ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Random.java
(Generate patch)

Comparing jsr166/src/main/java/util/Random.java (file contents):
Revision 1.10 by jsr166, Sat Oct 1 22:42:00 2005 UTC vs.
Revision 1.25 by jsr166, Wed Aug 5 01:34:23 2009 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright 1995-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24   */
25  
26   package java.util;
27   import java.io.*;
28   import java.util.concurrent.atomic.AtomicLong;
29 + import sun.misc.Unsafe;
30  
31   /**
32 < * An instance of this class is used to generate a stream of
33 < * pseudorandom numbers. The class uses a 48-bit seed, which is
34 < * modified using a linear congruential formula. (See Donald Knuth,
35 < * <i>The Art of Computer Programming, Volume 2</i>, Section 3.2.1.)
32 > * An instance of this class is used to generate a stream of
33 > * pseudorandom numbers. The class uses a 48-bit seed, which is
34 > * modified using a linear congruential formula. (See Donald Knuth,
35 > * <i>The Art of Computer Programming, Volume 2</i>, Section 3.2.1.)
36   * <p>
37 < * If two instances of <code>Random</code> are created with the same
38 < * seed, and the same sequence of method calls is made for each, they
39 < * will generate and return identical sequences of numbers. In order to
40 < * guarantee this property, particular algorithms are specified for the
41 < * class <tt>Random</tt>. Java implementations must use all the algorithms
42 < * shown here for the class <tt>Random</tt>, for the sake of absolute
43 < * portability of Java code. However, subclasses of class <tt>Random</tt>
44 < * are permitted to use other algorithms, so long as they adhere to the
37 > * If two instances of {@code Random} are created with the same
38 > * seed, and the same sequence of method calls is made for each, they
39 > * will generate and return identical sequences of numbers. In order to
40 > * guarantee this property, particular algorithms are specified for the
41 > * class {@code Random}. Java implementations must use all the algorithms
42 > * shown here for the class {@code Random}, for the sake of absolute
43 > * portability of Java code. However, subclasses of class {@code Random}
44 > * are permitted to use other algorithms, so long as they adhere to the
45   * general contracts for all the methods.
46   * <p>
47 < * The algorithms implemented by class <tt>Random</tt> use a
48 < * <tt>protected</tt> utility method that on each invocation can supply
47 > * The algorithms implemented by class {@code Random} use a
48 > * {@code protected} utility method that on each invocation can supply
49   * up to 32 pseudorandomly generated bits.
50   * <p>
51 < * Many applications will find the <code>random</code> method in
52 < * class <code>Math</code> simpler to use.
51 > * Many applications will find the method {@link Math#random} simpler to use.
52 > *
53 > * <p>Instances of {@code java.util.Random} are threadsafe.
54 > * However, the concurrent use of the same {@code java.util.Random}
55 > * instance across threads may encounter contention and consequent
56 > * poor performance. Consider instead using
57 > * {@link java.util.concurrent.ThreadLocalRandom} in multithreaded
58 > * designs.
59 > *
60 > * <p>Instances of {@code java.util.Random} are not cryptographically
61 > * secure.  Consider instead using {@link java.security.SecureRandom} to
62 > * get a cryptographically secure pseudo-random number generator for use
63 > * by security-sensitive applications.
64   *
65   * @author  Frank Yellin
66 < * @version %I%, %G%
37 < * @see     java.lang.Math#random()
38 < * @since   JDK1.0
66 > * @since   1.0
67   */
68   public
69   class Random implements java.io.Serializable {
# Line 46 | Line 74 | class Random implements java.io.Serializ
74       * The internal state associated with this pseudorandom number generator.
75       * (The specs for the methods in this class describe the ongoing
76       * computation of this value.)
49     *
50     * @serial
77       */
78 <    private AtomicLong seed;
78 >    private final AtomicLong seed;
79  
80      private final static long multiplier = 0x5DEECE66DL;
81      private final static long addend = 0xBL;
# Line 63 | Line 89 | class Random implements java.io.Serializ
89      public Random() { this(++seedUniquifier + System.nanoTime()); }
90      private static volatile long seedUniquifier = 8682522807148012L;
91  
92 <    /**
93 <     * Creates a new random number generator using a single
94 <     * <code>long</code> seed:
95 <     * <blockquote><pre>
96 <     * public Random(long seed) { setSeed(seed); }</pre></blockquote>
97 <     * Used by method <tt>next</tt> to hold
98 <     * the state of the pseudorandom number generator.
92 >    /**
93 >     * Creates a new random number generator using a single {@code long} seed.
94 >     * The seed is the initial value of the internal state of the pseudorandom
95 >     * number generator which is maintained by method {@link #next}.
96 >     *
97 >     * <p>The invocation {@code new Random(seed)} is equivalent to:
98 >     *  <pre> {@code
99 >     * Random rnd = new Random();
100 >     * rnd.setSeed(seed);}</pre>
101       *
102 <     * @param   seed   the initial seed.
103 <     * @see     java.util.Random#setSeed(long)
102 >     * @param seed the initial seed
103 >     * @see   #setSeed(long)
104       */
105      public Random(long seed) {
106          this.seed = new AtomicLong(0L);
# Line 81 | Line 109 | class Random implements java.io.Serializ
109  
110      /**
111       * Sets the seed of this random number generator using a single
112 <     * <code>long</code> seed. The general contract of
113 <     * <tt>setSeed</tt> is that it alters the state of this random
114 <     * number generator object so as to be in exactly the same state
115 <     * as if it had just been created with the argument <tt>seed</tt>
116 <     * as a seed. The method <tt>setSeed</tt> is implemented by class
117 <     * Random using a thread-safe update of the seed to <code> (seed *
118 <     * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)</code> and clearing the
119 <     * <code>haveNextNextGaussian</code> flag used by {@link
120 <     * #nextGaussian}.  The implementation of <tt>setSeed</tt> by class
121 <     * <tt>Random</tt> happens to use only 48 bits of the given
122 <     * seed. In general, however, an overriding method may use all 64
123 <     * bits of the long argument as a seed value.
112 >     * {@code long} seed. The general contract of {@code setSeed} is
113 >     * that it alters the state of this random number generator object
114 >     * so as to be in exactly the same state as if it had just been
115 >     * created with the argument {@code seed} as a seed. The method
116 >     * {@code setSeed} is implemented by class {@code Random} by
117 >     * atomically updating the seed to
118 >     *  <pre>{@code (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)}</pre>
119 >     * and clearing the {@code haveNextNextGaussian} flag used by {@link
120 >     * #nextGaussian}.
121 >     *
122 >     * <p>The implementation of {@code setSeed} by class {@code Random}
123 >     * happens to use only 48 bits of the given seed. In general, however,
124 >     * an overriding method may use all 64 bits of the {@code long}
125 >     * argument as a seed value.
126       *
127 <     * @param   seed   the initial seed.
127 >     * @param seed the initial seed
128       */
129      synchronized public void setSeed(long seed) {
130          seed = (seed ^ multiplier) & mask;
131          this.seed.set(seed);
132 <        haveNextNextGaussian = false;
132 >        haveNextNextGaussian = false;
133      }
134  
135      /**
136 <     * Generates the next pseudorandom number. Subclass should
137 <     * override this, as this is used by all other methods.<p> The
138 <     * general contract of <tt>next</tt> is that it returns an
139 <     * <tt>int</tt> value and if the argument bits is between
140 <     * <tt>1</tt> and <tt>32</tt> (inclusive), then that many
141 <     * low-order bits of the returned value will be (approximately)
142 <     * independently chosen bit values, each of which is
143 <     * (approximately) equally likely to be <tt>0</tt> or
144 <     * <tt>1</tt>. The method <tt>next</tt> is implemented by class
145 <     * <tt>Random</tt> using a thread-safe update of the seed to <code>
146 <     * (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)</code> and
147 <     * returning <code>(int)(seed >>> (48 - bits))</code>.  This is a
148 <     * linear congruential pseudorandom number generator, as defined
149 <     * by D. H. Lehmer and described by Donald E. Knuth in <i>The Art
150 <     * of Computer Programming,</i> Volume 2: <i>Seminumerical
151 <     * Algorithms</i>, section 3.2.1.
152 <     *
153 <     * @param   bits random bits
154 <     * @return  the next pseudorandom value from this random number generator's sequence.
155 <     * @since   JDK1.1
136 >     * Generates the next pseudorandom number. Subclasses should
137 >     * override this, as this is used by all other methods.
138 >     *
139 >     * <p>The general contract of {@code next} is that it returns an
140 >     * {@code int} value and if the argument {@code bits} is between
141 >     * {@code 1} and {@code 32} (inclusive), then that many low-order
142 >     * bits of the returned value will be (approximately) independently
143 >     * chosen bit values, each of which is (approximately) equally
144 >     * likely to be {@code 0} or {@code 1}. The method {@code next} is
145 >     * implemented by class {@code Random} by atomically updating the seed to
146 >     *  <pre>{@code (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)}</pre>
147 >     * and returning
148 >     *  <pre>{@code (int)(seed >>> (48 - bits))}.</pre>
149 >     *
150 >     * This is a linear congruential pseudorandom number generator, as
151 >     * defined by D. H. Lehmer and described by Donald E. Knuth in
152 >     * <i>The Art of Computer Programming,</i> Volume 3:
153 >     * <i>Seminumerical Algorithms</i>, section 3.2.1.
154 >     *
155 >     * @param  bits random bits
156 >     * @return the next pseudorandom value from this random number
157 >     *         generator's sequence
158 >     * @since  1.1
159       */
160      protected int next(int bits) {
161          long oldseed, nextseed;
162          AtomicLong seed = this.seed;
163          do {
164 <            oldseed = seed.get();
165 <            nextseed = (oldseed * multiplier + addend) & mask;
164 >            oldseed = seed.get();
165 >            nextseed = (oldseed * multiplier + addend) & mask;
166          } while (!seed.compareAndSet(oldseed, nextseed));
167          return (int)(nextseed >>> (48 - bits));
168      }
169  
137    private static final int BITS_PER_BYTE = 8;
138    private static final int BYTES_PER_INT = 4;
139
170      /**
171 <     * Generates random bytes and places them into a user-supplied
172 <     * byte array.  The number of random bytes produced is equal to
171 >     * Generates random bytes and places them into a user-supplied
172 >     * byte array.  The number of random bytes produced is equal to
173       * the length of the byte array.
174 <     *
175 <     * @param bytes  the non-null byte array in which to put the
176 <     *               random bytes.
177 <     * @since   JDK1.1
174 >     *
175 >     * <p>The method {@code nextBytes} is implemented by class {@code Random}
176 >     * as if by:
177 >     *  <pre> {@code
178 >     * public void nextBytes(byte[] bytes) {
179 >     *   for (int i = 0; i < bytes.length; )
180 >     *     for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
181 >     *          n-- > 0; rnd >>= 8)
182 >     *       bytes[i++] = (byte)rnd;
183 >     * }}</pre>
184 >     *
185 >     * @param  bytes the byte array to fill with random bytes
186 >     * @throws NullPointerException if the byte array is null
187 >     * @since  1.1
188       */
189      public void nextBytes(byte[] bytes) {
190 <        int numRequested = bytes.length;
191 <
192 <        int numGot = 0, rnd = 0;
193 <
194 <        while (true) {
155 <            for (int i = 0; i < BYTES_PER_INT; i++) {
156 <                if (numGot == numRequested)
157 <                    return;
158 <
159 <                rnd = (i==0 ? next(BITS_PER_BYTE * BYTES_PER_INT)
160 <                            : rnd >> BITS_PER_BYTE);
161 <                bytes[numGot++] = (byte)rnd;
162 <            }
163 <        }
190 >        for (int i = 0, len = bytes.length; i < len; )
191 >            for (int rnd = nextInt(),
192 >                     n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
193 >                 n-- > 0; rnd >>= Byte.SIZE)
194 >                bytes[i++] = (byte)rnd;
195      }
196  
197      /**
198 <     * Returns the next pseudorandom, uniformly distributed <code>int</code>
199 <     * value from this random number generator's sequence. The general
200 <     * contract of <tt>nextInt</tt> is that one <tt>int</tt> value is
198 >     * Returns the next pseudorandom, uniformly distributed {@code int}
199 >     * value from this random number generator's sequence. The general
200 >     * contract of {@code nextInt} is that one {@code int} value is
201       * pseudorandomly generated and returned. All 2<font size="-1"><sup>32
202 <     * </sup></font> possible <tt>int</tt> values are produced with
203 <     * (approximately) equal probability. The method <tt>nextInt</tt> is
173 <     * implemented by class <tt>Random</tt> as follows:
174 <     * <blockquote><pre>
175 <     * public int nextInt() {  return next(32); }</pre></blockquote>
202 >     * </sup></font> possible {@code int} values are produced with
203 >     * (approximately) equal probability.
204       *
205 <     * @return  the next pseudorandom, uniformly distributed <code>int</code>
206 <     *          value from this random number generator's sequence.
205 >     * <p>The method {@code nextInt} is implemented by class {@code Random}
206 >     * as if by:
207 >     *  <pre> {@code
208 >     * public int nextInt() {
209 >     *   return next(32);
210 >     * }}</pre>
211 >     *
212 >     * @return the next pseudorandom, uniformly distributed {@code int}
213 >     *         value from this random number generator's sequence
214       */
215 <    public int nextInt() {  return next(32); }
215 >    public int nextInt() {
216 >        return next(32);
217 >    }
218  
219      /**
220 <     * Returns a pseudorandom, uniformly distributed <tt>int</tt> value
220 >     * Returns a pseudorandom, uniformly distributed {@code int} value
221       * between 0 (inclusive) and the specified value (exclusive), drawn from
222       * this random number generator's sequence.  The general contract of
223 <     * <tt>nextInt</tt> is that one <tt>int</tt> value in the specified range
224 <     * is pseudorandomly generated and returned.  All <tt>n</tt> possible
225 <     * <tt>int</tt> values are produced with (approximately) equal
226 <     * probability.  The method <tt>nextInt(int n)</tt> is implemented by
227 <     * class <tt>Random</tt> as follows:
228 <     * <blockquote><pre>
223 >     * {@code nextInt} is that one {@code int} value in the specified range
224 >     * is pseudorandomly generated and returned.  All {@code n} possible
225 >     * {@code int} values are produced with (approximately) equal
226 >     * probability.  The method {@code nextInt(int n)} is implemented by
227 >     * class {@code Random} as if by:
228 >     *  <pre> {@code
229       * public int nextInt(int n) {
230 <     *     if (n<=0)
231 <     *          throw new IllegalArgumentException("n must be positive");
230 >     *   if (n <= 0)
231 >     *     throw new IllegalArgumentException("n must be positive");
232       *
233 <     *     if ((n & -n) == n)  // i.e., n is a power of 2
234 <     *         return (int)((n * (long)next(31)) >> 31);
233 >     *   if ((n & -n) == n)  // i.e., n is a power of 2
234 >     *     return (int)((n * (long)next(31)) >> 31);
235       *
236 <     *     int bits, val;
237 <     *     do {
238 <     *         bits = next(31);
239 <     *         val = bits % n;
240 <     *     } while(bits - val + (n-1) < 0);
241 <     *     return val;
242 <     * }
243 <     * </pre></blockquote>
244 <     * <p>
208 <     * The hedge "approximately" is used in the foregoing description only
236 >     *   int bits, val;
237 >     *   do {
238 >     *       bits = next(31);
239 >     *       val = bits % n;
240 >     *   } while (bits - val + (n-1) < 0);
241 >     *   return val;
242 >     * }}</pre>
243 >     *
244 >     * <p>The hedge "approximately" is used in the foregoing description only
245       * because the next method is only approximately an unbiased source of
246 <     * independently chosen bits.  If it were a perfect source of randomly
247 <     * chosen bits, then the algorithm shown would choose <tt>int</tt>
246 >     * independently chosen bits.  If it were a perfect source of randomly
247 >     * chosen bits, then the algorithm shown would choose {@code int}
248       * values from the stated range with perfect uniformity.
249       * <p>
250       * The algorithm is slightly tricky.  It rejects values that would result
# Line 228 | Line 264 | class Random implements java.io.Serializ
264       * successive calls to this method if n is a small power of two.
265       *
266       * @param n the bound on the random number to be returned.  Must be
267 <     *        positive.
268 <     * @return  a pseudorandom, uniformly distributed <tt>int</tt>
269 <     *          value between 0 (inclusive) and n (exclusive).
270 <     * @exception IllegalArgumentException n is not positive.
267 >     *        positive.
268 >     * @return the next pseudorandom, uniformly distributed {@code int}
269 >     *         value between {@code 0} (inclusive) and {@code n} (exclusive)
270 >     *         from this random number generator's sequence
271 >     * @exception IllegalArgumentException if n is not positive
272       * @since 1.2
273       */
274  
275      public int nextInt(int n) {
276 <        if (n<=0)
276 >        if (n <= 0)
277              throw new IllegalArgumentException("n must be positive");
278  
279          if ((n & -n) == n)  // i.e., n is a power of 2
# Line 246 | Line 283 | class Random implements java.io.Serializ
283          do {
284              bits = next(31);
285              val = bits % n;
286 <        } while(bits - val + (n-1) < 0);
286 >        } while (bits - val + (n-1) < 0);
287          return val;
288      }
289  
290      /**
291 <     * Returns the next pseudorandom, uniformly distributed <code>long</code>
292 <     * value from this random number generator's sequence. The general
293 <     * contract of <tt>nextLong</tt> is that one long value is pseudorandomly
294 <     * generated and returned. All 2<font size="-1"><sup>64</sup></font>
295 <     * possible <tt>long</tt> values are produced with (approximately) equal
296 <     * probability. The method <tt>nextLong</tt> is implemented by class
297 <     * <tt>Random</tt> as follows:
298 <     * <blockquote><pre>
291 >     * Returns the next pseudorandom, uniformly distributed {@code long}
292 >     * value from this random number generator's sequence. The general
293 >     * contract of {@code nextLong} is that one {@code long} value is
294 >     * pseudorandomly generated and returned.
295 >     *
296 >     * <p>The method {@code nextLong} is implemented by class {@code Random}
297 >     * as if by:
298 >     *  <pre> {@code
299       * public long nextLong() {
300 <     *       return ((long)next(32) << 32) + next(32);
301 <     * }</pre></blockquote>
300 >     *   return ((long)next(32) << 32) + next(32);
301 >     * }}</pre>
302 >     *
303 >     * Because class {@code Random} uses a seed with only 48 bits,
304 >     * this algorithm will not return all possible {@code long} values.
305       *
306 <     * @return  the next pseudorandom, uniformly distributed <code>long</code>
307 <     *          value from this random number generator's sequence.
306 >     * @return the next pseudorandom, uniformly distributed {@code long}
307 >     *         value from this random number generator's sequence
308       */
309      public long nextLong() {
310          // it's okay that the bottom word remains signed.
# Line 273 | Line 313 | class Random implements java.io.Serializ
313  
314      /**
315       * Returns the next pseudorandom, uniformly distributed
316 <     * <code>boolean</code> value from this random number generator's
317 <     * sequence. The general contract of <tt>nextBoolean</tt> is that one
318 <     * <tt>boolean</tt> value is pseudorandomly generated and returned.  The
319 <     * values <code>true</code> and <code>false</code> are produced with
320 <     * (approximately) equal probability. The method <tt>nextBoolean</tt> is
321 <     * implemented by class <tt>Random</tt> as follows:
322 <     * <blockquote><pre>
323 <     * public boolean nextBoolean() {return next(1) != 0;}
324 <     * </pre></blockquote>
325 <     * @return  the next pseudorandom, uniformly distributed
326 <     *          <code>boolean</code> value from this random number generator's
327 <     *          sequence.
316 >     * {@code boolean} value from this random number generator's
317 >     * sequence. The general contract of {@code nextBoolean} is that one
318 >     * {@code boolean} value is pseudorandomly generated and returned.  The
319 >     * values {@code true} and {@code false} are produced with
320 >     * (approximately) equal probability.
321 >     *
322 >     * <p>The method {@code nextBoolean} is implemented by class {@code Random}
323 >     * as if by:
324 >     *  <pre> {@code
325 >     * public boolean nextBoolean() {
326 >     *   return next(1) != 0;
327 >     * }}</pre>
328 >     *
329 >     * @return the next pseudorandom, uniformly distributed
330 >     *         {@code boolean} value from this random number generator's
331 >     *         sequence
332       * @since 1.2
333       */
334 <    public boolean nextBoolean() {return next(1) != 0;}
334 >    public boolean nextBoolean() {
335 >        return next(1) != 0;
336 >    }
337  
338      /**
339 <     * Returns the next pseudorandom, uniformly distributed <code>float</code>
340 <     * value between <code>0.0</code> and <code>1.0</code> from this random
341 <     * number generator's sequence. <p>
342 <     * The general contract of <tt>nextFloat</tt> is that one <tt>float</tt>
343 <     * value, chosen (approximately) uniformly from the range <tt>0.0f</tt>
344 <     * (inclusive) to <tt>1.0f</tt> (exclusive), is pseudorandomly
345 <     * generated and returned. All 2<font size="-1"><sup>24</sup></font>
346 <     * possible <tt>float</tt> values of the form
347 <     * <i>m&nbsp;x&nbsp</i>2<font size="-1"><sup>-24</sup></font>, where
348 <     * <i>m</i> is a positive integer less than 2<font size="-1"><sup>24</sup>
349 <     * </font>, are produced with (approximately) equal probability. The
350 <     * method <tt>nextFloat</tt> is implemented by class <tt>Random</tt> as
351 <     * follows:
352 <     * <blockquote><pre>
339 >     * Returns the next pseudorandom, uniformly distributed {@code float}
340 >     * value between {@code 0.0} and {@code 1.0} from this random
341 >     * number generator's sequence.
342 >     *
343 >     * <p>The general contract of {@code nextFloat} is that one
344 >     * {@code float} value, chosen (approximately) uniformly from the
345 >     * range {@code 0.0f} (inclusive) to {@code 1.0f} (exclusive), is
346 >     * pseudorandomly generated and returned. All 2<font
347 >     * size="-1"><sup>24</sup></font> possible {@code float} values
348 >     * of the form <i>m&nbsp;x&nbsp</i>2<font
349 >     * size="-1"><sup>-24</sup></font>, where <i>m</i> is a positive
350 >     * integer less than 2<font size="-1"><sup>24</sup> </font>, are
351 >     * produced with (approximately) equal probability.
352 >     *
353 >     * <p>The method {@code nextFloat} is implemented by class {@code Random}
354 >     * as if by:
355 >     *  <pre> {@code
356       * public float nextFloat() {
357 <     *      return next(24) / ((float)(1 << 24));
358 <     * }</pre></blockquote>
359 <     * The hedge "approximately" is used in the foregoing description only
360 <     * because the next method is only approximately an unbiased source of
361 <     * independently chosen bits. If it were a perfect source or randomly
362 <     * chosen bits, then the algorithm shown would choose <tt>float</tt>
357 >     *   return next(24) / ((float)(1 << 24));
358 >     * }}</pre>
359 >     *
360 >     * <p>The hedge "approximately" is used in the foregoing description only
361 >     * because the next method is only approximately an unbiased source of
362 >     * independently chosen bits. If it were a perfect source of randomly
363 >     * chosen bits, then the algorithm shown would choose {@code float}
364       * values from the stated range with perfect uniformity.<p>
365       * [In early versions of Java, the result was incorrectly calculated as:
366 <     * <blockquote><pre>
367 <     * return next(30) / ((float)(1 << 30));</pre></blockquote>
368 <     * This might seem to be equivalent, if not better, but in fact it
369 <     * introduced a slight nonuniformity because of the bias in the rounding
370 <     * of floating-point numbers: it was slightly more likely that the
371 <     * low-order bit of the significand would be 0 than that it would be 1.]
372 <     *
373 <     * @return  the next pseudorandom, uniformly distributed <code>float</code>
374 <     *          value between <code>0.0</code> and <code>1.0</code> from this
375 <     *          random number generator's sequence.
366 >     *  <pre> {@code
367 >     *   return next(30) / ((float)(1 << 30));}</pre>
368 >     * This might seem to be equivalent, if not better, but in fact it
369 >     * introduced a slight nonuniformity because of the bias in the rounding
370 >     * of floating-point numbers: it was slightly more likely that the
371 >     * low-order bit of the significand would be 0 than that it would be 1.]
372 >     *
373 >     * @return the next pseudorandom, uniformly distributed {@code float}
374 >     *         value between {@code 0.0} and {@code 1.0} from this
375 >     *         random number generator's sequence
376       */
377      public float nextFloat() {
378 <        int i = next(24);
329 <        return i / ((float)(1 << 24));
378 >        return next(24) / ((float)(1 << 24));
379      }
380  
381      /**
382 <     * Returns the next pseudorandom, uniformly distributed
383 <     * <code>double</code> value between <code>0.0</code> and
384 <     * <code>1.0</code> from this random number generator's sequence. <p>
385 <     * The general contract of <tt>nextDouble</tt> is that one
386 <     * <tt>double</tt> value, chosen (approximately) uniformly from the
387 <     * range <tt>0.0d</tt> (inclusive) to <tt>1.0d</tt> (exclusive), is
388 <     * pseudorandomly generated and returned. All
389 <     * 2<font size="-1"><sup>53</sup></font> possible <tt>float</tt>
390 <     * values of the form <i>m&nbsp;x&nbsp;</i>2<font size="-1"><sup>-53</sup>
391 <     * </font>, where <i>m</i> is a positive integer less than
392 <     * 2<font size="-1"><sup>53</sup></font>, are produced with
393 <     * (approximately) equal probability. The method <tt>nextDouble</tt> is
345 <     * implemented by class <tt>Random</tt> as follows:
346 <     * <blockquote><pre>
382 >     * Returns the next pseudorandom, uniformly distributed
383 >     * {@code double} value between {@code 0.0} and
384 >     * {@code 1.0} from this random number generator's sequence.
385 >     *
386 >     * <p>The general contract of {@code nextDouble} is that one
387 >     * {@code double} value, chosen (approximately) uniformly from the
388 >     * range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
389 >     * pseudorandomly generated and returned.
390 >     *
391 >     * <p>The method {@code nextDouble} is implemented by class {@code Random}
392 >     * as if by:
393 >     *  <pre> {@code
394       * public double nextDouble() {
395 <     *       return (((long)next(26) << 27) + next(27))
396 <     *           / (double)(1L << 53);
397 <     * }</pre></blockquote><p>
398 <     * The hedge "approximately" is used in the foregoing description only
399 <     * because the <tt>next</tt> method is only approximately an unbiased
400 <     * source of independently chosen bits. If it were a perfect source or
401 <     * randomly chosen bits, then the algorithm shown would choose
402 <     * <tt>double</tt> values from the stated range with perfect uniformity.
395 >     *   return (((long)next(26) << 27) + next(27))
396 >     *     / (double)(1L << 53);
397 >     * }}</pre>
398 >     *
399 >     * <p>The hedge "approximately" is used in the foregoing description only
400 >     * because the {@code next} method is only approximately an unbiased
401 >     * source of independently chosen bits. If it were a perfect source of
402 >     * randomly chosen bits, then the algorithm shown would choose
403 >     * {@code double} values from the stated range with perfect uniformity.
404       * <p>[In early versions of Java, the result was incorrectly calculated as:
405 <     * <blockquote><pre>
406 <     *  return (((long)next(27) << 27) + next(27))
407 <     *      / (double)(1L << 54);</pre></blockquote>
408 <     * This might seem to be equivalent, if not better, but in fact it
409 <     * introduced a large nonuniformity because of the bias in the rounding
410 <     * of floating-point numbers: it was three times as likely that the
411 <     * low-order bit of the significand would be 0 than that it would be
412 <     * 1! This nonuniformity probably doesn't matter much in practice, but
413 <     * we strive for perfection.]
414 <     *
415 <     * @return  the next pseudorandom, uniformly distributed
416 <     *          <code>double</code> value between <code>0.0</code> and
417 <     *          <code>1.0</code> from this random number generator's sequence.
405 >     *  <pre> {@code
406 >     *   return (((long)next(27) << 27) + next(27))
407 >     *     / (double)(1L << 54);}</pre>
408 >     * This might seem to be equivalent, if not better, but in fact it
409 >     * introduced a large nonuniformity because of the bias in the rounding
410 >     * of floating-point numbers: it was three times as likely that the
411 >     * low-order bit of the significand would be 0 than that it would be 1!
412 >     * This nonuniformity probably doesn't matter much in practice, but we
413 >     * strive for perfection.]
414 >     *
415 >     * @return the next pseudorandom, uniformly distributed {@code double}
416 >     *         value between {@code 0.0} and {@code 1.0} from this
417 >     *         random number generator's sequence
418 >     * @see Math#random
419       */
420      public double nextDouble() {
421 <        long l = ((long)(next(26)) << 27) + next(27);
422 <        return l / (double)(1L << 53);
421 >        return (((long)(next(26)) << 27) + next(27))
422 >            / (double)(1L << 53);
423      }
424  
425      private double nextNextGaussian;
# Line 378 | Line 427 | class Random implements java.io.Serializ
427  
428      /**
429       * Returns the next pseudorandom, Gaussian ("normally") distributed
430 <     * <code>double</code> value with mean <code>0.0</code> and standard
431 <     * deviation <code>1.0</code> from this random number generator's sequence.
430 >     * {@code double} value with mean {@code 0.0} and standard
431 >     * deviation {@code 1.0} from this random number generator's sequence.
432       * <p>
433 <     * The general contract of <tt>nextGaussian</tt> is that one
434 <     * <tt>double</tt> value, chosen from (approximately) the usual
435 <     * normal distribution with mean <tt>0.0</tt> and standard deviation
436 <     * <tt>1.0</tt>, is pseudorandomly generated and returned. The method
437 <     * <tt>nextGaussian</tt> is implemented by class <tt>Random</tt> as if
438 <     * by a threadsafe version of the following:
439 <     * <blockquote><pre>
433 >     * The general contract of {@code nextGaussian} is that one
434 >     * {@code double} value, chosen from (approximately) the usual
435 >     * normal distribution with mean {@code 0.0} and standard deviation
436 >     * {@code 1.0}, is pseudorandomly generated and returned.
437 >     *
438 >     * <p>The method {@code nextGaussian} is implemented by class
439 >     * {@code Random} as if by a threadsafe version of the following:
440 >     *  <pre> {@code
441 >     * private double nextNextGaussian;
442 >     * private boolean haveNextNextGaussian = false;
443 >     *
444       * public double nextGaussian() {
445 <     *    if (haveNextNextGaussian) {
446 <     *            haveNextNextGaussian = false;
447 <     *            return nextNextGaussian;
448 <     *    } else {
449 <     *            double v1, v2, s;
450 <     *            do {
451 <     *                    v1 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
452 <     *                    v2 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
453 <     *                    s = v1 * v1 + v2 * v2;
454 <     *            } while (s >= 1 || s == 0);
455 <     *            double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
456 <     *            nextNextGaussian = v2 * multiplier;
457 <     *            haveNextNextGaussian = true;
458 <     *            return v1 * multiplier;
459 <     *    }
460 <     * }</pre></blockquote>
461 <     * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
462 <     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
463 <     * Computer Programming</i>, Volume 2: <i>Seminumerical Algorithms</i>,
445 >     *   if (haveNextNextGaussian) {
446 >     *     haveNextNextGaussian = false;
447 >     *     return nextNextGaussian;
448 >     *   } else {
449 >     *     double v1, v2, s;
450 >     *     do {
451 >     *       v1 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
452 >     *       v2 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
453 >     *       s = v1 * v1 + v2 * v2;
454 >     *     } while (s >= 1 || s == 0);
455 >     *     double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
456 >     *     nextNextGaussian = v2 * multiplier;
457 >     *     haveNextNextGaussian = true;
458 >     *     return v1 * multiplier;
459 >     *   }
460 >     * }}</pre>
461 >     * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
462 >     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
463 >     * Computer Programming</i>, Volume 3: <i>Seminumerical Algorithms</i>,
464       * section 3.4.1, subsection C, algorithm P. Note that it generates two
465 <     * independent values at the cost of only one call to <tt>StrictMath.log</tt>
466 <     * and one call to <tt>StrictMath.sqrt</tt>.
465 >     * independent values at the cost of only one call to {@code StrictMath.log}
466 >     * and one call to {@code StrictMath.sqrt}.
467       *
468 <     * @return  the next pseudorandom, Gaussian ("normally") distributed
469 <     *          <code>double</code> value with mean <code>0.0</code> and
470 <     *          standard deviation <code>1.0</code> from this random number
471 <     *          generator's sequence.
468 >     * @return the next pseudorandom, Gaussian ("normally") distributed
469 >     *         {@code double} value with mean {@code 0.0} and
470 >     *         standard deviation {@code 1.0} from this random number
471 >     *         generator's sequence
472       */
473      synchronized public double nextGaussian() {
474          // See Knuth, ACP, Section 3.4.1 Algorithm C.
475          if (haveNextNextGaussian) {
476 <            haveNextNextGaussian = false;
477 <            return nextNextGaussian;
478 <        } else {
476 >            haveNextNextGaussian = false;
477 >            return nextNextGaussian;
478 >        } else {
479              double v1, v2, s;
480 <            do {
480 >            do {
481                  v1 = 2 * nextDouble() - 1; // between -1 and 1
482 <                v2 = 2 * nextDouble() - 1; // between -1 and 1
482 >                v2 = 2 * nextDouble() - 1; // between -1 and 1
483                  s = v1 * v1 + v2 * v2;
484 <            } while (s >= 1 || s == 0);
485 <            double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
486 <            nextNextGaussian = v2 * multiplier;
487 <            haveNextNextGaussian = true;
488 <            return v1 * multiplier;
484 >            } while (s >= 1 || s == 0);
485 >            double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
486 >            nextNextGaussian = v2 * multiplier;
487 >            haveNextNextGaussian = true;
488 >            return v1 * multiplier;
489          }
490      }
491  
492      /**
493       * Serializable fields for Random.
494       *
495 <     * @serialField    seed long;
495 >     * @serialField    seed long
496       *              seed for random computations
497 <     * @serialField    nextNextGaussian double;
497 >     * @serialField    nextNextGaussian double
498       *              next Gaussian to be returned
499       * @serialField      haveNextNextGaussian boolean
500       *              nextNextGaussian is valid
# Line 450 | Line 503 | class Random implements java.io.Serializ
503          new ObjectStreamField("seed", Long.TYPE),
504          new ObjectStreamField("nextNextGaussian", Double.TYPE),
505          new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
506 <        };
506 >    };
507  
508      /**
509 <     * Reconstitute the <tt>Random</tt> instance from a stream (that is,
510 <     * deserialize it). The seed is read in as long for
458 <     * historical reasons, but it is converted to an AtomicLong.
509 >     * Reconstitute the {@code Random} instance from a stream (that is,
510 >     * deserialize it).
511       */
512      private void readObject(java.io.ObjectInputStream s)
513          throws java.io.IOException, ClassNotFoundException {
514  
515          ObjectInputStream.GetField fields = s.readFields();
464        long seedVal;
516  
517 <        seedVal = (long) fields.get("seed", -1L);
517 >        // The seed is read in as {@code long} for
518 >        // historical reasons, but it is converted to an AtomicLong.
519 >        long seedVal = fields.get("seed", -1L);
520          if (seedVal < 0)
521            throw new java.io.StreamCorruptedException(
522                                "Random: invalid seed");
523 <        seed = new AtomicLong(seedVal);
523 >        resetSeed(seedVal);
524          nextNextGaussian = fields.get("nextNextGaussian", 0.0);
525          haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
526      }
527  
475
528      /**
529 <     * Save the <tt>Random</tt> instance to a stream.
478 <     * The seed of a Random is serialized as a long for
479 <     * historical reasons.
480 <     *
529 >     * Save the {@code Random} instance to a stream.
530       */
531 <    synchronized private void writeObject(ObjectOutputStream s) throws IOException {
531 >    synchronized private void writeObject(ObjectOutputStream s)
532 >        throws IOException {
533 >
534          // set the values of the Serializable fields
535          ObjectOutputStream.PutField fields = s.putFields();
536 +
537 +        // The seed is serialized as a long for historical reasons.
538          fields.put("seed", seed.get());
539          fields.put("nextNextGaussian", nextNextGaussian);
540          fields.put("haveNextNextGaussian", haveNextNextGaussian);
541  
542          // save them
543          s.writeFields();
491
544      }
545  
546 < }    
546 >    // Support for resetting seed while deserializing
547 >    private static final Unsafe unsafe = Unsafe.getUnsafe();
548 >    private static final long seedOffset;
549 >    static {
550 >        try {
551 >            seedOffset = unsafe.objectFieldOffset
552 >                (Random.class.getDeclaredField("seed"));
553 >        } catch (Exception ex) { throw new Error(ex); }
554 >    }
555 >    private void resetSeed(long seedVal) {
556 >        unsafe.putObjectVolatile(this, seedOffset, new AtomicLong(seedVal));
557 >    }
558 > }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines