Random} use a
48 > * {@code protected} utility method that on each invocation can supply
49   * up to 32 pseudorandomly generated bits.
50   * <p>
51 < * Many applications will find the <code>random</code> method in
33 < * class <code>Math</code> simpler to use.
51 > * Many applications will find the method {@link Math#random} simpler to use.
52   *
53   * @author  Frank Yellin
54 < * @version %I%, %G%
37 < * @see     java.lang.Math#random()
38 < * @since   JDK1.0
54 > * @since   1.0
55   */
56   public
57   class Random implements java.io.Serializable {
# Line 46 | Line 62 | class Random implements java.io.Serializ
62       * The internal state associated with this pseudorandom number generator.
63       * (The specs for the methods in this class describe the ongoing
64       * computation of this value.)
49     *
50     * @serial
65       */
66 <    private AtomicLong seed;
66 >    private final AtomicLong seed;
67  
68      private final static long multiplier = 0x5DEECE66DL;
69      private final static long addend = 0xBL;
# Line 63 | Line 77 | class Random implements java.io.Serializ
77      public Random() { this(++seedUniquifier + System.nanoTime()); }
78      private static volatile long seedUniquifier = 8682522807148012L;
79  
80 <    /**
81 <     * Creates a new random number generator using a single
82 <     * <code>long</code> seed:
83 <     * <blockquote><pre>
84 <     * public Random(long seed) { setSeed(seed); }</pre></blockquote>
85 <     * Used by method <tt>next</tt> to hold
86 <     * the state of the pseudorandom number generator.
80 >    /**
81 >     * Creates a new random number generator using a single {@code long} seed.
82 >     * The seed is the initial value of the internal state of the pseudorandom
83 >     * number generator which is maintained by method {@link #next}.
84 >     *
85 >     * <p>The invocation {@code new Random(seed)} is equivalent to:
86 >     *  <pre> {@code
87 >     * Random rnd = new Random();
88 >     * rnd.setSeed(seed);}</pre>
89       *
90 <     * @param   seed   the initial seed.
91 <     * @see     java.util.Random#setSeed(long)
90 >     * @param seed the initial seed
91 >     * @see   #setSeed(long)
92       */
93      public Random(long seed) {
94          this.seed = new AtomicLong(0L);
# Line 81 | Line 97 | class Random implements java.io.Serializ
97  
98      /**
99       * Sets the seed of this random number generator using a single
100 <     * <code>long</code> seed. The general contract of
101 <     * <tt>setSeed</tt> is that it alters the state of this random
102 <     * number generator object so as to be in exactly the same state
103 <     * as if it had just been created with the argument <tt>seed</tt>
104 <     * as a seed. The method <tt>setSeed</tt> is implemented by class
105 <     * Random using a thread-safe update of the seed to <code> (seed *
106 <     * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)</code> and clearing the
107 <     * <code>haveNextNextGaussian</code> flag used by {@link
108 <     * #nextGaussian}.  The implementation of <tt>setSeed</tt> by class
109 <     * <tt>Random</tt> happens to use only 48 bits of the given
110 <     * seed. In general, however, an overriding method may use all 64
111 <     * bits of the long argument as a seed value.
100 >     * {@code long} seed. The general contract of {@code setSeed} is
101 >     * that it alters the state of this random number generator object
102 >     * so as to be in exactly the same state as if it had just been
103 >     * created with the argument {@code seed} as a seed. The method
104 >     * {@code setSeed} is implemented by class {@code Random} by
105 >     * atomically updating the seed to
106 >     *  <pre>{@code (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)}</pre>
107 >     * and clearing the {@code haveNextNextGaussian} flag used by {@link
108 >     * #nextGaussian}.
109 >     *
110 >     * <p>The implementation of {@code setSeed} by class {@code Random}
111 >     * happens to use only 48 bits of the given seed. In general, however,
112 >     * an overriding method may use all 64 bits of the {@code long}
113 >     * argument as a seed value.
114       *
115 <     * @param   seed   the initial seed.
115 >     * @param seed the initial seed
116       */
117      synchronized public void setSeed(long seed) {
118          seed = (seed ^ multiplier) & mask;
119          this.seed.set(seed);
120 <        haveNextNextGaussian = false;
120 >        haveNextNextGaussian = false;
121      }
122  
123      /**
124 <     * Generates the next pseudorandom number. Subclass should
125 <     * override this, as this is used by all other methods.<p> The
126 <     * general contract of <tt>next</tt> is that it returns an
127 <     * <tt>int</tt> value and if the argument bits is between
128 <     * <tt>1</tt> and <tt>32</tt> (inclusive), then that many
129 <     * low-order bits of the returned value will be (approximately)
130 <     * independently chosen bit values, each of which is
131 <     * (approximately) equally likely to be <tt>0</tt> or
132 <     * <tt>1</tt>. The method <tt>next</tt> is implemented by class
133 <     * <tt>Random</tt> using a thread-safe update of the seed to <code>
134 <     * (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)</code> and
135 <     * returning <code>(int)(seed >>> (48 - bits))</code>.  This is a
136 <     * linear congruential pseudorandom number generator, as defined
137 <     * by D. H. Lehmer and described by Donald E. Knuth in <i>The Art
138 <     * of Computer Programming,</i> Volume 2: <i>Seminumerical
139 <     * Algorithms</i>, section 3.2.1.
140 <     *
141 <     * @param   bits random bits
142 <     * @return  the next pseudorandom value from this random number generator's sequence.
143 <     * @since   JDK1.1
124 >     * Generates the next pseudorandom number. Subclasses should
125 >     * override this, as this is used by all other methods.
126 >     *
127 >     * <p>The general contract of {@code next} is that it returns an
128 >     * {@code int} value and if the argument {@code bits} is between
129 >     * {@code 1} and {@code 32} (inclusive), then that many low-order
130 >     * bits of the returned value will be (approximately) independently
131 >     * chosen bit values, each of which is (approximately) equally
132 >     * likely to be {@code 0} or {@code 1}. The method {@code next} is
133 >     * implemented by class {@code Random} by atomically updating the seed to
134 >     *  <pre>{@code (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)}</pre>
135 >     * and returning
136 >     *  <pre>{@code (int)(seed >>> (48 - bits))}.</pre>
137 >     *
138 >     * This is a linear congruential pseudorandom number generator, as
139 >     * defined by D. H. Lehmer and described by Donald E. Knuth in
140 >     * <i>The Art of Computer Programming,</i> Volume 3:
141 >     * <i>Seminumerical Algorithms</i>, section 3.2.1.
142 >     *
143 >     * @param  bits random bits
144 >     * @return the next pseudorandom value from this random number
145 >     *         generator's sequence
146 >     * @since  1.1
147       */
148      protected int next(int bits) {
149          long oldseed, nextseed;
150          AtomicLong seed = this.seed;
151          do {
152 <            oldseed = seed.get();
153 <            nextseed = (oldseed * multiplier + addend) & mask;
152 >            oldseed = seed.get();
153 >            nextseed = (oldseed * multiplier + addend) & mask;
154          } while (!seed.compareAndSet(oldseed, nextseed));
155          return (int)(nextseed >>> (48 - bits));
156      }
157  
137    private static final int BITS_PER_BYTE = 8;
138    private static final int BYTES_PER_INT = 4;
139
158      /**
159 <     * Generates random bytes and places them into a user-supplied
160 <     * byte array.  The number of random bytes produced is equal to
159 >     * Generates random bytes and places them into a user-supplied
160 >     * byte array.  The number of random bytes produced is equal to
161       * the length of the byte array.
162 <     *
163 <     * @param bytes  the non-null byte array in which to put the
164 <     *               random bytes.
165 <     * @since   JDK1.1
162 >     *
163 >     * <p>The method {@code nextBytes} is implemented by class {@code Random}
164 >     * as if by:
165 >     *  <pre> {@code
166 >     * public void nextBytes(byte[] bytes) {
167 >     *   for (int i = 0; i < bytes.length; )
168 >     *     for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
169 >     *          n-- > 0; rnd >>= 8)
170 >     *       bytes[i++] = (byte)rnd;
171 >     * }}</pre>
172 >     *
173 >     * @param  bytes the byte array to fill with random bytes
174 >     * @throws NullPointerException if the byte array is null
175 >     * @since  1.1
176       */
177      public void nextBytes(byte[] bytes) {
178 <        int numRequested = bytes.length;
179 <
180 <        int numGot = 0, rnd = 0;
181 <
182 <        while (true) {
155 <            for (int i = 0; i < BYTES_PER_INT; i++) {
156 <                if (numGot == numRequested)
157 <                    return;
158 <
159 <                rnd = (i==0 ? next(BITS_PER_BYTE * BYTES_PER_INT)
160 <                            : rnd >> BITS_PER_BYTE);
161 <                bytes[numGot++] = (byte)rnd;
162 <            }
163 <        }
178 >        for (int i = 0, len = bytes.length; i < len; )
179 >            for (int rnd = nextInt(),
180 >                     n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
181 >                 n-- > 0; rnd >>= Byte.SIZE)
182 >                bytes[i++] = (byte)rnd;
183      }
184  
185      /**
186 <     * Returns the next pseudorandom, uniformly distributed <code>int</code>
187 <     * value from this random number generator's sequence. The general
188 <     * contract of <tt>nextInt</tt> is that one <tt>int</tt> value is
186 >     * Returns the next pseudorandom, uniformly distributed {@code int}
187 >     * value from this random number generator's sequence. The general
188 >     * contract of {@code nextInt} is that one {@code int} value is
189       * pseudorandomly generated and returned. All 2<font size="-1"><sup>32
190 <     * </sup></font> possible <tt>int</tt> values are produced with
191 <     * (approximately) equal probability. The method <tt>nextInt</tt> is
192 <     * implemented by class <tt>Random</tt> as follows:
193 <     * <blockquote><pre>
194 <     * public int nextInt() {  return next(32); }</pre></blockquote>
190 >     * </sup></font> possible {@code int} values are produced with
191 >     * (approximately) equal probability.
192 >     *
193 >     * <p>The method {@code nextInt} is implemented by class {@code Random}
194 >     * as if by:
195 >     *  <pre> {@code
196 >     * public int nextInt() {
197 >     *   return next(32);
198 >     * }}</pre>
199       *
200 <     * @return  the next pseudorandom, uniformly distributed <code>int</code>
201 <     *          value from this random number generator's sequence.
200 >     * @return the next pseudorandom, uniformly distributed {@code int}
201 >     *         value from this random number generator's sequence
202       */
203 <    public int nextInt() {  return next(32); }
203 >    public int nextInt() {
204 >        return next(32);
205 >    }
206  
207      /**
208 <     * Returns a pseudorandom, uniformly distributed <tt>int</tt> value
208 >     * Returns a pseudorandom, uniformly distributed {@code int} value
209       * between 0 (inclusive) and the specified value (exclusive), drawn from
210       * this random number generator's sequence.  The general contract of
211 <     * <tt>nextInt</tt> is that one <tt>int</tt> value in the specified range
212 <     * is pseudorandomly generated and returned.  All <tt>n</tt> possible
213 <     * <tt>int</tt> values are produced with (approximately) equal
214 <     * probability.  The method <tt>nextInt(int n)</tt> is implemented by
215 <     * class <tt>Random</tt> as follows:
216 <     * <blockquote><pre>
211 >     * {@code nextInt} is that one {@code int} value in the specified range
212 >     * is pseudorandomly generated and returned.  All {@code n} possible
213 >     * {@code int} values are produced with (approximately) equal
214 >     * probability.  The method {@code nextInt(int n)} is implemented by
215 >     * class {@code Random} as if by:
216 >     *  <pre> {@code
217       * public int nextInt(int n) {
218 <     *     if (n<=0)
219 <     *          throw new IllegalArgumentException("n must be positive");
218 >     *   if (n <= 0)
219 >     *     throw new IllegalArgumentException("n must be positive");
220       *
221 <     *     if ((n & -n) == n)  // i.e., n is a power of 2
222 <     *         return (int)((n * (long)next(31)) >> 31);
221 >     *   if ((n & -n) == n)  // i.e., n is a power of 2
222 >     *     return (int)((n * (long)next(31)) >> 31);
223       *
224 <     *     int bits, val;
225 <     *     do {
226 <     *         bits = next(31);
227 <     *         val = bits % n;
228 <     *     } while(bits - val + (n-1) < 0);
229 <     *     return val;
230 <     * }
231 <     * </pre></blockquote>
232 <     * <p>
208 <     * The hedge "approximately" is used in the foregoing description only
224 >     *   int bits, val;
225 >     *   do {
226 >     *       bits = next(31);
227 >     *       val = bits % n;
228 >     *   } while (bits - val + (n-1) < 0);
229 >     *   return val;
230 >     * }}</pre>
231 >     *
232 >     * <p>The hedge "approximately" is used in the foregoing description only
233       * because the next method is only approximately an unbiased source of
234 <     * independently chosen bits.  If it were a perfect source of randomly
235 <     * chosen bits, then the algorithm shown would choose <tt>int</tt>
234 >     * independently chosen bits.  If it were a perfect source of randomly
235 >     * chosen bits, then the algorithm shown would choose {@code int}
236       * values from the stated range with perfect uniformity.
237       * <p>
238       * The algorithm is slightly tricky.  It rejects values that would result
# Line 228 | Line 252 | class Random implements java.io.Serializ
252       * successive calls to this method if n is a small power of two.
253       *
254       * @param n the bound on the random number to be returned.  Must be
255 <     *        positive.
256 <     * @return  a pseudorandom, uniformly distributed <tt>int</tt>
257 <     *          value between 0 (inclusive) and n (exclusive).
258 <     * @exception IllegalArgumentException n is not positive.
255 >     *        positive.
256 >     * @return the next pseudorandom, uniformly distributed {@code int}
257 >     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
258 >     *         from this random number generator's sequence
259 >     * @exception IllegalArgumentException if n is not positive
260       * @since 1.2
261       */
262  
263      public int nextInt(int n) {
264 <        if (n<=0)
264 >        if (n <= 0)
265              throw new IllegalArgumentException("n must be positive");
266  
267          if ((n & -n) == n)  // i.e., n is a power of 2
# Line 246 | Line 271 | class Random implements java.io.Serializ
271          do {
272              bits = next(31);
273              val = bits % n;
274 <        } while(bits - val + (n-1) < 0);
274 >        } while (bits - val + (n-1) < 0);
275          return val;
276      }
277  
278      /**
279 <     * Returns the next pseudorandom, uniformly distributed <code>long</code>
280 <     * value from this random number generator's sequence. The general
281 <     * contract of <tt>nextLong</tt> is that one long value is pseudorandomly
282 <     * generated and returned. All 2<font size="-1"><sup>64</sup></font>
283 <     * possible <tt>long</tt> values are produced with (approximately) equal
284 <     * probability. The method <tt>nextLong</tt> is implemented by class
285 <     * <tt>Random</tt> as follows:
286 <     * <blockquote><pre>
279 >     * Returns the next pseudorandom, uniformly distributed {@code long}
280 >     * value from this random number generator's sequence. The general
281 >     * contract of {@code nextLong} is that one {@code long} value is
282 >     * pseudorandomly generated and returned.
283 >     *
284 >     * <p>The method {@code nextLong} is implemented by class {@code Random}
285 >     * as if by:
286 >     *  <pre> {@code
287       * public long nextLong() {
288 <     *       return ((long)next(32) << 32) + next(32);
289 <     * }</pre></blockquote>
288 >     *   return ((long)next(32) << 32) + next(32);
289 >     * }}</pre>
290       *
291 <     * @return  the next pseudorandom, uniformly distributed <code>long</code>
292 <     *          value from this random number generator's sequence.
291 >     * Because class {@code Random} uses a seed with only 48 bits,
292 >     * this algorithm will not return all possible {@code long} values.
293 >     *
294 >     * @return the next pseudorandom, uniformly distributed {@code long}
295 >     *         value from this random number generator's sequence
296       */
297      public long nextLong() {
298          // it's okay that the bottom word remains signed.
# Line 273 | Line 301 | class Random implements java.io.Serializ
301  
302      /**
303       * Returns the next pseudorandom, uniformly distributed
304 <     * <code>boolean</code> value from this random number generator's
305 <     * sequence. The general contract of <tt>nextBoolean</tt> is that one
306 <     * <tt>boolean</tt> value is pseudorandomly generated and returned.  The
307 <     * values <code>true</code> and <code>false</code> are produced with
308 <     * (approximately) equal probability. The method <tt>nextBoolean</tt> is
309 <     * implemented by class <tt>Random</tt> as follows:
310 <     * <blockquote><pre>
311 <     * public boolean nextBoolean() {return next(1) != 0;}
312 <     * </pre></blockquote>
313 <     * @return  the next pseudorandom, uniformly distributed
314 <     *          <code>boolean</code> value from this random number generator's
315 <     *          sequence.
304 >     * {@code boolean} value from this random number generator's
305 >     * sequence. The general contract of {@code nextBoolean} is that one
306 >     * {@code boolean} value is pseudorandomly generated and returned.  The
307 >     * values {@code true} and {@code false} are produced with
308 >     * (approximately) equal probability.
309 >     *
310 >     * <p>The method {@code nextBoolean} is implemented by class {@code Random}
311 >     * as if by:
312 >     *  <pre> {@code
313 >     * public boolean nextBoolean() {
314 >     *   return next(1) != 0;
315 >     * }}</pre>
316 >     *
317 >     * @return the next pseudorandom, uniformly distributed
318 >     *         {@code boolean} value from this random number generator's
319 >     *         sequence
320       * @since 1.2
321       */
322 <    public boolean nextBoolean() {return next(1) != 0;}
322 >    public boolean nextBoolean() {
323 >        return next(1) != 0;
324 >    }
325  
326      /**
327 <     * Returns the next pseudorandom, uniformly distributed <code>float</code>
328 <     * value between <code>0.0</code> and <code>1.0</code> from this random
329 <     * number generator's sequence. <p>
330 <     * The general contract of <tt>nextFloat</tt> is that one <tt>float</tt>
331 <     * value, chosen (approximately) uniformly from the range <tt>0.0f</tt>
332 <     * (inclusive) to <tt>1.0f</tt> (exclusive), is pseudorandomly
333 <     * generated and returned. All 2<font size="-1"><sup>24</sup></font>
334 <     * possible <tt>float</tt> values of the form
335 <     * <i>m&nbsp;x&nbsp</i>2<font size="-1"><sup>-24</sup></font>, where
336 <     * <i>m</i> is a positive integer less than 2<font size="-1"><sup>24</sup>
337 <     * </font>, are produced with (approximately) equal probability. The
338 <     * method <tt>nextFloat</tt> is implemented by class <tt>Random</tt> as
339 <     * follows:
340 <     * <blockquote><pre>
327 >     * Returns the next pseudorandom, uniformly distributed {@code float}
328 >     * value between {@code 0.0} and {@code 1.0} from this random
329 >     * number generator's sequence.
330 >     *
331 >     * <p>The general contract of {@code nextFloat} is that one
332 >     * {@code float} value, chosen (approximately) uniformly from the
333 >     * range {@code 0.0f} (inclusive) to {@code 1.0f} (exclusive), is
334 >     * pseudorandomly generated and returned. All 2<font
335 >     * size="-1"><sup>24</sup></font> possible {@code float} values
336 >     * of the form <i>m&nbsp;x&nbsp</i>2<font
337 >     * size="-1"><sup>-24</sup></font>, where <i>m</i> is a positive
338 >     * integer less than 2<font size="-1"><sup>24</sup> </font>, are
339 >     * produced with (approximately) equal probability.
340 >     *
341 >     * <p>The method {@code nextFloat} is implemented by class {@code Random}
342 >     * as if by:
343 >     *  <pre> {@code
344       * public float nextFloat() {
345 <     *      return next(24) / ((float)(1 << 24));
346 <     * }</pre></blockquote>
347 <     * The hedge "approximately" is used in the foregoing description only
348 <     * because the next method is only approximately an unbiased source of
349 <     * independently chosen bits. If it were a perfect source or randomly
350 <     * chosen bits, then the algorithm shown would choose <tt>float</tt>
345 >     *   return next(24) / ((float)(1 << 24));
346 >     * }}</pre>
347 >     *
348 >     * <p>The hedge "approximately" is used in the foregoing description only
349 >     * because the next method is only approximately an unbiased source of
350 >     * independently chosen bits. If it were a perfect source of randomly
351 >     * chosen bits, then the algorithm shown would choose {@code float}
352       * values from the stated range with perfect uniformity.<p>
353       * [In early versions of Java, the result was incorrectly calculated as:
354 <     * <blockquote><pre>
355 <     * return next(30) / ((float)(1 << 30));</pre></blockquote>
356 <     * This might seem to be equivalent, if not better, but in fact it
357 <     * introduced a slight nonuniformity because of the bias in the rounding
358 <     * of floating-point numbers: it was slightly more likely that the
359 <     * low-order bit of the significand would be 0 than that it would be 1.]
360 <     *
361 <     * @return  the next pseudorandom, uniformly distributed <code>float</code>
362 <     *          value between <code>0.0</code> and <code>1.0</code> from this
363 <     *          random number generator's sequence.
354 >     *  <pre> {@code
355 >     *   return next(30) / ((float)(1 << 30));}</pre>
356 >     * This might seem to be equivalent, if not better, but in fact it
357 >     * introduced a slight nonuniformity because of the bias in the rounding
358 >     * of floating-point numbers: it was slightly more likely that the
359 >     * low-order bit of the significand would be 0 than that it would be 1.]
360 >     *
361 >     * @return the next pseudorandom, uniformly distributed {@code float}
362 >     *         value between {@code 0.0} and {@code 1.0} from this
363 >     *         random number generator's sequence
364       */
365      public float nextFloat() {
366 <        int i = next(24);
329 <        return i / ((float)(1 << 24));
366 >        return next(24) / ((float)(1 << 24));
367      }
368  
369      /**
370 <     * Returns the next pseudorandom, uniformly distributed
371 <     * <code>double</code> value between <code>0.0</code> and
372 <     * <code>1.0</code> from this random number generator's sequence. <p>
373 <     * The general contract of <tt>nextDouble</tt> is that one
374 <     * <tt>double</tt> value, chosen (approximately) uniformly from the
375 <     * range <tt>0.0d</tt> (inclusive) to <tt>1.0d</tt> (exclusive), is
376 <     * pseudorandomly generated and returned. All
377 <     * 2<font size="-1"><sup>53</sup></font> possible <tt>float</tt>
378 <     * values of the form <i>m&nbsp;x&nbsp;</i>2<font size="-1"><sup>-53</sup>
379 <     * </font>, where <i>m</i> is a positive integer less than
380 <     * 2<font size="-1"><sup>53</sup></font>, are produced with
381 <     * (approximately) equal probability. The method <tt>nextDouble</tt> is
345 <     * implemented by class <tt>Random</tt> as follows:
346 <     * <blockquote><pre>
370 >     * Returns the next pseudorandom, uniformly distributed
371 >     * {@code double} value between {@code 0.0} and
372 >     * {@code 1.0} from this random number generator's sequence.
373 >     *
374 >     * <p>The general contract of {@code nextDouble} is that one
375 >     * {@code double} value, chosen (approximately) uniformly from the
376 >     * range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
377 >     * pseudorandomly generated and returned.
378 >     *
379 >     * <p>The method {@code nextDouble} is implemented by class {@code Random}
380 >     * as if by:
381 >     *  <pre> {@code
382       * public double nextDouble() {
383 <     *       return (((long)next(26) << 27) + next(27))
384 <     *           / (double)(1L << 53);
385 <     * }</pre></blockquote><p>
386 <     * The hedge "approximately" is used in the foregoing description only
387 <     * because the <tt>next</tt> method is only approximately an unbiased
388 <     * source of independently chosen bits. If it were a perfect source or
389 <     * randomly chosen bits, then the algorithm shown would choose
390 <     * <tt>double</tt> values from the stated range with perfect uniformity.
383 >     *   return (((long)next(26) << 27) + next(27))
384 >     *     / (double)(1L << 53);
385 >     * }}</pre>
386 >     *
387 >     * <p>The hedge "approximately" is used in the foregoing description only
388 >     * because the {@code next} method is only approximately an unbiased
389 >     * source of independently chosen bits. If it were a perfect source of
390 >     * randomly chosen bits, then the algorithm shown would choose
391 >     * {@code double} values from the stated range with perfect uniformity.
392       * <p>[In early versions of Java, the result was incorrectly calculated as:
393 <     * <blockquote><pre>
394 <     *  return (((long)next(27) << 27) + next(27))
395 <     *      / (double)(1L << 54);</pre></blockquote>
396 <     * This might seem to be equivalent, if not better, but in fact it
397 <     * introduced a large nonuniformity because of the bias in the rounding
398 <     * of floating-point numbers: it was three times as likely that the
399 <     * low-order bit of the significand would be 0 than that it would be
400 <     * 1! This nonuniformity probably doesn't matter much in practice, but
401 <     * we strive for perfection.]
402 <     *
403 <     * @return  the next pseudorandom, uniformly distributed
404 <     *          <code>double</code> value between <code>0.0</code> and
405 <     *          <code>1.0</code> from this random number generator's sequence.
393 >     *  <pre> {@code
394 >     *   return (((long)next(27) << 27) + next(27))
395 >     *     / (double)(1L << 54);}</pre>
396 >     * This might seem to be equivalent, if not better, but in fact it
397 >     * introduced a large nonuniformity because of the bias in the rounding
398 >     * of floating-point numbers: it was three times as likely that the
399 >     * low-order bit of the significand would be 0 than that it would be 1!
400 >     * This nonuniformity probably doesn't matter much in practice, but we
401 >     * strive for perfection.]
402 >     *
403 >     * @return the next pseudorandom, uniformly distributed {@code double}
404 >     *         value between {@code 0.0} and {@code 1.0} from this
405 >     *         random number generator's sequence
406 >     * @see Math#random
407       */
408      public double nextDouble() {
409 <        long l = ((long)(next(26)) << 27) + next(27);
410 <        return l / (double)(1L << 53);
409 >        return (((long)(next(26)) << 27) + next(27))
410 >            / (double)(1L << 53);
411      }
412  
413      private double nextNextGaussian;
# Line 378 | Line 415 | class Random implements java.io.Serializ
415  
416      /**
417       * Returns the next pseudorandom, Gaussian ("normally") distributed
418 <     * <code>double</code> value with mean <code>0.0</code> and standard
419 <     * deviation <code>1.0</code> from this random number generator's sequence.
418 >     * {@code double} value with mean {@code 0.0} and standard
419 >     * deviation {@code 1.0} from this random number generator's sequence.
420       * <p>
421 <     * The general contract of <tt>nextGaussian</tt> is that one
422 <     * <tt>double</tt> value, chosen from (approximately) the usual
423 <     * normal distribution with mean <tt>0.0</tt> and standard deviation
424 <     * <tt>1.0</tt>, is pseudorandomly generated and returned. The method
425 <     * <tt>nextGaussian</tt> is implemented by class <tt>Random</tt> as if
426 <     * by a threadsafe version of the following:
427 <     * <blockquote><pre>
421 >     * The general contract of {@code nextGaussian} is that one
422 >     * {@code double} value, chosen from (approximately) the usual
423 >     * normal distribution with mean {@code 0.0} and standard deviation
424 >     * {@code 1.0}, is pseudorandomly generated and returned.
425 >     *
426 >     * <p>The method {@code nextGaussian} is implemented by class
427 >     * {@code Random} as if by a threadsafe version of the following:
428 >     *  <pre> {@code
429 >     * private double nextNextGaussian;
430 >     * private boolean haveNextNextGaussian = false;
431 >     *
432       * public double nextGaussian() {
433 <     *    if (haveNextNextGaussian) {
434 <     *            haveNextNextGaussian = false;
435 <     *            return nextNextGaussian;
436 <     *    } else {
437 <     *            double v1, v2, s;
438 <     *            do {
439 <     *                    v1 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
440 <     *                    v2 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
441 <     *                    s = v1 * v1 + v2 * v2;
442 <     *            } while (s >= 1 || s == 0);
443 <     *            double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
444 <     *            nextNextGaussian = v2 * multiplier;
445 <     *            haveNextNextGaussian = true;
446 <     *            return v1 * multiplier;
447 <     *    }
448 <     * }</pre></blockquote>
449 <     * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
450 <     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
451 <     * Computer Programming</i>, Volume 2: <i>Seminumerical Algorithms</i>,
433 >     *   if (haveNextNextGaussian) {
434 >     *     haveNextNextGaussian = false;
435 >     *     return nextNextGaussian;
436 >     *   } else {
437 >     *     double v1, v2, s;
438 >     *     do {
439 >     *       v1 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
440 >     *       v2 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
441 >     *       s = v1 * v1 + v2 * v2;
442 >     *     } while (s >= 1 || s == 0);
443 >     *     double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
444 >     *     nextNextGaussian = v2 * multiplier;
445 >     *     haveNextNextGaussian = true;
446 >     *     return v1 * multiplier;
447 >     *   }
448 >     * }}</pre>
449 >     * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
450 >     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
451 >     * Computer Programming</i>, Volume 3: <i>Seminumerical Algorithms</i>,
452       * section 3.4.1, subsection C, algorithm P. Note that it generates two
453 <     * independent values at the cost of only one call to <tt>StrictMath.log</tt>
454 <     * and one call to <tt>StrictMath.sqrt</tt>.
453 >     * independent values at the cost of only one call to {@code StrictMath.log}
454 >     * and one call to {@code StrictMath.sqrt}.
455       *
456 <     * @return  the next pseudorandom, Gaussian ("normally") distributed
457 <     *          <code>double</code> value with mean <code>0.0</code> and
458 <     *          standard deviation <code>1.0</code> from this random number
459 <     *          generator's sequence.
456 >     * @return the next pseudorandom, Gaussian ("normally") distributed
457 >     *         {@code double} value with mean {@code 0.0} and
458 >     *         standard deviation {@code 1.0} from this random number
459 >     *         generator's sequence
460       */
461      synchronized public double nextGaussian() {
462          // See Knuth, ACP, Section 3.4.1 Algorithm C.
463          if (haveNextNextGaussian) {
464 <            haveNextNextGaussian = false;
465 <            return nextNextGaussian;
466 <        } else {
464 >            haveNextNextGaussian = false;
465 >            return nextNextGaussian;
466 >        } else {
467              double v1, v2, s;
468 <            do {
468 >            do {
469                  v1 = 2 * nextDouble() - 1; // between -1 and 1
470 <                v2 = 2 * nextDouble() - 1; // between -1 and 1
470 >                v2 = 2 * nextDouble() - 1; // between -1 and 1
471                  s = v1 * v1 + v2 * v2;
472 <            } while (s >= 1 || s == 0);
473 <            double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
474 <            nextNextGaussian = v2 * multiplier;
475 <            haveNextNextGaussian = true;
476 <            return v1 * multiplier;
472 >            } while (s >= 1 || s == 0);
473 >            double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
474 >            nextNextGaussian = v2 * multiplier;
475 >            haveNextNextGaussian = true;
476 >            return v1 * multiplier;
477          }
478      }
479  
480      /**
481       * Serializable fields for Random.
482       *
483 <     * @serialField    seed long;
483 >     * @serialField    seed long
484       *              seed for random computations
485 <     * @serialField    nextNextGaussian double;
485 >     * @serialField    nextNextGaussian double
486       *              next Gaussian to be returned
487       * @serialField      haveNextNextGaussian boolean
488       *              nextNextGaussian is valid
# Line 450 | Line 491 | class Random implements java.io.Serializ
491          new ObjectStreamField("seed", Long.TYPE),
492          new ObjectStreamField("nextNextGaussian", Double.TYPE),
493          new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
494 <        };
494 >    };
495  
496      /**
497 <     * Reconstitute the <tt>Random</tt> instance from a stream (that is,
498 <     * deserialize it). The seed is read in as long for
458 <     * historical reasons, but it is converted to an AtomicLong.
497 >     * Reconstitute the {@code Random} instance from a stream (that is,
498 >     * deserialize it).
499       */
500      private void readObject(java.io.ObjectInputStream s)
501          throws java.io.IOException, ClassNotFoundException {
502  
503          ObjectInputStream.GetField fields = s.readFields();
464        long seedVal;
504  
505 <        seedVal = (long) fields.get("seed", -1L);
505 >        // The seed is read in as {@code long} for
506 >        // historical reasons, but it is converted to an AtomicLong.
507 >        long seedVal = (long) fields.get("seed", -1L);
508          if (seedVal < 0)
509            throw new java.io.StreamCorruptedException(
510                                "Random: invalid seed");
511 <        seed = new AtomicLong(seedVal);
511 >        resetSeed(seedVal);
512          nextNextGaussian = fields.get("nextNextGaussian", 0.0);
513          haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
514      }
515  
475
516      /**
517 <     * Save the <tt>Random</tt> instance to a stream.
478 <     * The seed of a Random is serialized as a long for
479 <     * historical reasons.
480 <     *
517 >     * Save the {@code Random} instance to a stream.
518       */
519 <    synchronized private void writeObject(ObjectOutputStream s) throws IOException {
519 >    synchronized private void writeObject(ObjectOutputStream s)
520 >        throws IOException {
521 >
522          // set the values of the Serializable fields
523          ObjectOutputStream.PutField fields = s.putFields();
524 +
525 +        // The seed is serialized as a long for historical reasons.
526          fields.put("seed", seed.get());
527          fields.put("nextNextGaussian", nextNextGaussian);
528          fields.put("haveNextNextGaussian", haveNextNextGaussian);
529  
530          // save them
531          s.writeFields();
491
532      }
533  
534 < }    
534 >    // Support for resetting seed while deserializing
535 >    private static final Unsafe unsafe = Unsafe.getUnsafe();
536 >    private static final long seedOffset;
537 >    static {
538 >        try {
539 >            seedOffset = unsafe.objectFieldOffset
540 >                (Random.class.getDeclaredField("seed"));
541 >        } catch (Exception ex) { throw new Error(ex); }
542 >    }
543 >    private void resetSeed(long seedVal) {
544 >        unsafe.putObjectVolatile(this, seedOffset, new AtomicLong(seedVal));
545 >    }
546 > }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines