ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
(Generate patch)

Comparing jsr166/src/main/java/util/SplittableRandom.java (file contents):
Revision 1.20 by jsr166, Sat Aug 24 06:20:15 2013 UTC vs.
Revision 1.21 by dl, Thu Sep 19 23:19:43 2013 UTC

# Line 26 | Line 26
26   package java.util;
27  
28   import java.security.SecureRandom;
29 < import java.net.InetAddress;
29 > import java.net.NetworkInterface;
30 > import java.util.Enumeration;
31   import java.util.concurrent.atomic.AtomicLong;
32   import java.util.function.IntConsumer;
33   import java.util.function.LongConsumer;
# Line 108 | Line 109 | public class SplittableRandom {
109       * Methods nextLong, nextInt, and derivatives do not return the
110       * sequence (seed) values, but instead a hash-like bit-mix of
111       * their bits, producing more independently distributed sequences.
112 <     * For nextLong, the mix64 bit-mixing function computes the same
113 <     * value as the "64-bit finalizer" function in Austin Appleby's
114 <     * MurmurHash3 algorithm.  See
115 <     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
116 <     * comments: "The constants for the finalizers were generated by a
117 <     * simple simulated-annealing algorithm, and both avalanche all
118 <     * bits of 'h' to within 0.25% bias." The mix32 function is
118 <     * equivalent to (int)(mix64(seed) >>> 32), but faster because it
119 <     * omits a step that doesn't contribute to result.
112 >     * For nextLong, the mix64 function is based on David Stafford's
113 >     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
114 >     * "Mix13" variant of the "64-bit finalizer" function in Austin
115 >     * Appleby's MurmurHash3 algorithm See
116 >     * http://code.google.com/p/smhasher/wiki/MurmurHash3 . The mix32
117 >     * function is based on Stafford's Mix04 mix function, but returns
118 >     * the upper 32 bits cast as int.
119       *
120       * The split operation uses the current generator to form the seed
121       * and gamma for another SplittableRandom.  To conservatively
122       * avoid potential correlations between seed and value generation,
123 <     * gamma selection (method nextGamma) uses the "Mix13" constants
124 <     * for MurmurHash3 described by David Stafford
125 <     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
126 <     * To avoid potential weaknesses in bit-mixing transformations, we
127 <     * restrict gammas to odd values with at least 12 and no more than
128 <     * 52 bits set.  Rather than rejecting candidates with too few or
129 <     * too many bits set, method nextGamma flips some bits (which has
130 <     * the effect of mapping at most 4 to any given gamma value).
132 <     * This reduces the effective set of 64bit odd gamma values by
133 <     * about 2<sup>14</sup>, a very tiny percentage, and serves as an
123 >     * gamma selection (method mixGamma) uses different
124 >     * (Murmurhash3's) mix constants.  To avoid potential weaknesses
125 >     * in bit-mixing transformations, we restrict gammas to odd values
126 >     * with at least 24 0-1 or 1-0 bit transitions.  Rather than
127 >     * rejecting candidates with too few or too many bits set, method
128 >     * mixGamma flips some bits (which has the effect of mapping at
129 >     * most 4 to any given gamma value).  This reduces the effective
130 >     * set of 64bit odd gamma values by about 2%, and serves as an
131       * automated screening for sequence constant selection that is
132       * left as an empirical decision in some other hashing and crypto
133       * algorithms.
# Line 141 | Line 138 | public class SplittableRandom {
138       * avalanching.
139       *
140       * The default (no-argument) constructor, in essence, invokes
141 <     * split() for a common "seeder" SplittableRandom.  Unlike other
142 <     * cases, this split must be performed in a thread-safe manner, so
143 <     * we use an AtomicLong to represent the seed rather than use an
144 <     * explicit SplittableRandom. To bootstrap the seeder, we start
145 <     * off using a seed based on current time and host unless the
146 <     * java.util.secureRandomSeed property is set. This serves as a
147 <     * slimmed-down (and insecure) variant of SecureRandom that also
148 <     * avoids stalls that may occur when using /dev/random.
141 >     * split() for a common "defaultGen" SplittableRandom.  Unlike
142 >     * other cases, this split must be performed in a thread-safe
143 >     * manner, so we use an AtomicLong to represent the seed rather
144 >     * than use an explicit SplittableRandom. To bootstrap the
145 >     * defaultGen, we start off using a seed based on current time and
146 >     * network interface address unless the java.util.secureRandomSeed
147 >     * property is set. This serves as a slimmed-down (and insecure)
148 >     * variant of SecureRandom that also avoids stalls that may occur
149 >     * when using /dev/random.
150       *
151       * It is a relatively simple matter to apply the basic design here
152       * to use 128 bit seeds. However, emulating 128bit arithmetic and
# Line 161 | Line 159 | public class SplittableRandom {
159       */
160  
161      /**
162 <     * The initial gamma value for (unsplit) SplittableRandoms. Must
163 <     * be odd with at least 12 and no more than 52 bits set. Currently
166 <     * set to the golden ratio scaled to 64bits.
162 >     * The golden ratio scaled to 64bits, used as the initial gamma
163 >     * value for (unsplit) SplittableRandoms.
164       */
165 <    private static final long INITIAL_GAMMA = 0x9e3779b97f4a7c15L;
165 >    private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
166  
167      /**
168       * The least non-zero value returned by nextDouble(). This value
169       * is scaled by a random value of 53 bits to produce a result.
170       */
171 <    private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
171 >    private static final double DOUBLE_ULP = 1.0 / (1L << 53);
172  
173      /**
174       * The seed. Updated only via method nextSeed.
# Line 192 | Line 189 | public class SplittableRandom {
189      }
190  
191      /**
192 <     * Computes MurmurHash3 64bit mix function.
192 >     * Computes Stafford variant 13 of 64bit mix function.
193       */
194      private static long mix64(long z) {
195 <        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
196 <        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
197 <        return z ^ (z >>> 33);
195 >        z *= 0xbf58476d1ce4e5b9L;
196 >        z = (z ^ (z >>> 32)) * 0x94d049bb133111ebL;
197 >        return z ^ (z >>> 32);
198 >    }
199 >
200 >    private static long xmix64(long z) {
201 >        z *= 0xbf58476d1ce4e5b9L;
202 >        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
203 >        return z ^ (z >>> 31);
204      }
205  
206      /**
207 <     * Returns the 32 high bits of mix64(z) as int.
207 >     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
208       */
209      private static int mix32(long z) {
210 <        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
211 <        return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
210 >        z *= 0x62a9d9ed799705f5L;
211 >        return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
212      }
213  
214      /**
215       * Returns the gamma value to use for a new split instance.
216       */
217 <    private static long nextGamma(long z) {
218 <        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L; // Stafford "Mix13"
219 <        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
220 <        z = (z ^ (z >>> 31)) | 1L; // force to be odd
221 <        int n = Long.bitCount(z);  // ensure enough 0 and 1 bits
222 <        return (n < 12 || n > 52) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
217 >    private static long mixGamma(long z) {
218 >        z *= 0xff51afd7ed558ccdL;                   // MurmurHash3 mix constants
219 >        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
220 >        z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
221 >        int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
222 >        return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
223      }
224  
225      /**
# Line 229 | Line 232 | public class SplittableRandom {
232      /**
233       * The seed generator for default constructors.
234       */
235 <    private static final AtomicLong seeder = new AtomicLong(initialSeed());
235 >    private static final AtomicLong defaultGen = new AtomicLong(initialSeed());
236  
237      private static long initialSeed() {
238 <        try {  // ignore exceptions in accessing/parsing properties
239 <            String pp = System.getProperty
240 <                ("java.util.secureRandomSeed");
241 <            if (pp != null && pp.equalsIgnoreCase("true")) {
242 <                byte[] seedBytes = java.security.SecureRandom.getSeed(8);
243 <                long s = (long)(seedBytes[0]) & 0xffL;
244 <                for (int i = 1; i < 8; ++i)
245 <                    s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
246 <                return s;
244 <            }
245 <        } catch (Exception ignore) {
238 >        String pp = java.security.AccessController.doPrivileged(
239 >                new sun.security.action.GetPropertyAction(
240 >                        "java.util.secureRandomSeed"));
241 >        if (pp != null && pp.equalsIgnoreCase("true")) {
242 >            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
243 >            long s = (long)(seedBytes[0]) & 0xffL;
244 >            for (int i = 1; i < 8; ++i)
245 >                s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
246 >            return s;
247          }
248 <        int hh = 0; // hashed host address
248 >        long h = 0L;
249          try {
250 <            hh = InetAddress.getLocalHost().hashCode();
250 >            Enumeration<NetworkInterface> ifcs =
251 >                NetworkInterface.getNetworkInterfaces();
252 >            boolean retry = false; // retry once if getHardwareAddress is null
253 >            while (ifcs.hasMoreElements()) {
254 >                NetworkInterface ifc = ifcs.nextElement();
255 >                if (!ifc.isVirtual()) { // skip fake addresses
256 >                    byte[] bs = ifc.getHardwareAddress();
257 >                    if (bs != null) {
258 >                        int n = bs.length;
259 >                        int m = Math.min(n >>> 1, 4);
260 >                        for (int i = 0; i < m; ++i)
261 >                            h = (h << 16) ^ (bs[i] << 8) ^ bs[n-1-i];
262 >                        if (m < 4)
263 >                            h = (h << 8) ^ bs[n-1-m];
264 >                        h = mix64(h);
265 >                        break;
266 >                    }
267 >                    else if (!retry)
268 >                        retry = true;
269 >                    else
270 >                        break;
271 >                }
272 >            }
273          } catch (Exception ignore) {
274          }
275 <        return (mix64((((long)hh) << 32) ^ System.currentTimeMillis()) ^
275 >        return (h ^ mix64(System.currentTimeMillis()) ^
276                  mix64(System.nanoTime()));
277      }
278  
# Line 358 | Line 381 | public class SplittableRandom {
381       * @return a pseudorandom value
382       */
383      final double internalNextDouble(double origin, double bound) {
384 <        double r = (nextLong() >>> 11) * DOUBLE_UNIT;
384 >        double r = (nextLong() >>> 11) * DOUBLE_ULP;
385          if (origin < bound) {
386              r = r * (bound - origin) + origin;
387              if (r >= bound) // correct for rounding
# Line 377 | Line 400 | public class SplittableRandom {
400       * @param seed the initial seed
401       */
402      public SplittableRandom(long seed) {
403 <        this(seed, INITIAL_GAMMA);
403 >        this(seed, GOLDEN_GAMMA);
404      }
405  
406      /**
# Line 386 | Line 409 | public class SplittableRandom {
409       * of those of any other instances in the current program; and
410       * may, and typically does, vary across program invocations.
411       */
412 <    public SplittableRandom() { // emulate seeder.split()
413 <        this.gamma = nextGamma(this.seed = seeder.addAndGet(INITIAL_GAMMA));
412 >    public SplittableRandom() { // emulate defaultGen.split()
413 >        long s = defaultGen.getAndAdd(2*GOLDEN_GAMMA);
414 >        this.seed = mix64(s);
415 >        this.gamma = mixGamma(s + GOLDEN_GAMMA);
416      }
417  
418      /**
# Line 405 | Line 430 | public class SplittableRandom {
430       * @return the new SplittableRandom instance
431       */
432      public SplittableRandom split() {
433 <        long s = nextSeed();
409 <        return new SplittableRandom(s, nextGamma(s));
433 >        return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
434      }
435  
436      /**
# Line 521 | Line 545 | public class SplittableRandom {
545       *         (inclusive) and one (exclusive)
546       */
547      public double nextDouble() {
548 <        return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
548 >        return (mix64(nextSeed()) >>> 11) * DOUBLE_ULP;
549      }
550  
551      /**
# Line 536 | Line 560 | public class SplittableRandom {
560      public double nextDouble(double bound) {
561          if (!(bound > 0.0))
562              throw new IllegalArgumentException(BadBound);
563 <        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
563 >        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_ULP * bound;
564          return (result < bound) ?  result : // correct for rounding
565              Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
566      }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines