ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
(Generate patch)

Comparing jsr166/src/main/java/util/SplittableRandom.java (file contents):
Revision 1.14 by dl, Mon Aug 5 13:58:02 2013 UTC vs.
Revision 1.31 by jsr166, Fri Feb 19 03:39:15 2016 UTC

# Line 25 | Line 25
25  
26   package java.util;
27  
28 import java.security.SecureRandom;
28   import java.util.concurrent.atomic.AtomicLong;
29 < import java.util.Spliterator;
29 > import java.util.function.DoubleConsumer;
30   import java.util.function.IntConsumer;
31   import java.util.function.LongConsumer;
32 < import java.util.function.DoubleConsumer;
34 < import java.util.stream.StreamSupport;
32 > import java.util.stream.DoubleStream;
33   import java.util.stream.IntStream;
34   import java.util.stream.LongStream;
35 < import java.util.stream.DoubleStream;
35 > import java.util.stream.StreamSupport;
36  
37   /**
38   * A generator of uniform pseudorandom values applicable for use in
39   * (among other contexts) isolated parallel computations that may
40 < * generate subtasks. Class SplittableRandom supports methods for
40 > * generate subtasks. Class {@code SplittableRandom} supports methods for
41   * producing pseudorandom numbers of type {@code int}, {@code long},
42   * and {@code double} with similar usages as for class
43   * {@link java.util.Random} but differs in the following ways:
# Line 54 | Line 52 | import java.util.stream.DoubleStream;
52   * types and ranges, but similar properties are expected to hold, at
53   * least approximately, for others as well. The <em>period</em>
54   * (length of any series of generated values before it repeats) is at
55 < * least 2<sup>64</sup>. </li>
55 > * least 2<sup>64</sup>.
56   *
57 < * <li> Method {@link #split} constructs and returns a new
57 > * <li>Method {@link #split} constructs and returns a new
58   * SplittableRandom instance that shares no mutable state with the
59   * current instance. However, with very high probability, the
60   * values collectively generated by the two objects have the same
61   * statistical properties as if the same quantity of values were
62   * generated by a single thread using a single {@code
63 < * SplittableRandom} object.  </li>
63 > * SplittableRandom} object.
64   *
65   * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66   * They are designed to be split, not shared, across threads. For
# Line 73 | Line 71 | import java.util.stream.DoubleStream;
71   *
72   * <li>This class provides additional methods for generating random
73   * streams, that employ the above techniques when used in {@code
74 < * stream.parallel()} mode.</li>
74 > * stream.parallel()} mode.
75   *
76   * </ul>
77   *
78 + * <p>Instances of {@code SplittableRandom} are not cryptographically
79 + * secure.  Consider instead using {@link java.security.SecureRandom}
80 + * in security-sensitive applications. Additionally,
81 + * default-constructed instances do not use a cryptographically random
82 + * seed unless the {@linkplain System#getProperty system property}
83 + * {@code java.util.secureRandomSeed} is set to {@code true}.
84 + *
85   * @author  Guy Steele
86   * @author  Doug Lea
87   * @since   1.8
88   */
89 < public class SplittableRandom {
85 <
86 <    /*
87 <     * File organization: First the non-public methods that constitute
88 <     * the main algorithm, then the main public methods, followed by
89 <     * some custom spliterator classes needed for stream methods.
90 <     *
91 <     * Credits: Primary algorithm and code by Guy Steele.  Stream
92 <     * support methods by Doug Lea.  Documentation jointly produced
93 <     * with additional help from Brian Goetz.
94 <     */
89 > public final class SplittableRandom {
90  
91      /*
92       * Implementation Overview.
# Line 99 | Line 94 | public class SplittableRandom {
94       * This algorithm was inspired by the "DotMix" algorithm by
95       * Leiserson, Schardl, and Sukha "Deterministic Parallel
96       * Random-Number Generation for Dynamic-Multithreading Platforms",
97 <     * PPoPP 2012, but improves and extends it in several ways.
97 >     * PPoPP 2012, as well as those in "Parallel random numbers: as
98 >     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
99 >     * differs mainly in simplifying and cheapening operations.
100 >     *
101 >     * The primary update step (method nextSeed()) is to add a
102 >     * constant ("gamma") to the current (64 bit) seed, forming a
103 >     * simple sequence.  The seed and the gamma values for any two
104 >     * SplittableRandom instances are highly likely to be different.
105 >     *
106 >     * Methods nextLong, nextInt, and derivatives do not return the
107 >     * sequence (seed) values, but instead a hash-like bit-mix of
108 >     * their bits, producing more independently distributed sequences.
109 >     * For nextLong, the mix64 function is based on David Stafford's
110 >     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111 >     * "Mix13" variant of the "64-bit finalizer" function in Austin
112 >     * Appleby's MurmurHash3 algorithm (see
113 >     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114 >     * function is based on Stafford's Mix04 mix function, but returns
115 >     * the upper 32 bits cast as int.
116 >     *
117 >     * The split operation uses the current generator to form the seed
118 >     * and gamma for another SplittableRandom.  To conservatively
119 >     * avoid potential correlations between seed and value generation,
120 >     * gamma selection (method mixGamma) uses different
121 >     * (Murmurhash3's) mix constants.  To avoid potential weaknesses
122 >     * in bit-mixing transformations, we restrict gammas to odd values
123 >     * with at least 24 0-1 or 1-0 bit transitions.  Rather than
124 >     * rejecting candidates with too few or too many bits set, method
125 >     * mixGamma flips some bits (which has the effect of mapping at
126 >     * most 4 to any given gamma value).  This reduces the effective
127 >     * set of 64bit odd gamma values by about 2%, and serves as an
128 >     * automated screening for sequence constant selection that is
129 >     * left as an empirical decision in some other hashing and crypto
130 >     * algorithms.
131 >     *
132 >     * The resulting generator thus transforms a sequence in which
133 >     * (typically) many bits change on each step, with an inexpensive
134 >     * mixer with good (but less than cryptographically secure)
135 >     * avalanching.
136 >     *
137 >     * The default (no-argument) constructor, in essence, invokes
138 >     * split() for a common "defaultGen" SplittableRandom.  Unlike
139 >     * other cases, this split must be performed in a thread-safe
140 >     * manner, so we use an AtomicLong to represent the seed rather
141 >     * than use an explicit SplittableRandom. To bootstrap the
142 >     * defaultGen, we start off using a seed based on current time
143 >     * unless the java.util.secureRandomSeed property is set. This
144 >     * serves as a slimmed-down (and insecure) variant of SecureRandom
145 >     * that also avoids stalls that may occur when using /dev/random.
146 >     *
147 >     * It is a relatively simple matter to apply the basic design here
148 >     * to use 128 bit seeds. However, emulating 128bit arithmetic and
149 >     * carrying around twice the state add more overhead than appears
150 >     * warranted for current usages.
151       *
152 <     * The primary update step (see method nextSeed()) is simply to
153 <     * add a constant ("gamma") to the current seed, modulo a prime
154 <     * ("George"). However, the nextLong and nextInt methods do not
107 <     * return this value, but instead the results of bit-mixing
108 <     * transformations that produce more uniformly distributed
109 <     * sequences.
110 <     *
111 <     * "George" is the otherwise nameless (because it cannot be
112 <     * represented) prime number 2^64+13. Using a prime number larger
113 <     * than can fit in a long ensures that all possible long values
114 <     * can occur, plus 13 others that just get skipped over when they
115 <     * are encountered; see method addGammaModGeorge. For this to
116 <     * work, initial gamma values must be at least 13.
117 <     *
118 <     * The mix64 bit-mixing function called by nextLong and other
119 <     * methods computes the same value as the "64-bit finalizer"
120 <     * function in Austin Appleby's MurmurHash3 algorithm.  See
121 <     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
122 <     * comments: "The constants for the finalizers were generated by a
123 <     * simple simulated-annealing algorithm, and both avalanche all
124 <     * bits of 'h' to within 0.25% bias."
125 <     *
126 <     * The value of gamma differs for each instance across a series of
127 <     * splits, and is generated using an independent variant of the
128 <     * same algorithm, but operating across calls to split(), not
129 <     * calls to nextSeed(): Each instance carries the state of this
130 <     * generator as nextSplit. Gammas are treated as 57bit values,
131 <     * advancing by adding GAMMA_GAMMA mod GAMMA_PRIME, and bit-mixed
132 <     * with a 57-bit version of mix, using the "Mix13" multiplicative
133 <     * constants for MurmurHash3 described by David Stafford
134 <     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html).
135 <     * The value of GAMMA_GAMMA is arbitrary (except must be at least
136 <     * 13 and less than GAMMA_PRIME), but because it serves as the
137 <     * base of split sequences, should be subject to validation of
138 <     * consequent random number quality metrics.
139 <     *
140 <     * The mix32 function used for nextInt just consists of two of the
141 <     * five lines of mix64; avalanche testing shows that the 64-bit
142 <     * result has its top 32 bits avalanched well, though not the
143 <     * bottom 32 bits.  DieHarder tests show that it is adequate for
144 <     * generating one random int from the 64-bit result of nextSeed.
145 <     *
146 <     * Support for the default (no-argument) constructor relies on an
147 <     * AtomicLong (defaultSeedGenerator) to help perform the
148 <     * equivalent of a split of a statically constructed
149 <     * SplittableRandom. Unlike other cases, this split must be
150 <     * performed in a thread-safe manner. We use
151 <     * AtomicLong.compareAndSet as the (typically) most efficient
152 <     * mechanism. To bootstrap, we start off using a SecureRandom
153 <     * initial default seed, and update using a fixed
154 <     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
155 <     * not 0, for its splitSeed argument (addGammaModGeorge(0,
156 <     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
157 <     * this root generator, even though the root is not explicitly
158 <     * represented as a SplittableRandom.
159 <     */
160 <
161 <    /**
162 <     * The prime modulus for gamma values.
163 <     */
164 <    private static final long GAMMA_PRIME = (1L << 57) - 13L;
165 <
166 <    /**
167 <     * The value for producing new gamma values. Must be greater or
168 <     * equal to 13 and less than GAMMA_PRIME. Otherwise, the value is
169 <     * arbitrary subject to validation of the resulting statistical
170 <     * quality of splits.
171 <     */
172 <    private static final long GAMMA_GAMMA = 0x00aae38294f712aabL;
173 <
174 <    /**
175 <     * The seed update value for default constructors.  Must be
176 <     * greater or equal to 13. Otherwise, the value is arbitrary
177 <     * subject to quality checks.
152 >     * File organization: First the non-public methods that constitute
153 >     * the main algorithm, then the main public methods, followed by
154 >     * some custom spliterator classes needed for stream methods.
155       */
179    private static final long DEFAULT_SEED_GAMMA = 0x9e3779b97f4a7c15L;
156  
157      /**
158 <     * The value 13 with 64bit sign bit set. Used in the signed
159 <     * comparison in addGammaModGeorge.
158 >     * The golden ratio scaled to 64bits, used as the initial gamma
159 >     * value for (unsplit) SplittableRandoms.
160       */
161 <    private static final long BOTTOM13 = 0x800000000000000DL;
161 >    private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162  
163      /**
164       * The least non-zero value returned by nextDouble(). This value
165       * is scaled by a random value of 53 bits to produce a result.
166       */
167 <    private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
192 <
193 <    /**
194 <     * The next seed for default constructors.
195 <     */
196 <    private static final AtomicLong defaultSeedGenerator =
197 <        new AtomicLong(getInitialDefaultSeed());
167 >    private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168  
169      /**
170 <     * The seed, updated only via method nextSeed.
170 >     * The seed. Updated only via method nextSeed.
171       */
172      private long seed;
173  
174      /**
175 <     * The constant value added to seed (mod George) on each update.
175 >     * The step value.
176       */
177      private final long gamma;
178  
179      /**
180 <     * The next seed to use for splits. Propagated using
211 <     * addGammaModGeorge across instances.
180 >     * Internal constructor used by all others except default constructor.
181       */
182 <    private final long nextSplit;
183 <
184 <    /**
216 <     * Adds the given gamma value, g, to the given seed value s, mod
217 <     * George (2^64+13). We regard s and g as unsigned values
218 <     * (ranging from 0 to 2^64-1). We add g to s either once or twice
219 <     * (mod George) as necessary to produce an (unsigned) result less
220 <     * than 2^64.  We require that g must be at least 13. This
221 <     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
222 <     * George < 2^64; thus we need only a conditional, not a loop,
223 <     * to be sure of getting a representable value.
224 <     *
225 <     * Because Java comparison operators are signed, we implement this
226 <     * by conceptually offsetting seed values downwards by 2^63, so
227 <     * 0..13 is represented as Long.MIN_VALUE..BOTTOM13.
228 <     *
229 <     * @param s a seed value, viewed as a signed long
230 <     * @param g a gamma value, 13 <= g (as unsigned)
231 <     */
232 <    private static long addGammaModGeorge(long s, long g) {
233 <        long p = s + g;
234 <        return (p >= s) ? p : ((p >= BOTTOM13) ? p  : p + g) - 13L;
182 >    private SplittableRandom(long seed, long gamma) {
183 >        this.seed = seed;
184 >        this.gamma = gamma;
185      }
186  
187      /**
188 <     * Returns a bit-mixed transformation of its argument.
239 <     * See above for explanation.
188 >     * Computes Stafford variant 13 of 64bit mix function.
189       */
190      private static long mix64(long z) {
191 <        z ^= (z >>> 33);
192 <        z *= 0xff51afd7ed558ccdL;
193 <        z ^= (z >>> 33);
245 <        z *= 0xc4ceb9fe1a85ec53L;
246 <        z ^= (z >>> 33);
247 <        return z;
191 >        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192 >        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193 >        return z ^ (z >>> 31);
194      }
195  
196      /**
197 <     * Returns a bit-mixed int transformation of its argument.
252 <     * See above for explanation.
197 >     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198       */
199      private static int mix32(long z) {
200 <        z ^= (z >>> 33);
201 <        z *= 0xc4ceb9fe1a85ec53L;
257 <        return (int)(z >>> 32);
200 >        z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201 >        return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202      }
203  
204      /**
205 <     * Returns a 57-bit mixed transformation of its argument.  See
262 <     * above for explanation.
205 >     * Returns the gamma value to use for a new split instance.
206       */
207 <    private static long mix57(long z) {
208 <        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
209 <        z &= 0x01FFFFFFFFFFFFFFL;
210 <        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
211 <        z &= 0x01FFFFFFFFFFFFFFL;
212 <        z ^= (z >>> 31);
270 <        return z;
207 >    private static long mixGamma(long z) {
208 >        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209 >        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210 >        z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
211 >        int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
212 >        return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213      }
214  
215      /**
216 <     * Internal constructor used by all other constructors and by
275 <     * method split. Establishes the initial seed for this instance,
276 <     * and uses the given splitSeed to establish gamma, as well as the
277 <     * nextSplit to use by this instance. The loop to skip ineligible
278 <     * gammas very rarely iterates, and does so at most 13 times.
279 <     */
280 <    private SplittableRandom(long seed, long splitSeed) {
281 <        this.seed = seed;
282 <        long s = splitSeed, g;
283 <        do { // ensure gamma >= 13, considered as an unsigned integer
284 <            s += GAMMA_GAMMA;
285 <            if (s >= GAMMA_PRIME)
286 <                s -= GAMMA_PRIME;
287 <            g = mix57(s);
288 <        } while (g < 13L);
289 <        this.gamma = g;
290 <        this.nextSplit = s;
291 <    }
292 <
293 <    /**
294 <     * Updates in-place and returns seed.
295 <     * See above for explanation.
216 >     * Adds gamma to seed.
217       */
218      private long nextSeed() {
219 <        return seed = addGammaModGeorge(seed, gamma);
219 >        return seed += gamma;
220      }
221  
222      /**
223 <     * Atomically updates and returns next seed for default constructor.
223 >     * The seed generator for default constructors.
224       */
225 <    private static long nextDefaultSeed() {
305 <        long oldSeed, newSeed;
306 <        do {
307 <            oldSeed = defaultSeedGenerator.get();
308 <            newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
309 <        } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
310 <        return mix64(newSeed);
311 <    }
225 >    private static final AtomicLong defaultGen = new AtomicLong(initialSeed());
226  
227 <    /**
228 <     * Returns an initial default seed.
229 <     */
230 <    private static long getInitialDefaultSeed() {
231 <        byte[] seedBytes = java.security.SecureRandom.getSeed(8);
232 <        long s = (long)(seedBytes[0]) & 0xffL;
233 <        for (int i = 1; i < 8; ++i)
234 <            s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
235 <        return s;
227 >    private static long initialSeed() {
228 >        if (java.security.AccessController.doPrivileged(
229 >            new java.security.PrivilegedAction<Boolean>() {
230 >                public Boolean run() {
231 >                    return Boolean.getBoolean("java.util.secureRandomSeed");
232 >                }})) {
233 >            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
234 >            long s = (long)seedBytes[0] & 0xffL;
235 >            for (int i = 1; i < 8; ++i)
236 >                s = (s << 8) | ((long)seedBytes[i] & 0xffL);
237 >            return s;
238 >        }
239 >        return (mix64(System.currentTimeMillis()) ^
240 >                mix64(System.nanoTime()));
241      }
242  
243 +    // IllegalArgumentException messages
244 +    static final String BAD_BOUND = "bound must be positive";
245 +    static final String BAD_RANGE = "bound must be greater than origin";
246 +    static final String BAD_SIZE  = "size must be non-negative";
247 +
248      /*
249       * Internal versions of nextX methods used by streams, as well as
250       * the public nextX(origin, bound) methods.  These exist mainly to
# Line 440 | Line 364 | public class SplittableRandom {
364       * @param seed the initial seed
365       */
366      public SplittableRandom(long seed) {
367 <        this(seed, 0L);
367 >        this(seed, GOLDEN_GAMMA);
368      }
369  
370      /**
# Line 449 | Line 373 | public class SplittableRandom {
373       * of those of any other instances in the current program; and
374       * may, and typically does, vary across program invocations.
375       */
376 <    public SplittableRandom() {
377 <        this(nextDefaultSeed(), GAMMA_GAMMA);
376 >    public SplittableRandom() { // emulate defaultGen.split()
377 >        long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
378 >        this.seed = mix64(s);
379 >        this.gamma = mixGamma(s + GOLDEN_GAMMA);
380      }
381  
382      /**
# Line 468 | Line 394 | public class SplittableRandom {
394       * @return the new SplittableRandom instance
395       */
396      public SplittableRandom split() {
397 <        return new SplittableRandom(nextSeed(), nextSplit);
397 >        return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
398      }
399  
400      /**
# Line 484 | Line 410 | public class SplittableRandom {
410       * Returns a pseudorandom {@code int} value between zero (inclusive)
411       * and the specified bound (exclusive).
412       *
413 <     * @param bound the bound on the random number to be returned.  Must be
488 <     *        positive.
413 >     * @param bound the upper bound (exclusive).  Must be positive.
414       * @return a pseudorandom {@code int} value between zero
415       *         (inclusive) and the bound (exclusive)
416 <     * @throws IllegalArgumentException if the bound is less than zero
416 >     * @throws IllegalArgumentException if {@code bound} is not positive
417       */
418      public int nextInt(int bound) {
419          if (bound <= 0)
420 <            throw new IllegalArgumentException("bound must be positive");
420 >            throw new IllegalArgumentException(BAD_BOUND);
421          // Specialize internalNextInt for origin 0
422          int r = mix32(nextSeed());
423          int m = bound - 1;
# Line 520 | Line 445 | public class SplittableRandom {
445       */
446      public int nextInt(int origin, int bound) {
447          if (origin >= bound)
448 <            throw new IllegalArgumentException("bound must be greater than origin");
448 >            throw new IllegalArgumentException(BAD_RANGE);
449          return internalNextInt(origin, bound);
450      }
451  
# Line 537 | Line 462 | public class SplittableRandom {
462       * Returns a pseudorandom {@code long} value between zero (inclusive)
463       * and the specified bound (exclusive).
464       *
465 <     * @param bound the bound on the random number to be returned.  Must be
541 <     *        positive.
465 >     * @param bound the upper bound (exclusive).  Must be positive.
466       * @return a pseudorandom {@code long} value between zero
467       *         (inclusive) and the bound (exclusive)
468 <     * @throws IllegalArgumentException if {@code bound} is less than zero
468 >     * @throws IllegalArgumentException if {@code bound} is not positive
469       */
470      public long nextLong(long bound) {
471          if (bound <= 0)
472 <            throw new IllegalArgumentException("bound must be positive");
472 >            throw new IllegalArgumentException(BAD_BOUND);
473          // Specialize internalNextLong for origin 0
474          long r = mix64(nextSeed());
475          long m = bound - 1;
# Line 573 | Line 497 | public class SplittableRandom {
497       */
498      public long nextLong(long origin, long bound) {
499          if (origin >= bound)
500 <            throw new IllegalArgumentException("bound must be greater than origin");
500 >            throw new IllegalArgumentException(BAD_RANGE);
501          return internalNextLong(origin, bound);
502      }
503  
# Line 582 | Line 506 | public class SplittableRandom {
506       * (inclusive) and one (exclusive).
507       *
508       * @return a pseudorandom {@code double} value between zero
509 <     * (inclusive) and one (exclusive)
509 >     *         (inclusive) and one (exclusive)
510       */
511      public double nextDouble() {
512          return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
# Line 592 | Line 516 | public class SplittableRandom {
516       * Returns a pseudorandom {@code double} value between 0.0
517       * (inclusive) and the specified bound (exclusive).
518       *
519 <     * @param bound the bound on the random number to be returned.  Must be
596 <     *        positive.
519 >     * @param bound the upper bound (exclusive).  Must be positive.
520       * @return a pseudorandom {@code double} value between zero
521       *         (inclusive) and the bound (exclusive)
522 <     * @throws IllegalArgumentException if {@code bound} is less than zero
522 >     * @throws IllegalArgumentException if {@code bound} is not positive
523       */
524      public double nextDouble(double bound) {
525          if (!(bound > 0.0))
526 <            throw new IllegalArgumentException("bound must be positive");
526 >            throw new IllegalArgumentException(BAD_BOUND);
527          double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
528          return (result < bound) ?  result : // correct for rounding
529              Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
# Line 611 | Line 534 | public class SplittableRandom {
534       * origin (inclusive) and bound (exclusive).
535       *
536       * @param origin the least value returned
537 <     * @param bound the upper bound
537 >     * @param bound the upper bound (exclusive)
538       * @return a pseudorandom {@code double} value between the origin
539       *         (inclusive) and the bound (exclusive)
540       * @throws IllegalArgumentException if {@code origin} is greater than
# Line 619 | Line 542 | public class SplittableRandom {
542       */
543      public double nextDouble(double origin, double bound) {
544          if (!(origin < bound))
545 <            throw new IllegalArgumentException("bound must be greater than origin");
545 >            throw new IllegalArgumentException(BAD_RANGE);
546          return internalNextDouble(origin, bound);
547      }
548  
# Line 636 | Line 559 | public class SplittableRandom {
559      // maintenance purposes the small differences across forms.
560  
561      /**
562 <     * Returns a stream producing the given {@code streamSize} number of
563 <     * pseudorandom {@code int} values.
562 >     * Returns a stream producing the given {@code streamSize} number
563 >     * of pseudorandom {@code int} values from this generator and/or
564 >     * one split from it.
565       *
566       * @param streamSize the number of values to generate
567       * @return a stream of pseudorandom {@code int} values
# Line 646 | Line 570 | public class SplittableRandom {
570       */
571      public IntStream ints(long streamSize) {
572          if (streamSize < 0L)
573 <            throw new IllegalArgumentException("negative Stream size");
573 >            throw new IllegalArgumentException(BAD_SIZE);
574          return StreamSupport.intStream
575              (new RandomIntsSpliterator
576               (this, 0L, streamSize, Integer.MAX_VALUE, 0),
# Line 655 | Line 579 | public class SplittableRandom {
579  
580      /**
581       * Returns an effectively unlimited stream of pseudorandom {@code int}
582 <     * values.
582 >     * values from this generator and/or one split from it.
583       *
584       * @implNote This method is implemented to be equivalent to {@code
585       * ints(Long.MAX_VALUE)}.
# Line 670 | Line 594 | public class SplittableRandom {
594      }
595  
596      /**
597 <     * Returns a stream producing the given {@code streamSize} number of
598 <     * pseudorandom {@code int} values, each conforming to the given
599 <     * origin and bound.
597 >     * Returns a stream producing the given {@code streamSize} number
598 >     * of pseudorandom {@code int} values from this generator and/or one split
599 >     * from it; each value conforms to the given origin (inclusive) and bound
600 >     * (exclusive).
601       *
602       * @param streamSize the number of values to generate
603 <     * @param randomNumberOrigin the origin of each random value
604 <     * @param randomNumberBound the bound of each random value
603 >     * @param randomNumberOrigin the origin (inclusive) of each random value
604 >     * @param randomNumberBound the bound (exclusive) of each random value
605       * @return a stream of pseudorandom {@code int} values,
606 <     *         each with the given origin and bound
606 >     *         each with the given origin (inclusive) and bound (exclusive)
607       * @throws IllegalArgumentException if {@code streamSize} is
608       *         less than zero, or {@code randomNumberOrigin}
609       *         is greater than or equal to {@code randomNumberBound}
# Line 686 | Line 611 | public class SplittableRandom {
611      public IntStream ints(long streamSize, int randomNumberOrigin,
612                            int randomNumberBound) {
613          if (streamSize < 0L)
614 <            throw new IllegalArgumentException("negative Stream size");
614 >            throw new IllegalArgumentException(BAD_SIZE);
615          if (randomNumberOrigin >= randomNumberBound)
616 <            throw new IllegalArgumentException("bound must be greater than origin");
616 >            throw new IllegalArgumentException(BAD_RANGE);
617          return StreamSupport.intStream
618              (new RandomIntsSpliterator
619               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 697 | Line 622 | public class SplittableRandom {
622  
623      /**
624       * Returns an effectively unlimited stream of pseudorandom {@code
625 <     * int} values, each conforming to the given origin and bound.
625 >     * int} values from this generator and/or one split from it; each value
626 >     * conforms to the given origin (inclusive) and bound (exclusive).
627       *
628       * @implNote This method is implemented to be equivalent to {@code
629       * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
630       *
631 <     * @param randomNumberOrigin the origin of each random value
632 <     * @param randomNumberBound the bound of each random value
631 >     * @param randomNumberOrigin the origin (inclusive) of each random value
632 >     * @param randomNumberBound the bound (exclusive) of each random value
633       * @return a stream of pseudorandom {@code int} values,
634 <     *         each with the given origin and bound
634 >     *         each with the given origin (inclusive) and bound (exclusive)
635       * @throws IllegalArgumentException if {@code randomNumberOrigin}
636       *         is greater than or equal to {@code randomNumberBound}
637       */
638      public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
639          if (randomNumberOrigin >= randomNumberBound)
640 <            throw new IllegalArgumentException("bound must be greater than origin");
640 >            throw new IllegalArgumentException(BAD_RANGE);
641          return StreamSupport.intStream
642              (new RandomIntsSpliterator
643               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 719 | Line 645 | public class SplittableRandom {
645      }
646  
647      /**
648 <     * Returns a stream producing the given {@code streamSize} number of
649 <     * pseudorandom {@code long} values.
648 >     * Returns a stream producing the given {@code streamSize} number
649 >     * of pseudorandom {@code long} values from this generator and/or
650 >     * one split from it.
651       *
652       * @param streamSize the number of values to generate
653       * @return a stream of pseudorandom {@code long} values
# Line 729 | Line 656 | public class SplittableRandom {
656       */
657      public LongStream longs(long streamSize) {
658          if (streamSize < 0L)
659 <            throw new IllegalArgumentException("negative Stream size");
659 >            throw new IllegalArgumentException(BAD_SIZE);
660          return StreamSupport.longStream
661              (new RandomLongsSpliterator
662               (this, 0L, streamSize, Long.MAX_VALUE, 0L),
# Line 737 | Line 664 | public class SplittableRandom {
664      }
665  
666      /**
667 <     * Returns an effectively unlimited stream of pseudorandom {@code long}
668 <     * values.
667 >     * Returns an effectively unlimited stream of pseudorandom {@code
668 >     * long} values from this generator and/or one split from it.
669       *
670       * @implNote This method is implemented to be equivalent to {@code
671       * longs(Long.MAX_VALUE)}.
# Line 754 | Line 681 | public class SplittableRandom {
681  
682      /**
683       * Returns a stream producing the given {@code streamSize} number of
684 <     * pseudorandom {@code long} values, each conforming to the
685 <     * given origin and bound.
684 >     * pseudorandom {@code long} values from this generator and/or one split
685 >     * from it; each value conforms to the given origin (inclusive) and bound
686 >     * (exclusive).
687       *
688       * @param streamSize the number of values to generate
689 <     * @param randomNumberOrigin the origin of each random value
690 <     * @param randomNumberBound the bound of each random value
689 >     * @param randomNumberOrigin the origin (inclusive) of each random value
690 >     * @param randomNumberBound the bound (exclusive) of each random value
691       * @return a stream of pseudorandom {@code long} values,
692 <     *         each with the given origin and bound
692 >     *         each with the given origin (inclusive) and bound (exclusive)
693       * @throws IllegalArgumentException if {@code streamSize} is
694       *         less than zero, or {@code randomNumberOrigin}
695       *         is greater than or equal to {@code randomNumberBound}
# Line 769 | Line 697 | public class SplittableRandom {
697      public LongStream longs(long streamSize, long randomNumberOrigin,
698                              long randomNumberBound) {
699          if (streamSize < 0L)
700 <            throw new IllegalArgumentException("negative Stream size");
700 >            throw new IllegalArgumentException(BAD_SIZE);
701          if (randomNumberOrigin >= randomNumberBound)
702 <            throw new IllegalArgumentException("bound must be greater than origin");
702 >            throw new IllegalArgumentException(BAD_RANGE);
703          return StreamSupport.longStream
704              (new RandomLongsSpliterator
705               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 780 | Line 708 | public class SplittableRandom {
708  
709      /**
710       * Returns an effectively unlimited stream of pseudorandom {@code
711 <     * long} values, each conforming to the given origin and bound.
711 >     * long} values from this generator and/or one split from it; each value
712 >     * conforms to the given origin (inclusive) and bound (exclusive).
713       *
714       * @implNote This method is implemented to be equivalent to {@code
715       * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
716       *
717 <     * @param randomNumberOrigin the origin of each random value
718 <     * @param randomNumberBound the bound of each random value
717 >     * @param randomNumberOrigin the origin (inclusive) of each random value
718 >     * @param randomNumberBound the bound (exclusive) of each random value
719       * @return a stream of pseudorandom {@code long} values,
720 <     *         each with the given origin and bound
720 >     *         each with the given origin (inclusive) and bound (exclusive)
721       * @throws IllegalArgumentException if {@code randomNumberOrigin}
722       *         is greater than or equal to {@code randomNumberBound}
723       */
724      public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
725          if (randomNumberOrigin >= randomNumberBound)
726 <            throw new IllegalArgumentException("bound must be greater than origin");
726 >            throw new IllegalArgumentException(BAD_RANGE);
727          return StreamSupport.longStream
728              (new RandomLongsSpliterator
729               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 803 | Line 732 | public class SplittableRandom {
732  
733      /**
734       * Returns a stream producing the given {@code streamSize} number of
735 <     * pseudorandom {@code double} values, each between zero
736 <     * (inclusive) and one (exclusive).
735 >     * pseudorandom {@code double} values from this generator and/or one split
736 >     * from it; each value is between zero (inclusive) and one (exclusive).
737       *
738       * @param streamSize the number of values to generate
739       * @return a stream of {@code double} values
# Line 813 | Line 742 | public class SplittableRandom {
742       */
743      public DoubleStream doubles(long streamSize) {
744          if (streamSize < 0L)
745 <            throw new IllegalArgumentException("negative Stream size");
745 >            throw new IllegalArgumentException(BAD_SIZE);
746          return StreamSupport.doubleStream
747              (new RandomDoublesSpliterator
748               (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
# Line 822 | Line 751 | public class SplittableRandom {
751  
752      /**
753       * Returns an effectively unlimited stream of pseudorandom {@code
754 <     * double} values, each between zero (inclusive) and one
755 <     * (exclusive).
754 >     * double} values from this generator and/or one split from it; each value
755 >     * is between zero (inclusive) and one (exclusive).
756       *
757       * @implNote This method is implemented to be equivalent to {@code
758       * doubles(Long.MAX_VALUE)}.
# Line 839 | Line 768 | public class SplittableRandom {
768  
769      /**
770       * Returns a stream producing the given {@code streamSize} number of
771 <     * pseudorandom {@code double} values, each conforming to the
772 <     * given origin and bound.
771 >     * pseudorandom {@code double} values from this generator and/or one split
772 >     * from it; each value conforms to the given origin (inclusive) and bound
773 >     * (exclusive).
774       *
775       * @param streamSize the number of values to generate
776 <     * @param randomNumberOrigin the origin of each random value
777 <     * @param randomNumberBound the bound of each random value
776 >     * @param randomNumberOrigin the origin (inclusive) of each random value
777 >     * @param randomNumberBound the bound (exclusive) of each random value
778       * @return a stream of pseudorandom {@code double} values,
779 <     * each with the given origin and bound
779 >     *         each with the given origin (inclusive) and bound (exclusive)
780       * @throws IllegalArgumentException if {@code streamSize} is
781 <     * less than zero
781 >     *         less than zero
782       * @throws IllegalArgumentException if {@code randomNumberOrigin}
783       *         is greater than or equal to {@code randomNumberBound}
784       */
785      public DoubleStream doubles(long streamSize, double randomNumberOrigin,
786                                  double randomNumberBound) {
787          if (streamSize < 0L)
788 <            throw new IllegalArgumentException("negative Stream size");
788 >            throw new IllegalArgumentException(BAD_SIZE);
789          if (!(randomNumberOrigin < randomNumberBound))
790 <            throw new IllegalArgumentException("bound must be greater than origin");
790 >            throw new IllegalArgumentException(BAD_RANGE);
791          return StreamSupport.doubleStream
792              (new RandomDoublesSpliterator
793               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 866 | Line 796 | public class SplittableRandom {
796  
797      /**
798       * Returns an effectively unlimited stream of pseudorandom {@code
799 <     * double} values, each conforming to the given origin and bound.
799 >     * double} values from this generator and/or one split from it; each value
800 >     * conforms to the given origin (inclusive) and bound (exclusive).
801       *
802       * @implNote This method is implemented to be equivalent to {@code
803       * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
804       *
805 <     * @param randomNumberOrigin the origin of each random value
806 <     * @param randomNumberBound the bound of each random value
805 >     * @param randomNumberOrigin the origin (inclusive) of each random value
806 >     * @param randomNumberBound the bound (exclusive) of each random value
807       * @return a stream of pseudorandom {@code double} values,
808 <     * each with the given origin and bound
808 >     *         each with the given origin (inclusive) and bound (exclusive)
809       * @throws IllegalArgumentException if {@code randomNumberOrigin}
810       *         is greater than or equal to {@code randomNumberBound}
811       */
812      public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
813          if (!(randomNumberOrigin < randomNumberBound))
814 <            throw new IllegalArgumentException("bound must be greater than origin");
814 >            throw new IllegalArgumentException(BAD_RANGE);
815          return StreamSupport.doubleStream
816              (new RandomDoublesSpliterator
817               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 895 | Line 826 | public class SplittableRandom {
826       * approach. The long and double versions of this class are
827       * identical except for types.
828       */
829 <    static final class RandomIntsSpliterator implements Spliterator.OfInt {
829 >    private static final class RandomIntsSpliterator
830 >            implements Spliterator.OfInt {
831          final SplittableRandom rng;
832          long index;
833          final long fence;
# Line 938 | Line 870 | public class SplittableRandom {
870              long i = index, f = fence;
871              if (i < f) {
872                  index = f;
873 +                SplittableRandom r = rng;
874                  int o = origin, b = bound;
875                  do {
876 <                    consumer.accept(rng.internalNextInt(o, b));
876 >                    consumer.accept(r.internalNextInt(o, b));
877                  } while (++i < f);
878              }
879          }
# Line 949 | Line 882 | public class SplittableRandom {
882      /**
883       * Spliterator for long streams.
884       */
885 <    static final class RandomLongsSpliterator implements Spliterator.OfLong {
885 >    private static final class RandomLongsSpliterator
886 >            implements Spliterator.OfLong {
887          final SplittableRandom rng;
888          long index;
889          final long fence;
# Line 992 | Line 926 | public class SplittableRandom {
926              long i = index, f = fence;
927              if (i < f) {
928                  index = f;
929 +                SplittableRandom r = rng;
930                  long o = origin, b = bound;
931                  do {
932 <                    consumer.accept(rng.internalNextLong(o, b));
932 >                    consumer.accept(r.internalNextLong(o, b));
933                  } while (++i < f);
934              }
935          }
# Line 1004 | Line 939 | public class SplittableRandom {
939      /**
940       * Spliterator for double streams.
941       */
942 <    static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
942 >    private static final class RandomDoublesSpliterator
943 >            implements Spliterator.OfDouble {
944          final SplittableRandom rng;
945          long index;
946          final long fence;
# Line 1047 | Line 983 | public class SplittableRandom {
983              long i = index, f = fence;
984              if (i < f) {
985                  index = f;
986 +                SplittableRandom r = rng;
987                  double o = origin, b = bound;
988                  do {
989 <                    consumer.accept(rng.internalNextDouble(o, b));
989 >                    consumer.accept(r.internalNextDouble(o, b));
990                  } while (++i < f);
991              }
992          }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines