ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
(Generate patch)

Comparing jsr166/src/main/java/util/SplittableRandom.java (file contents):
Revision 1.6 by dl, Thu Jul 11 23:22:01 2013 UTC vs.
Revision 1.17 by jsr166, Tue Aug 13 23:34:47 2013 UTC

# Line 25 | Line 25
25  
26   package java.util;
27  
28 + import java.net.InetAddress;
29   import java.util.concurrent.atomic.AtomicLong;
30   import java.util.Spliterator;
31   import java.util.function.IntConsumer;
# Line 35 | Line 36 | import java.util.stream.IntStream;
36   import java.util.stream.LongStream;
37   import java.util.stream.DoubleStream;
38  
38
39   /**
40   * A generator of uniform pseudorandom values applicable for use in
41   * (among other contexts) isolated parallel computations that may
42   * generate subtasks. Class SplittableRandom supports methods for
43   * producing pseudorandom numbers of type {@code int}, {@code long},
44   * and {@code double} with similar usages as for class
45 < * {@link java.util.Random} but differs in the following ways: <ul>
45 > * {@link java.util.Random} but differs in the following ways:
46 > *
47 > * <ul>
48   *
49   * <li>Series of generated values pass the DieHarder suite testing
50   * independence and uniformity properties of random number generators.
# Line 50 | Line 52 | import java.util.stream.DoubleStream;
52   * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
53   * 3.31.1</a>.) These tests validate only the methods for certain
54   * types and ranges, but similar properties are expected to hold, at
55 < * least approximately, for others as well.  </li>
55 > * least approximately, for others as well. The <em>period</em>
56 > * (length of any series of generated values before it repeats) is at
57 > * least 2<sup>64</sup>. </li>
58   *
59   * <li> Method {@link #split} constructs and returns a new
60   * SplittableRandom instance that shares no mutable state with the
61 < * current instance. However, with very high probability, the set of
62 < * values collectively generated by the two objects has the same
61 > * current instance. However, with very high probability, the
62 > * values collectively generated by the two objects have the same
63   * statistical properties as if the same quantity of values were
64   * generated by a single thread using a single {@code
65   * SplittableRandom} object.  </li>
# Line 80 | Line 84 | import java.util.stream.DoubleStream;
84   public class SplittableRandom {
85  
86      /*
83     * File organization: First the non-public methods that constitute
84     * the main algorithm, then the main public methods, followed by
85     * some custom spliterator classes needed for stream methods.
86     *
87     * Credits: Primary algorithm and code by Guy Steele.  Stream
88     * support methods by Doug Lea.  Documentation jointly produced
89     * with additional help from Brian Goetz.
90     */
91
92    /*
87       * Implementation Overview.
88       *
89       * This algorithm was inspired by the "DotMix" algorithm by
90       * Leiserson, Schardl, and Sukha "Deterministic Parallel
91       * Random-Number Generation for Dynamic-Multithreading Platforms",
92 <     * PPoPP 2012, but improves and extends it in several ways.
93 <     *
94 <     * The primary update step is simply to add a constant ("gamma")
95 <     * to the current seed, modulo a prime ("George"). However, the
96 <     * nextLong and nextInt methods do not return this value, but
97 <     * instead the results of bit-mixing transformations that produce
98 <     * more uniformly distributed sequences.
99 <     *
100 <     * "George" is the otherwise nameless (because it cannot be
101 <     * represented) prime number 2^64+13. Using a prime number larger
102 <     * than can fit in a long ensures that all possible long values
103 <     * can occur, plus 13 others that just get skipped over when they
104 <     * are encountered; see method addGammaModGeorge. For this to
105 <     * work, initial gamma values must be at least 13.
106 <     *
113 <     * The value of gamma differs for each instance across a series of
114 <     * splits, and is generated using a slightly stripped-down variant
115 <     * of the same algorithm, but operating across calls to split(),
116 <     * not calls to nextSeed(): Each instance carries the state of
117 <     * this generator as nextSplit, and uses mix64(nextSplit) as its
118 <     * own gamma value. Computations of gammas themselves use a fixed
119 <     * constant as the second argument to the addGammaModGeorge
120 <     * function, GAMMA_GAMMA, a "genuinely random" number from a
121 <     * radioactive decay reading (obtained from
122 <     * http://www.fourmilab.ch/hotbits/) meeting the above range
123 <     * constraint. Using a fixed constant maintains the invariant that
124 <     * the value of gamma is the same for every instance that is at
125 <     * the same split-distance from their common root. (Note: there is
126 <     * nothing especially magic about obtaining this constant from a
127 <     * "truly random" physical source rather than just choosing one
128 <     * arbitrarily; using "hotbits" was merely an aesthetically pleasing
129 <     * choice.  In either case, good statistical behavior of the
130 <     * algorithm should be, and was, verified by using the DieHarder
131 <     * test suite.)
132 <     *
133 <     * The mix64 bit-mixing function called by nextLong and other
134 <     * methods computes the same value as the "64-bit finalizer"
135 <     * function in Austin Appleby's MurmurHash3 algorithm.  See
92 >     * PPoPP 2012, as well as those in "Parallel random numbers: as
93 >     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
94 >     * differs mainly in simplifying and cheapening operations.
95 >     *
96 >     * The primary update step (method nextSeed()) is to add a
97 >     * constant ("gamma") to the current (64 bit) seed, forming a
98 >     * simple sequence.  The seed and the gamma values for any two
99 >     * SplittableRandom instances are highly likely to be different.
100 >     *
101 >     * Methods nextLong, nextInt, and derivatives do not return the
102 >     * sequence (seed) values, but instead a hash-like bit-mix of
103 >     * their bits, producing more independently distributed sequences.
104 >     * For nextLong, the mix64 bit-mixing function computes the same
105 >     * value as the "64-bit finalizer" function in Austin Appleby's
106 >     * MurmurHash3 algorithm.  See
107       * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
108       * comments: "The constants for the finalizers were generated by a
109       * simple simulated-annealing algorithm, and both avalanche all
110 <     * bits of 'h' to within 0.25% bias." It also appears to work to
111 <     * use instead any of the variants proposed by David Stafford at
112 <     * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
113 <     * but these variants have not yet been tested as thoroughly
114 <     * in the context of the implementation of SplittableRandom.
115 <     *
116 <     * The mix32 function used for nextInt just consists of two of the
117 <     * five lines of mix64; avalanche testing shows that the 64-bit result
118 <     * has its top 32 bits avalanched well, though not the bottom 32 bits.
119 <     * DieHarder tests show that it is adequate for generating one
120 <     * random int from the 64-bit result of nextSeed.
121 <     *
122 <     * Support for the default (no-argument) constructor relies on an
123 <     * AtomicLong (defaultSeedGenerator) to help perform the
124 <     * equivalent of a split of a statically constructed
125 <     * SplittableRandom. Unlike other cases, this split must be
126 <     * performed in a thread-safe manner. We use
127 <     * AtomicLong.compareAndSet as the (typically) most efficient
128 <     * mechanism. To bootstrap, we start off using System.nanotime(),
129 <     * and update using another "genuinely random" constant
130 <     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
131 <     * not 0, for its splitSeed argument (addGammaModGeorge(0,
132 <     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
133 <     * this root generator, even though the root is not explicitly
134 <     * represented as a SplittableRandom.
110 >     * bits of 'h' to within 0.25% bias." The mix32 function is
111 >     * equivalent to (int)(mix64(seed) >>> 32), but faster because it
112 >     * omits a step that doesn't contribute to result.
113 >     *
114 >     * The split operation uses the current generator to form the seed
115 >     * and gamma for another SplittableRandom.  To conservatively
116 >     * avoid potential correlations between seed and value generation,
117 >     * gamma selection (method nextGamma) uses the "Mix13" constants
118 >     * for MurmurHash3 described by David Stafford
119 >     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
120 >     * To avoid potential weaknesses in bit-mixing transformations, we
121 >     * restrict gammas to odd values with at least 12 and no more than
122 >     * 52 bits set.  Rather than rejecting candidates with too few or
123 >     * too many bits set, method nextGamma flips some bits (which has
124 >     * the effect of mapping at most 4 to any given gamma value).
125 >     * This reduces the effective set of 64bit odd gamma values by
126 >     * about 2<sup>14</sup>, a very tiny percentage, and serves as an
127 >     * automated screening for sequence constant selection that is
128 >     * left as an empirical decision in some other hashing and crypto
129 >     * algorithms.
130 >     *
131 >     * The resulting generator thus transforms a sequence in which
132 >     * (typically) many bits change on each step, with an inexpensive
133 >     * mixer with good (but less than cryptographically secure)
134 >     * avalanching.
135 >     *
136 >     * The default (no-argument) constructor, in essence, invokes
137 >     * split() for a common "seeder" SplittableRandom.  Unlike other
138 >     * cases, this split must be performed in a thread-safe manner, so
139 >     * we use an AtomicLong to represent the seed rather than use an
140 >     * explicit SplittableRandom. To bootstrap the seeder, we start
141 >     * off using a seed based on current time and host. This serves as
142 >     * a slimmed-down (and insecure) variant of SecureRandom that also
143 >     * avoids stalls that may occur when using /dev/random.
144 >     *
145 >     * It is a relatively simple matter to apply the basic design here
146 >     * to use 128 bit seeds. However, emulating 128bit arithmetic and
147 >     * carrying around twice the state add more overhead than appears
148 >     * warranted for current usages.
149 >     *
150 >     * File organization: First the non-public methods that constitute
151 >     * the main algorithm, then the main public methods, followed by
152 >     * some custom spliterator classes needed for stream methods.
153       */
154  
155      /**
156 <     * The "genuinely random" value for producing new gamma values.
157 <     * The value is arbitrary, subject to the requirement that it be
158 <     * greater or equal to 13.
170 <     */
171 <    private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
172 <
173 <    /**
174 <     * The "genuinely random" seed update value for default constructors.
175 <     * The value is arbitrary, subject to the requirement that it be
176 <     * greater or equal to 13.
156 >     * The initial gamma value for (unsplit) SplittableRandoms. Must
157 >     * be odd with at least 12 and no more than 52 bits set. Currently
158 >     * set to the golden ratio scaled to 64bits.
159       */
160 <    private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
160 >    private static final long INITIAL_GAMMA = 0x9e3779b97f4a7c15L;
161  
162      /**
163       * The least non-zero value returned by nextDouble(). This value
164 <     * is scaled by a random value of 52 bits to produce a result.
164 >     * is scaled by a random value of 53 bits to produce a result.
165       */
166      private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
167  
168      /**
169 <     * The next seed for default constructors.
188 <     */
189 <    private static final AtomicLong defaultSeedGenerator =
190 <        new AtomicLong(System.nanoTime());
191 <
192 <    /**
193 <     * The seed, updated only via method nextSeed.
169 >     * The seed. Updated only via method nextSeed.
170       */
171      private long seed;
172  
173      /**
174 <     * The constant value added to seed (mod George) on each update.
174 >     * The step value.
175       */
176      private final long gamma;
177  
178      /**
179 <     * The next seed to use for splits. Propagated using
204 <     * addGammaModGeorge across instances.
179 >     * Internal constructor used by all others except default constructor.
180       */
181 <    private final long nextSplit;
181 >    private SplittableRandom(long seed, long gamma) {
182 >        this.seed = seed;
183 >        this.gamma = gamma;
184 >    }
185  
186      /**
187 <     * Internal constructor used by all other constructors and by
210 <     * method split. Establishes the initial seed for this instance,
211 <     * and uses the given splitSeed to establish gamma, as well as the
212 <     * nextSplit to use by this instance.
187 >     * Computes MurmurHash3 64bit mix function.
188       */
189 <    private SplittableRandom(long seed, long splitSeed) {
190 <        this.seed = seed;
191 <        long s = splitSeed, g;
192 <        do { // ensure gamma >= 13, considered as an unsigned integer
218 <            s = addGammaModGeorge(s, GAMMA_GAMMA);
219 <            g = mix64(s);
220 <        } while (Long.compareUnsigned(g, 13L) < 0);
221 <        this.gamma = g;
222 <        this.nextSplit = s;
189 >    private static long mix64(long z) {
190 >        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
191 >        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
192 >        return z ^ (z >>> 33);
193      }
194  
195      /**
196 <     * Adds the given gamma value, g, to the given seed value s, mod
197 <     * George (2^64+13). We regard s and g as unsigned values
198 <     * (ranging from 0 to 2^64-1). We add g to s either once or twice
199 <     * (mod George) as necessary to produce an (unsigned) result less
200 <     * than 2^64.  We require that g must be at least 13. This
231 <     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
232 <     * George < 2^64; thus we need only a conditional, not a loop,
233 <     * to be sure of getting a representable value.
234 <     *
235 <     * @param s a seed value
236 <     * @param g a gamma value, 13 <= g (as unsigned)
237 <     */
238 <    private static long addGammaModGeorge(long s, long g) {
239 <        long p = s + g;
240 <        if (Long.compareUnsigned(p, g) >= 0)
241 <            return p;
242 <        long q = p - 13L;
243 <        return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
196 >     * Returns the 32 high bits of mix64(z) as int.
197 >     */
198 >    private static int mix32(long z) {
199 >        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
200 >        return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
201      }
202  
203      /**
204 <     * Updates in-place and returns seed.
248 <     * See above for explanation.
204 >     * Returns the gamma value to use for a new split instance.
205       */
206 <    private long nextSeed() {
207 <        return seed = addGammaModGeorge(seed, gamma);
206 >    private static long nextGamma(long z) {
207 >        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L; // Stafford "Mix13"
208 >        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
209 >        z = (z ^ (z >>> 31)) | 1L; // force to be odd
210 >        int n = Long.bitCount(z);  // ensure enough 0 and 1 bits
211 >        return (n < 12 || n > 52) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
212      }
213  
214      /**
215 <     * Returns a bit-mixed transformation of its argument.
256 <     * See above for explanation.
215 >     * Adds gamma to seed.
216       */
217 <    private static long mix64(long z) {
218 <        z ^= (z >>> 33);
260 <        z *= 0xff51afd7ed558ccdL;
261 <        z ^= (z >>> 33);
262 <        z *= 0xc4ceb9fe1a85ec53L;
263 <        z ^= (z >>> 33);
264 <        return z;
217 >    private long nextSeed() {
218 >        return seed += gamma;
219      }
220  
221      /**
222 <     * Returns a bit-mixed int transformation of its argument.
269 <     * See above for explanation.
222 >     * The seed generator for default constructors.
223       */
224 <    private static int mix32(long z) {
225 <        z ^= (z >>> 33);
226 <        z *= 0xc4ceb9fe1a85ec53L;
227 <        return (int)(z >>> 32);
275 <    }
224 >    private static final AtomicLong seeder =
225 >        new AtomicLong(mix64((((long)hashedHostAddress()) << 32) ^
226 >                             System.currentTimeMillis()) ^
227 >                       mix64(System.nanoTime()));
228  
229      /**
230 <     * Atomically updates and returns next seed for default constructor
230 >     * Returns hash of local host IP address, if available; else 0.
231       */
232 <    private static long nextDefaultSeed() {
233 <        long oldSeed, newSeed;
234 <        do {
235 <            oldSeed = defaultSeedGenerator.get();
236 <            newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
237 <        } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
286 <        return mix64(newSeed);
232 >    private static int hashedHostAddress() {
233 >        try {
234 >            return InetAddress.getLocalHost().hashCode();
235 >        } catch (Exception ex) {
236 >            return 0;
237 >        }
238      }
239  
240 +    // IllegalArgumentException messages
241 +    static final String BadBound = "bound must be positive";
242 +    static final String BadRange = "bound must be greater than origin";
243 +    static final String BadSize  = "size must be non-negative";
244 +
245      /*
246       * Internal versions of nextX methods used by streams, as well as
247       * the public nextX(origin, bound) methods.  These exist mainly to
# Line 332 | Line 288 | public class SplittableRandom {
288          long r = mix64(nextSeed());
289          if (origin < bound) {
290              long n = bound - origin, m = n - 1;
291 <            if ((n & m) == 0L) // power of two
291 >            if ((n & m) == 0L)  // power of two
292                  r = (r & m) + origin;
293 <            else if (n > 0) { // reject over-represented candidates
293 >            else if (n > 0L) {  // reject over-represented candidates
294                  for (long u = r >>> 1;            // ensure nonnegative
295 <                     u + m - (r = u % n) < 0L;    // reject
295 >                     u + m - (r = u % n) < 0L;    // rejection check
296                       u = mix64(nextSeed()) >>> 1) // retry
297                      ;
298                  r += origin;
299              }
300 <            else {             // range not representable as long
300 >            else {              // range not representable as long
301                  while (r < origin || r >= bound)
302                      r = mix64(nextSeed());
303              }
# Line 361 | Line 317 | public class SplittableRandom {
317          int r = mix32(nextSeed());
318          if (origin < bound) {
319              int n = bound - origin, m = n - 1;
320 <            if ((n & m) == 0L)
320 >            if ((n & m) == 0)
321                  r = (r & m) + origin;
322              else if (n > 0) {
323                  for (int u = r >>> 1;
324 <                     u + m - (r = u % n) < 0L;
324 >                     u + m - (r = u % n) < 0;
325                       u = mix32(nextSeed()) >>> 1)
326                      ;
327                  r += origin;
# Line 389 | Line 345 | public class SplittableRandom {
345          double r = (nextLong() >>> 11) * DOUBLE_UNIT;
346          if (origin < bound) {
347              r = r * (bound - origin) + origin;
348 <            if (r == bound) // correct for rounding
348 >            if (r >= bound) // correct for rounding
349                  r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
350          }
351          return r;
# Line 398 | Line 354 | public class SplittableRandom {
354      /* ---------------- public methods ---------------- */
355  
356      /**
357 <     * Creates a new SplittableRandom instance using the given initial
358 <     * seed. Two SplittableRandom instances created with the same seed
359 <     * generate identical sequences of values.
357 >     * Creates a new SplittableRandom instance using the specified
358 >     * initial seed. SplittableRandom instances created with the same
359 >     * seed in the same program generate identical sequences of values.
360       *
361       * @param seed the initial seed
362       */
363      public SplittableRandom(long seed) {
364 <        this(seed, 0);
364 >        this(seed, INITIAL_GAMMA);
365      }
366  
367      /**
# Line 414 | Line 370 | public class SplittableRandom {
370       * of those of any other instances in the current program; and
371       * may, and typically does, vary across program invocations.
372       */
373 <    public SplittableRandom() {
374 <        this(nextDefaultSeed(), GAMMA_GAMMA);
373 >    public SplittableRandom() { // emulate seeder.split()
374 >        this.gamma = nextGamma(this.seed = seeder.addAndGet(INITIAL_GAMMA));
375      }
376  
377      /**
# Line 433 | Line 389 | public class SplittableRandom {
389       * @return the new SplittableRandom instance
390       */
391      public SplittableRandom split() {
392 <        return new SplittableRandom(nextSeed(), nextSplit);
392 >        long s = nextSeed();
393 >        return new SplittableRandom(s, nextGamma(s));
394      }
395  
396      /**
397       * Returns a pseudorandom {@code int} value.
398       *
399 <     * @return a pseudorandom value
399 >     * @return a pseudorandom {@code int} value
400       */
401      public int nextInt() {
402          return mix32(nextSeed());
403      }
404  
405      /**
406 <     * Returns a pseudorandom {@code int} value between 0 (inclusive)
406 >     * Returns a pseudorandom {@code int} value between zero (inclusive)
407       * and the specified bound (exclusive).
408       *
409       * @param bound the bound on the random number to be returned.  Must be
410       *        positive.
411 <     * @return a pseudorandom {@code int} value between {@code 0}
412 <     *         (inclusive) and the bound (exclusive).
413 <     * @exception IllegalArgumentException if the bound is not positive
411 >     * @return a pseudorandom {@code int} value between zero
412 >     *         (inclusive) and the bound (exclusive)
413 >     * @throws IllegalArgumentException if {@code bound} is not positive
414       */
415      public int nextInt(int bound) {
416          if (bound <= 0)
417 <            throw new IllegalArgumentException("bound must be positive");
417 >            throw new IllegalArgumentException(BadBound);
418          // Specialize internalNextInt for origin 0
419          int r = mix32(nextSeed());
420          int m = bound - 1;
421 <        if ((bound & m) == 0L) // power of two
421 >        if ((bound & m) == 0) // power of two
422              r &= m;
423          else { // reject over-represented candidates
424              for (int u = r >>> 1;
425 <                 u + m - (r = u % bound) < 0L;
425 >                 u + m - (r = u % bound) < 0;
426                   u = mix32(nextSeed()) >>> 1)
427                  ;
428          }
# Line 479 | Line 436 | public class SplittableRandom {
436       * @param origin the least value returned
437       * @param bound the upper bound (exclusive)
438       * @return a pseudorandom {@code int} value between the origin
439 <     *         (inclusive) and the bound (exclusive).
440 <     * @exception IllegalArgumentException if {@code origin} is greater than
439 >     *         (inclusive) and the bound (exclusive)
440 >     * @throws IllegalArgumentException if {@code origin} is greater than
441       *         or equal to {@code bound}
442       */
443      public int nextInt(int origin, int bound) {
444          if (origin >= bound)
445 <            throw new IllegalArgumentException("bound must be greater than origin");
445 >            throw new IllegalArgumentException(BadRange);
446          return internalNextInt(origin, bound);
447      }
448  
449      /**
450       * Returns a pseudorandom {@code long} value.
451       *
452 <     * @return a pseudorandom value
452 >     * @return a pseudorandom {@code long} value
453       */
454      public long nextLong() {
455          return mix64(nextSeed());
456      }
457  
458      /**
459 <     * Returns a pseudorandom {@code long} value between 0 (inclusive)
459 >     * Returns a pseudorandom {@code long} value between zero (inclusive)
460       * and the specified bound (exclusive).
461       *
462       * @param bound the bound on the random number to be returned.  Must be
463       *        positive.
464 <     * @return a pseudorandom {@code long} value between {@code 0}
465 <     *         (inclusive) and the bound (exclusive).
466 <     * @exception IllegalArgumentException if the bound is not positive
464 >     * @return a pseudorandom {@code long} value between zero
465 >     *         (inclusive) and the bound (exclusive)
466 >     * @throws IllegalArgumentException if {@code bound} is not positive
467       */
468      public long nextLong(long bound) {
469          if (bound <= 0)
470 <            throw new IllegalArgumentException("bound must be positive");
470 >            throw new IllegalArgumentException(BadBound);
471          // Specialize internalNextLong for origin 0
472          long r = mix64(nextSeed());
473          long m = bound - 1;
# Line 532 | Line 489 | public class SplittableRandom {
489       * @param origin the least value returned
490       * @param bound the upper bound (exclusive)
491       * @return a pseudorandom {@code long} value between the origin
492 <     *         (inclusive) and the bound (exclusive).
493 <     * @exception IllegalArgumentException if {@code origin} is greater than
492 >     *         (inclusive) and the bound (exclusive)
493 >     * @throws IllegalArgumentException if {@code origin} is greater than
494       *         or equal to {@code bound}
495       */
496      public long nextLong(long origin, long bound) {
497          if (origin >= bound)
498 <            throw new IllegalArgumentException("bound must be greater than origin");
498 >            throw new IllegalArgumentException(BadRange);
499          return internalNextLong(origin, bound);
500      }
501  
502      /**
503 <     * Returns a pseudorandom {@code double} value between {@code 0.0}
504 <     * (inclusive) and {@code 1.0} (exclusive).
503 >     * Returns a pseudorandom {@code double} value between zero
504 >     * (inclusive) and one (exclusive).
505       *
506 <     * @return a pseudorandom value between {@code 0.0}
507 <     * (inclusive) and {@code 1.0} (exclusive)
506 >     * @return a pseudorandom {@code double} value between zero
507 >     * (inclusive) and one (exclusive)
508       */
509      public double nextDouble() {
510 <        return (nextLong() >>> 11) * DOUBLE_UNIT;
510 >        return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
511      }
512  
513      /**
# Line 559 | Line 516 | public class SplittableRandom {
516       *
517       * @param bound the bound on the random number to be returned.  Must be
518       *        positive.
519 <     * @return a pseudorandom {@code double} value between {@code 0.0}
520 <     *         (inclusive) and the bound (exclusive).
519 >     * @return a pseudorandom {@code double} value between zero
520 >     *         (inclusive) and the bound (exclusive)
521       * @throws IllegalArgumentException if {@code bound} is not positive
522       */
523      public double nextDouble(double bound) {
524 <        if (bound <= 0.0)
525 <            throw new IllegalArgumentException("bound must be positive");
526 <        double result = nextDouble() * bound;
524 >        if (!(bound > 0.0))
525 >            throw new IllegalArgumentException(BadBound);
526 >        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
527          return (result < bound) ?  result : // correct for rounding
528              Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
529      }
530  
531      /**
532 <     * Returns a pseudorandom {@code double} value between the given
532 >     * Returns a pseudorandom {@code double} value between the specified
533       * origin (inclusive) and bound (exclusive).
534       *
535       * @param origin the least value returned
536       * @param bound the upper bound
537       * @return a pseudorandom {@code double} value between the origin
538 <     *         (inclusive) and the bound (exclusive).
538 >     *         (inclusive) and the bound (exclusive)
539       * @throws IllegalArgumentException if {@code origin} is greater than
540       *         or equal to {@code bound}
541       */
542      public double nextDouble(double origin, double bound) {
543 <        if (origin >= bound)
544 <            throw new IllegalArgumentException("bound must be greater than origin");
543 >        if (!(origin < bound))
544 >            throw new IllegalArgumentException(BadRange);
545          return internalNextDouble(origin, bound);
546      }
547  
548 +    /**
549 +     * Returns a pseudorandom {@code boolean} value.
550 +     *
551 +     * @return a pseudorandom {@code boolean} value
552 +     */
553 +    public boolean nextBoolean() {
554 +        return mix32(nextSeed()) < 0;
555 +    }
556 +
557      // stream methods, coded in a way intended to better isolate for
558      // maintenance purposes the small differences across forms.
559  
560      /**
561 <     * Returns a stream with the given {@code streamSize} number of
562 <     * pseudorandom {@code int} values.
561 >     * Returns a stream producing the given {@code streamSize} number
562 >     * of pseudorandom {@code int} values from this generator and/or
563 >     * one split from it.
564       *
565       * @param streamSize the number of values to generate
566       * @return a stream of pseudorandom {@code int} values
567       * @throws IllegalArgumentException if {@code streamSize} is
568 <     * less than zero
568 >     *         less than zero
569       */
570      public IntStream ints(long streamSize) {
571          if (streamSize < 0L)
572 <            throw new IllegalArgumentException("negative Stream size");
572 >            throw new IllegalArgumentException(BadSize);
573          return StreamSupport.intStream
574              (new RandomIntsSpliterator
575               (this, 0L, streamSize, Integer.MAX_VALUE, 0),
# Line 611 | Line 578 | public class SplittableRandom {
578  
579      /**
580       * Returns an effectively unlimited stream of pseudorandom {@code int}
581 <     * values
581 >     * values from this generator and/or one split from it.
582       *
583       * @implNote This method is implemented to be equivalent to {@code
584       * ints(Long.MAX_VALUE)}.
# Line 626 | Line 593 | public class SplittableRandom {
593      }
594  
595      /**
596 <     * Returns a stream with the given {@code streamSize} number of
597 <     * pseudorandom {@code int} values, each conforming to the given
598 <     * origin and bound.
596 >     * Returns a stream producing the given {@code streamSize} number
597 >     * of pseudorandom {@code int} values, each conforming to the
598 >     * given origin and bound.
599       *
600       * @param streamSize the number of values to generate
601       * @param randomNumberOrigin the origin of each random value
602       * @param randomNumberBound the bound of each random value
603       * @return a stream of pseudorandom {@code int} values,
604 <     * each with the given origin and bound.
604 >     *         each with the given origin and bound
605       * @throws IllegalArgumentException if {@code streamSize} is
606 <     * less than zero.
640 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
606 >     *         less than zero, or {@code randomNumberOrigin}
607       *         is greater than or equal to {@code randomNumberBound}
608       */
609      public IntStream ints(long streamSize, int randomNumberOrigin,
610                            int randomNumberBound) {
611          if (streamSize < 0L)
612 <            throw new IllegalArgumentException("negative Stream size");
612 >            throw new IllegalArgumentException(BadSize);
613          if (randomNumberOrigin >= randomNumberBound)
614 <            throw new IllegalArgumentException("bound must be greater than origin");
614 >            throw new IllegalArgumentException(BadRange);
615          return StreamSupport.intStream
616              (new RandomIntsSpliterator
617               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 662 | Line 628 | public class SplittableRandom {
628       * @param randomNumberOrigin the origin of each random value
629       * @param randomNumberBound the bound of each random value
630       * @return a stream of pseudorandom {@code int} values,
631 <     * each with the given origin and bound.
631 >     *         each with the given origin and bound
632       * @throws IllegalArgumentException if {@code randomNumberOrigin}
633       *         is greater than or equal to {@code randomNumberBound}
634       */
635      public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
636          if (randomNumberOrigin >= randomNumberBound)
637 <            throw new IllegalArgumentException("bound must be greater than origin");
637 >            throw new IllegalArgumentException(BadRange);
638          return StreamSupport.intStream
639              (new RandomIntsSpliterator
640               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 676 | Line 642 | public class SplittableRandom {
642      }
643  
644      /**
645 <     * Returns a stream with the given {@code streamSize} number of
646 <     * pseudorandom {@code long} values.
645 >     * Returns a stream producing the given {@code streamSize} number
646 >     * of pseudorandom {@code long} values from this generator and/or
647 >     * one split from it.
648       *
649       * @param streamSize the number of values to generate
650 <     * @return a stream of {@code long} values
650 >     * @return a stream of pseudorandom {@code long} values
651       * @throws IllegalArgumentException if {@code streamSize} is
652 <     * less than zero
652 >     *         less than zero
653       */
654      public LongStream longs(long streamSize) {
655          if (streamSize < 0L)
656 <            throw new IllegalArgumentException("negative Stream size");
656 >            throw new IllegalArgumentException(BadSize);
657          return StreamSupport.longStream
658              (new RandomLongsSpliterator
659               (this, 0L, streamSize, Long.MAX_VALUE, 0L),
# Line 694 | Line 661 | public class SplittableRandom {
661      }
662  
663      /**
664 <     * Returns an effectively unlimited stream of pseudorandom {@code long}
665 <     * values.
664 >     * Returns an effectively unlimited stream of pseudorandom {@code
665 >     * long} values from this generator and/or one split from it.
666       *
667       * @implNote This method is implemented to be equivalent to {@code
668       * longs(Long.MAX_VALUE)}.
# Line 710 | Line 677 | public class SplittableRandom {
677      }
678  
679      /**
680 <     * Returns a stream with the given {@code streamSize} number of
680 >     * Returns a stream producing the given {@code streamSize} number of
681       * pseudorandom {@code long} values, each conforming to the
682       * given origin and bound.
683       *
# Line 718 | Line 685 | public class SplittableRandom {
685       * @param randomNumberOrigin the origin of each random value
686       * @param randomNumberBound the bound of each random value
687       * @return a stream of pseudorandom {@code long} values,
688 <     * each with the given origin and bound.
688 >     *         each with the given origin and bound
689       * @throws IllegalArgumentException if {@code streamSize} is
690 <     * less than zero.
724 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
690 >     *         less than zero, or {@code randomNumberOrigin}
691       *         is greater than or equal to {@code randomNumberBound}
692       */
693      public LongStream longs(long streamSize, long randomNumberOrigin,
694                              long randomNumberBound) {
695          if (streamSize < 0L)
696 <            throw new IllegalArgumentException("negative Stream size");
696 >            throw new IllegalArgumentException(BadSize);
697          if (randomNumberOrigin >= randomNumberBound)
698 <            throw new IllegalArgumentException("bound must be greater than origin");
698 >            throw new IllegalArgumentException(BadRange);
699          return StreamSupport.longStream
700              (new RandomLongsSpliterator
701               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 746 | Line 712 | public class SplittableRandom {
712       * @param randomNumberOrigin the origin of each random value
713       * @param randomNumberBound the bound of each random value
714       * @return a stream of pseudorandom {@code long} values,
715 <     * each with the given origin and bound.
715 >     *         each with the given origin and bound
716       * @throws IllegalArgumentException if {@code randomNumberOrigin}
717       *         is greater than or equal to {@code randomNumberBound}
718       */
719      public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
720          if (randomNumberOrigin >= randomNumberBound)
721 <            throw new IllegalArgumentException("bound must be greater than origin");
721 >            throw new IllegalArgumentException(BadRange);
722          return StreamSupport.longStream
723              (new RandomLongsSpliterator
724               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 760 | Line 726 | public class SplittableRandom {
726      }
727  
728      /**
729 <     * Returns a stream with the given {@code streamSize} number of
730 <     * pseudorandom {@code double} values, each between {@code 0.0}
731 <     * (inclusive) and {@code 1.0} (exclusive).
729 >     * Returns a stream producing the given {@code streamSize} number of
730 >     * pseudorandom {@code double} values, each between zero
731 >     * (inclusive) and one (exclusive).
732       *
733       * @param streamSize the number of values to generate
734       * @return a stream of {@code double} values
735       * @throws IllegalArgumentException if {@code streamSize} is
736 <     * less than zero
736 >     *         less than zero
737       */
738      public DoubleStream doubles(long streamSize) {
739          if (streamSize < 0L)
740 <            throw new IllegalArgumentException("negative Stream size");
740 >            throw new IllegalArgumentException(BadSize);
741          return StreamSupport.doubleStream
742              (new RandomDoublesSpliterator
743               (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
# Line 780 | Line 746 | public class SplittableRandom {
746  
747      /**
748       * Returns an effectively unlimited stream of pseudorandom {@code
749 <     * double} values, each between {@code 0.0} (inclusive) and {@code
750 <     * 1.0} (exclusive).
749 >     * double} values, each between zero (inclusive) and one
750 >     * (exclusive).
751       *
752       * @implNote This method is implemented to be equivalent to {@code
753       * doubles(Long.MAX_VALUE)}.
# Line 796 | Line 762 | public class SplittableRandom {
762      }
763  
764      /**
765 <     * Returns a stream with the given {@code streamSize} number of
765 >     * Returns a stream producing the given {@code streamSize} number of
766       * pseudorandom {@code double} values, each conforming to the
767       * given origin and bound.
768       *
# Line 804 | Line 770 | public class SplittableRandom {
770       * @param randomNumberOrigin the origin of each random value
771       * @param randomNumberBound the bound of each random value
772       * @return a stream of pseudorandom {@code double} values,
773 <     * each with the given origin and bound.
773 >     * each with the given origin and bound
774       * @throws IllegalArgumentException if {@code streamSize} is
775 <     * less than zero.
775 >     * less than zero
776       * @throws IllegalArgumentException if {@code randomNumberOrigin}
777       *         is greater than or equal to {@code randomNumberBound}
778       */
779      public DoubleStream doubles(long streamSize, double randomNumberOrigin,
780                                  double randomNumberBound) {
781          if (streamSize < 0L)
782 <            throw new IllegalArgumentException("negative Stream size");
783 <        if (randomNumberOrigin >= randomNumberBound)
784 <            throw new IllegalArgumentException("bound must be greater than origin");
782 >            throw new IllegalArgumentException(BadSize);
783 >        if (!(randomNumberOrigin < randomNumberBound))
784 >            throw new IllegalArgumentException(BadRange);
785          return StreamSupport.doubleStream
786              (new RandomDoublesSpliterator
787               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 832 | Line 798 | public class SplittableRandom {
798       * @param randomNumberOrigin the origin of each random value
799       * @param randomNumberBound the bound of each random value
800       * @return a stream of pseudorandom {@code double} values,
801 <     * each with the given origin and bound.
801 >     * each with the given origin and bound
802       * @throws IllegalArgumentException if {@code randomNumberOrigin}
803       *         is greater than or equal to {@code randomNumberBound}
804       */
805      public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
806 <        if (randomNumberOrigin >= randomNumberBound)
807 <            throw new IllegalArgumentException("bound must be greater than origin");
806 >        if (!(randomNumberOrigin < randomNumberBound))
807 >            throw new IllegalArgumentException(BadRange);
808          return StreamSupport.doubleStream
809              (new RandomDoublesSpliterator
810               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 847 | Line 813 | public class SplittableRandom {
813  
814      /**
815       * Spliterator for int streams.  We multiplex the four int
816 <     * versions into one class by treating and bound < origin as
816 >     * versions into one class by treating a bound less than origin as
817       * unbounded, and also by treating "infinite" as equivalent to
818       * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
819       * approach. The long and double versions of this class are
820       * identical except for types.
821       */
822 <    static class RandomIntsSpliterator implements Spliterator.OfInt {
822 >    static final class RandomIntsSpliterator implements Spliterator.OfInt {
823          final SplittableRandom rng;
824          long index;
825          final long fence;
# Line 896 | Line 862 | public class SplittableRandom {
862              long i = index, f = fence;
863              if (i < f) {
864                  index = f;
865 +                SplittableRandom r = rng;
866                  int o = origin, b = bound;
867                  do {
868 <                    consumer.accept(rng.internalNextInt(o, b));
868 >                    consumer.accept(r.internalNextInt(o, b));
869                  } while (++i < f);
870              }
871          }
# Line 907 | Line 874 | public class SplittableRandom {
874      /**
875       * Spliterator for long streams.
876       */
877 <    static class RandomLongsSpliterator implements Spliterator.OfLong {
877 >    static final class RandomLongsSpliterator implements Spliterator.OfLong {
878          final SplittableRandom rng;
879          long index;
880          final long fence;
# Line 950 | Line 917 | public class SplittableRandom {
917              long i = index, f = fence;
918              if (i < f) {
919                  index = f;
920 +                SplittableRandom r = rng;
921                  long o = origin, b = bound;
922                  do {
923 <                    consumer.accept(rng.internalNextLong(o, b));
923 >                    consumer.accept(r.internalNextLong(o, b));
924                  } while (++i < f);
925              }
926          }
# Line 962 | Line 930 | public class SplittableRandom {
930      /**
931       * Spliterator for double streams.
932       */
933 <    static class RandomDoublesSpliterator implements Spliterator.OfDouble {
933 >    static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
934          final SplittableRandom rng;
935          long index;
936          final long fence;
# Line 1005 | Line 973 | public class SplittableRandom {
973              long i = index, f = fence;
974              if (i < f) {
975                  index = f;
976 +                SplittableRandom r = rng;
977                  double o = origin, b = bound;
978                  do {
979 <                    consumer.accept(rng.internalNextDouble(o, b));
979 >                    consumer.accept(r.internalNextDouble(o, b));
980                  } while (++i < f);
981              }
982          }
983      }
984  
985   }
1017

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines