ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
(Generate patch)

Comparing jsr166/src/main/java/util/SplittableRandom.java (file contents):
Revision 1.13 by dl, Thu Jul 25 13:19:09 2013 UTC vs.
Revision 1.21 by dl, Thu Sep 19 23:19:43 2013 UTC

# Line 26 | Line 26
26   package java.util;
27  
28   import java.security.SecureRandom;
29 + import java.net.NetworkInterface;
30 + import java.util.Enumeration;
31   import java.util.concurrent.atomic.AtomicLong;
30 import java.util.Spliterator;
32   import java.util.function.IntConsumer;
33   import java.util.function.LongConsumer;
34   import java.util.function.DoubleConsumer;
# Line 39 | Line 40 | import java.util.stream.DoubleStream;
40   /**
41   * A generator of uniform pseudorandom values applicable for use in
42   * (among other contexts) isolated parallel computations that may
43 < * generate subtasks. Class SplittableRandom supports methods for
43 > * generate subtasks. Class {@code SplittableRandom} supports methods for
44   * producing pseudorandom numbers of type {@code int}, {@code long},
45   * and {@code double} with similar usages as for class
46   * {@link java.util.Random} but differs in the following ways:
# Line 77 | Line 78 | import java.util.stream.DoubleStream;
78   *
79   * </ul>
80   *
81 + * <p>Instances of {@code SplittableRandom} are not cryptographically
82 + * secure.  Consider instead using {@link java.security.SecureRandom}
83 + * in security-sensitive applications. Additionally,
84 + * default-constructed instances do not use a cryptographically random
85 + * seed unless the {@linkplain System#getProperty system property}
86 + * {@code java.util.secureRandomSeed} is set to {@code true}.
87 + *
88   * @author  Guy Steele
89   * @author  Doug Lea
90   * @since   1.8
# Line 84 | Line 92 | import java.util.stream.DoubleStream;
92   public class SplittableRandom {
93  
94      /*
87     * File organization: First the non-public methods that constitute
88     * the main algorithm, then the main public methods, followed by
89     * some custom spliterator classes needed for stream methods.
90     *
91     * Credits: Primary algorithm and code by Guy Steele.  Stream
92     * support methods by Doug Lea.  Documentation jointly produced
93     * with additional help from Brian Goetz.
94     */
95
96    /*
95       * Implementation Overview.
96       *
97       * This algorithm was inspired by the "DotMix" algorithm by
98       * Leiserson, Schardl, and Sukha "Deterministic Parallel
99       * Random-Number Generation for Dynamic-Multithreading Platforms",
100 <     * PPoPP 2012, but improves and extends it in several ways.
100 >     * PPoPP 2012, as well as those in "Parallel random numbers: as
101 >     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
102 >     * differs mainly in simplifying and cheapening operations.
103 >     *
104 >     * The primary update step (method nextSeed()) is to add a
105 >     * constant ("gamma") to the current (64 bit) seed, forming a
106 >     * simple sequence.  The seed and the gamma values for any two
107 >     * SplittableRandom instances are highly likely to be different.
108 >     *
109 >     * Methods nextLong, nextInt, and derivatives do not return the
110 >     * sequence (seed) values, but instead a hash-like bit-mix of
111 >     * their bits, producing more independently distributed sequences.
112 >     * For nextLong, the mix64 function is based on David Stafford's
113 >     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
114 >     * "Mix13" variant of the "64-bit finalizer" function in Austin
115 >     * Appleby's MurmurHash3 algorithm See
116 >     * http://code.google.com/p/smhasher/wiki/MurmurHash3 . The mix32
117 >     * function is based on Stafford's Mix04 mix function, but returns
118 >     * the upper 32 bits cast as int.
119 >     *
120 >     * The split operation uses the current generator to form the seed
121 >     * and gamma for another SplittableRandom.  To conservatively
122 >     * avoid potential correlations between seed and value generation,
123 >     * gamma selection (method mixGamma) uses different
124 >     * (Murmurhash3's) mix constants.  To avoid potential weaknesses
125 >     * in bit-mixing transformations, we restrict gammas to odd values
126 >     * with at least 24 0-1 or 1-0 bit transitions.  Rather than
127 >     * rejecting candidates with too few or too many bits set, method
128 >     * mixGamma flips some bits (which has the effect of mapping at
129 >     * most 4 to any given gamma value).  This reduces the effective
130 >     * set of 64bit odd gamma values by about 2%, and serves as an
131 >     * automated screening for sequence constant selection that is
132 >     * left as an empirical decision in some other hashing and crypto
133 >     * algorithms.
134 >     *
135 >     * The resulting generator thus transforms a sequence in which
136 >     * (typically) many bits change on each step, with an inexpensive
137 >     * mixer with good (but less than cryptographically secure)
138 >     * avalanching.
139 >     *
140 >     * The default (no-argument) constructor, in essence, invokes
141 >     * split() for a common "defaultGen" SplittableRandom.  Unlike
142 >     * other cases, this split must be performed in a thread-safe
143 >     * manner, so we use an AtomicLong to represent the seed rather
144 >     * than use an explicit SplittableRandom. To bootstrap the
145 >     * defaultGen, we start off using a seed based on current time and
146 >     * network interface address unless the java.util.secureRandomSeed
147 >     * property is set. This serves as a slimmed-down (and insecure)
148 >     * variant of SecureRandom that also avoids stalls that may occur
149 >     * when using /dev/random.
150 >     *
151 >     * It is a relatively simple matter to apply the basic design here
152 >     * to use 128 bit seeds. However, emulating 128bit arithmetic and
153 >     * carrying around twice the state add more overhead than appears
154 >     * warranted for current usages.
155       *
156 <     * The primary update step (see method nextSeed()) is simply to
157 <     * add a constant ("gamma") to the current seed, modulo a prime
158 <     * ("George"). However, the nextLong and nextInt methods do not
107 <     * return this value, but instead the results of bit-mixing
108 <     * transformations that produce more uniformly distributed
109 <     * sequences.
110 <     *
111 <     * "George" is the otherwise nameless (because it cannot be
112 <     * represented) prime number 2^64+13. Using a prime number larger
113 <     * than can fit in a long ensures that all possible long values
114 <     * can occur, plus 13 others that just get skipped over when they
115 <     * are encountered; see method addGammaModGeorge. For this to
116 <     * work, initial gamma values must be at least 13.
117 <     *
118 <     * The mix64 bit-mixing function called by nextLong and other
119 <     * methods computes the same value as the "64-bit finalizer"
120 <     * function in Austin Appleby's MurmurHash3 algorithm.  See
121 <     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
122 <     * comments: "The constants for the finalizers were generated by a
123 <     * simple simulated-annealing algorithm, and both avalanche all
124 <     * bits of 'h' to within 0.25% bias."
125 <     *
126 <     * The value of gamma differs for each instance across a series of
127 <     * splits, and is generated using an independent variant of the
128 <     * same algorithm, but operating across calls to split(), not
129 <     * calls to nextSeed(): Each instance carries the state of this
130 <     * generator as nextSplit. Gammas are treated as 57bit values,
131 <     * advancing by adding GAMMA_GAMMA mod GAMMA_PRIME, and bit-mixed
132 <     * with a 57-bit version of mix, using the "Mix01" multiplicative
133 <     * constants for MurmurHash3 described by David Stafford
134 <     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html).
135 <     * The value of GAMMA_GAMMA is arbitrary (except must be at least
136 <     * 13 and less than GAMMA_PRIME), but because it serves as the
137 <     * base of split sequences, should be subject to validation of
138 <     * consequent random number quality metrics.
139 <     *
140 <     * The mix32 function used for nextInt just consists of two of the
141 <     * five lines of mix64; avalanche testing shows that the 64-bit
142 <     * result has its top 32 bits avalanched well, though not the
143 <     * bottom 32 bits.  DieHarder tests show that it is adequate for
144 <     * generating one random int from the 64-bit result of nextSeed.
145 <     *
146 <     * Support for the default (no-argument) constructor relies on an
147 <     * AtomicLong (defaultSeedGenerator) to help perform the
148 <     * equivalent of a split of a statically constructed
149 <     * SplittableRandom. Unlike other cases, this split must be
150 <     * performed in a thread-safe manner. We use
151 <     * AtomicLong.compareAndSet as the (typically) most efficient
152 <     * mechanism. To bootstrap, we start off using a SecureRandom
153 <     * initial default seed, and update using a fixed
154 <     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
155 <     * not 0, for its splitSeed argument (addGammaModGeorge(0,
156 <     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
157 <     * this root generator, even though the root is not explicitly
158 <     * represented as a SplittableRandom.
159 <     */
160 <
161 <    /**
162 <     * The prime modulus for gamma values.
163 <     */
164 <    private static final long GAMMA_PRIME = (1L << 57) - 13L;
165 <
166 <    /**
167 <     * The value for producing new gamma values. Must be greater or
168 <     * equal to 13 and less than GAMMA_PRIME. Otherwise, the value is
169 <     * arbitrary subject to validation of the resulting statistical
170 <     * quality of splits.
171 <     */
172 <    private static final long GAMMA_GAMMA = 0x00aae38294f712aabL;
173 <
174 <    /**
175 <     * The seed update value for default constructors.  Must be
176 <     * greater or equal to 13. Otherwise, the value is arbitrary
177 <     * subject to quality checks.
156 >     * File organization: First the non-public methods that constitute
157 >     * the main algorithm, then the main public methods, followed by
158 >     * some custom spliterator classes needed for stream methods.
159       */
179    private static final long DEFAULT_SEED_GAMMA = 0x9e3779b97f4a7c15L;
160  
161      /**
162 <     * The value 13 with 64bit sign bit set. Used in the signed
163 <     * comparison in addGammaModGeorge.
162 >     * The golden ratio scaled to 64bits, used as the initial gamma
163 >     * value for (unsplit) SplittableRandoms.
164       */
165 <    private static final long BOTTOM13 = 0x800000000000000DL;
165 >    private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
166  
167      /**
168       * The least non-zero value returned by nextDouble(). This value
169       * is scaled by a random value of 53 bits to produce a result.
170       */
171 <    private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
171 >    private static final double DOUBLE_ULP = 1.0 / (1L << 53);
172  
173      /**
174 <     * The next seed for default constructors.
195 <     */
196 <    private static final AtomicLong defaultSeedGenerator =
197 <        new AtomicLong(getInitialDefaultSeed());
198 <
199 <    /**
200 <     * The seed, updated only via method nextSeed.
174 >     * The seed. Updated only via method nextSeed.
175       */
176      private long seed;
177  
178      /**
179 <     * The constant value added to seed (mod George) on each update.
179 >     * The step value.
180       */
181      private final long gamma;
182  
183      /**
184 <     * The next seed to use for splits. Propagated using
211 <     * addGammaModGeorge across instances.
212 <     */
213 <    private final long nextSplit;
214 <
215 <    /**
216 <     * Adds the given gamma value, g, to the given seed value s, mod
217 <     * George (2^64+13). We regard s and g as unsigned values
218 <     * (ranging from 0 to 2^64-1). We add g to s either once or twice
219 <     * (mod George) as necessary to produce an (unsigned) result less
220 <     * than 2^64.  We require that g must be at least 13. This
221 <     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
222 <     * George < 2^64; thus we need only a conditional, not a loop,
223 <     * to be sure of getting a representable value.
224 <     *
225 <     * Because Java comparison operators are signed, we implement this
226 <     * by conceptually offsetting seed values downwards by 2^63, so
227 <     * 0..13 is represented as Long.MIN_VALUE..BOTTOM13.
228 <     *
229 <     * @param s a seed value, viewed as a signed long
230 <     * @param g a gamma value, 13 <= g (as unsigned)
184 >     * Internal constructor used by all others except default constructor.
185       */
186 <    private static long addGammaModGeorge(long s, long g) {
187 <        long p = s + g;
188 <        return (p >= s) ? p : ((p >= BOTTOM13) ? p  : p + g) - 13L;
186 >    private SplittableRandom(long seed, long gamma) {
187 >        this.seed = seed;
188 >        this.gamma = gamma;
189      }
190  
191      /**
192 <     * Returns a bit-mixed transformation of its argument.
239 <     * See above for explanation.
192 >     * Computes Stafford variant 13 of 64bit mix function.
193       */
194      private static long mix64(long z) {
195 <        z ^= (z >>> 33);
196 <        z *= 0xff51afd7ed558ccdL;
197 <        z ^= (z >>> 33);
245 <        z *= 0xc4ceb9fe1a85ec53L;
246 <        z ^= (z >>> 33);
247 <        return z;
195 >        z *= 0xbf58476d1ce4e5b9L;
196 >        z = (z ^ (z >>> 32)) * 0x94d049bb133111ebL;
197 >        return z ^ (z >>> 32);
198      }
199  
200 <    /**
201 <     * Returns a bit-mixed int transformation of its argument.
202 <     * See above for explanation.
203 <     */
254 <    private static int mix32(long z) {
255 <        z ^= (z >>> 33);
256 <        z *= 0xc4ceb9fe1a85ec53L;
257 <        return (int)(z >>> 32);
200 >    private static long xmix64(long z) {
201 >        z *= 0xbf58476d1ce4e5b9L;
202 >        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
203 >        return z ^ (z >>> 31);
204      }
205  
206      /**
207 <     * Returns a 57-bit mixed transformation of its argument.  See
262 <     * above for explanation.
207 >     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
208       */
209 <    private static long mix57(long z) {
210 <        z ^= (z >>> 33);
211 <        z *= 0x7fb5d329728ea185L;
267 <        z &= 0x01FFFFFFFFFFFFFFL;
268 <        z ^= (z >>> 33);
269 <        z *= 0x81dadef4bc2dd44dL;
270 <        z &= 0x01FFFFFFFFFFFFFFL;
271 <        z ^= (z >>> 33);
272 <        return z;
209 >    private static int mix32(long z) {
210 >        z *= 0x62a9d9ed799705f5L;
211 >        return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
212      }
213  
214      /**
215 <     * Internal constructor used by all other constructors and by
277 <     * method split. Establishes the initial seed for this instance,
278 <     * and uses the given splitSeed to establish gamma, as well as the
279 <     * nextSplit to use by this instance. The loop to skip ineligible
280 <     * gammas very rarely iterates, and does so at most 13 times.
215 >     * Returns the gamma value to use for a new split instance.
216       */
217 <    private SplittableRandom(long seed, long splitSeed) {
218 <        this.seed = seed;
219 <        long s = splitSeed, g;
220 <        do { // ensure gamma >= 13, considered as an unsigned integer
221 <            s += GAMMA_GAMMA;
222 <            if (s >= GAMMA_PRIME)
288 <                s -= GAMMA_PRIME;
289 <            g = mix57(s);
290 <        } while (g < 13L);
291 <        this.gamma = g;
292 <        this.nextSplit = s;
217 >    private static long mixGamma(long z) {
218 >        z *= 0xff51afd7ed558ccdL;                   // MurmurHash3 mix constants
219 >        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
220 >        z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
221 >        int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
222 >        return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
223      }
224  
225      /**
226 <     * Updates in-place and returns seed.
297 <     * See above for explanation.
226 >     * Adds gamma to seed.
227       */
228      private long nextSeed() {
229 <        return seed = addGammaModGeorge(seed, gamma);
229 >        return seed += gamma;
230      }
231  
232      /**
233 <     * Atomically updates and returns next seed for default constructor.
233 >     * The seed generator for default constructors.
234       */
235 <    private static long nextDefaultSeed() {
307 <        long oldSeed, newSeed;
308 <        do {
309 <            oldSeed = defaultSeedGenerator.get();
310 <            newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
311 <        } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
312 <        return mix64(newSeed);
313 <    }
235 >    private static final AtomicLong defaultGen = new AtomicLong(initialSeed());
236  
237 <    /**
238 <     * Returns an initial default seed.
239 <     */
240 <    private static long getInitialDefaultSeed() {
241 <        byte[] seedBytes = java.security.SecureRandom.getSeed(8);
242 <        long s = (long)(seedBytes[0]) & 0xffL;
243 <        for (int i = 1; i < 8; ++i)
244 <            s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
245 <        return s;
237 >    private static long initialSeed() {
238 >        String pp = java.security.AccessController.doPrivileged(
239 >                new sun.security.action.GetPropertyAction(
240 >                        "java.util.secureRandomSeed"));
241 >        if (pp != null && pp.equalsIgnoreCase("true")) {
242 >            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
243 >            long s = (long)(seedBytes[0]) & 0xffL;
244 >            for (int i = 1; i < 8; ++i)
245 >                s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
246 >            return s;
247 >        }
248 >        long h = 0L;
249 >        try {
250 >            Enumeration<NetworkInterface> ifcs =
251 >                NetworkInterface.getNetworkInterfaces();
252 >            boolean retry = false; // retry once if getHardwareAddress is null
253 >            while (ifcs.hasMoreElements()) {
254 >                NetworkInterface ifc = ifcs.nextElement();
255 >                if (!ifc.isVirtual()) { // skip fake addresses
256 >                    byte[] bs = ifc.getHardwareAddress();
257 >                    if (bs != null) {
258 >                        int n = bs.length;
259 >                        int m = Math.min(n >>> 1, 4);
260 >                        for (int i = 0; i < m; ++i)
261 >                            h = (h << 16) ^ (bs[i] << 8) ^ bs[n-1-i];
262 >                        if (m < 4)
263 >                            h = (h << 8) ^ bs[n-1-m];
264 >                        h = mix64(h);
265 >                        break;
266 >                    }
267 >                    else if (!retry)
268 >                        retry = true;
269 >                    else
270 >                        break;
271 >                }
272 >            }
273 >        } catch (Exception ignore) {
274 >        }
275 >        return (h ^ mix64(System.currentTimeMillis()) ^
276 >                mix64(System.nanoTime()));
277      }
278  
279 +    // IllegalArgumentException messages
280 +    static final String BadBound = "bound must be positive";
281 +    static final String BadRange = "bound must be greater than origin";
282 +    static final String BadSize  = "size must be non-negative";
283 +
284      /*
285       * Internal versions of nextX methods used by streams, as well as
286       * the public nextX(origin, bound) methods.  These exist mainly to
# Line 423 | Line 381 | public class SplittableRandom {
381       * @return a pseudorandom value
382       */
383      final double internalNextDouble(double origin, double bound) {
384 <        double r = (nextLong() >>> 11) * DOUBLE_UNIT;
384 >        double r = (nextLong() >>> 11) * DOUBLE_ULP;
385          if (origin < bound) {
386              r = r * (bound - origin) + origin;
387              if (r >= bound) // correct for rounding
# Line 442 | Line 400 | public class SplittableRandom {
400       * @param seed the initial seed
401       */
402      public SplittableRandom(long seed) {
403 <        this(seed, 0L);
403 >        this(seed, GOLDEN_GAMMA);
404      }
405  
406      /**
# Line 451 | Line 409 | public class SplittableRandom {
409       * of those of any other instances in the current program; and
410       * may, and typically does, vary across program invocations.
411       */
412 <    public SplittableRandom() {
413 <        this(nextDefaultSeed(), GAMMA_GAMMA);
412 >    public SplittableRandom() { // emulate defaultGen.split()
413 >        long s = defaultGen.getAndAdd(2*GOLDEN_GAMMA);
414 >        this.seed = mix64(s);
415 >        this.gamma = mixGamma(s + GOLDEN_GAMMA);
416      }
417  
418      /**
# Line 470 | Line 430 | public class SplittableRandom {
430       * @return the new SplittableRandom instance
431       */
432      public SplittableRandom split() {
433 <        return new SplittableRandom(nextSeed(), nextSplit);
433 >        return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
434      }
435  
436      /**
# Line 486 | Line 446 | public class SplittableRandom {
446       * Returns a pseudorandom {@code int} value between zero (inclusive)
447       * and the specified bound (exclusive).
448       *
449 <     * @param bound the bound on the random number to be returned.  Must be
490 <     *        positive.
449 >     * @param bound the upper bound (exclusive).  Must be positive.
450       * @return a pseudorandom {@code int} value between zero
451       *         (inclusive) and the bound (exclusive)
452 <     * @throws IllegalArgumentException if the bound is less than zero
452 >     * @throws IllegalArgumentException if {@code bound} is not positive
453       */
454      public int nextInt(int bound) {
455          if (bound <= 0)
456 <            throw new IllegalArgumentException("bound must be positive");
456 >            throw new IllegalArgumentException(BadBound);
457          // Specialize internalNextInt for origin 0
458          int r = mix32(nextSeed());
459          int m = bound - 1;
# Line 522 | Line 481 | public class SplittableRandom {
481       */
482      public int nextInt(int origin, int bound) {
483          if (origin >= bound)
484 <            throw new IllegalArgumentException("bound must be greater than origin");
484 >            throw new IllegalArgumentException(BadRange);
485          return internalNextInt(origin, bound);
486      }
487  
# Line 539 | Line 498 | public class SplittableRandom {
498       * Returns a pseudorandom {@code long} value between zero (inclusive)
499       * and the specified bound (exclusive).
500       *
501 <     * @param bound the bound on the random number to be returned.  Must be
543 <     *        positive.
501 >     * @param bound the upper bound (exclusive).  Must be positive.
502       * @return a pseudorandom {@code long} value between zero
503       *         (inclusive) and the bound (exclusive)
504 <     * @throws IllegalArgumentException if {@code bound} is less than zero
504 >     * @throws IllegalArgumentException if {@code bound} is not positive
505       */
506      public long nextLong(long bound) {
507          if (bound <= 0)
508 <            throw new IllegalArgumentException("bound must be positive");
508 >            throw new IllegalArgumentException(BadBound);
509          // Specialize internalNextLong for origin 0
510          long r = mix64(nextSeed());
511          long m = bound - 1;
# Line 575 | Line 533 | public class SplittableRandom {
533       */
534      public long nextLong(long origin, long bound) {
535          if (origin >= bound)
536 <            throw new IllegalArgumentException("bound must be greater than origin");
536 >            throw new IllegalArgumentException(BadRange);
537          return internalNextLong(origin, bound);
538      }
539  
# Line 584 | Line 542 | public class SplittableRandom {
542       * (inclusive) and one (exclusive).
543       *
544       * @return a pseudorandom {@code double} value between zero
545 <     * (inclusive) and one (exclusive)
545 >     *         (inclusive) and one (exclusive)
546       */
547      public double nextDouble() {
548 <        return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
548 >        return (mix64(nextSeed()) >>> 11) * DOUBLE_ULP;
549      }
550  
551      /**
552       * Returns a pseudorandom {@code double} value between 0.0
553       * (inclusive) and the specified bound (exclusive).
554       *
555 <     * @param bound the bound on the random number to be returned.  Must be
598 <     *        positive.
555 >     * @param bound the upper bound (exclusive).  Must be positive.
556       * @return a pseudorandom {@code double} value between zero
557       *         (inclusive) and the bound (exclusive)
558 <     * @throws IllegalArgumentException if {@code bound} is less than zero
558 >     * @throws IllegalArgumentException if {@code bound} is not positive
559       */
560      public double nextDouble(double bound) {
561          if (!(bound > 0.0))
562 <            throw new IllegalArgumentException("bound must be positive");
563 <        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
562 >            throw new IllegalArgumentException(BadBound);
563 >        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_ULP * bound;
564          return (result < bound) ?  result : // correct for rounding
565              Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
566      }
# Line 613 | Line 570 | public class SplittableRandom {
570       * origin (inclusive) and bound (exclusive).
571       *
572       * @param origin the least value returned
573 <     * @param bound the upper bound
573 >     * @param bound the upper bound (exclusive)
574       * @return a pseudorandom {@code double} value between the origin
575       *         (inclusive) and the bound (exclusive)
576       * @throws IllegalArgumentException if {@code origin} is greater than
# Line 621 | Line 578 | public class SplittableRandom {
578       */
579      public double nextDouble(double origin, double bound) {
580          if (!(origin < bound))
581 <            throw new IllegalArgumentException("bound must be greater than origin");
581 >            throw new IllegalArgumentException(BadRange);
582          return internalNextDouble(origin, bound);
583      }
584  
# Line 638 | Line 595 | public class SplittableRandom {
595      // maintenance purposes the small differences across forms.
596  
597      /**
598 <     * Returns a stream producing the given {@code streamSize} number of
599 <     * pseudorandom {@code int} values.
598 >     * Returns a stream producing the given {@code streamSize} number
599 >     * of pseudorandom {@code int} values from this generator and/or
600 >     * one split from it.
601       *
602       * @param streamSize the number of values to generate
603       * @return a stream of pseudorandom {@code int} values
# Line 648 | Line 606 | public class SplittableRandom {
606       */
607      public IntStream ints(long streamSize) {
608          if (streamSize < 0L)
609 <            throw new IllegalArgumentException("negative Stream size");
609 >            throw new IllegalArgumentException(BadSize);
610          return StreamSupport.intStream
611              (new RandomIntsSpliterator
612               (this, 0L, streamSize, Integer.MAX_VALUE, 0),
# Line 657 | Line 615 | public class SplittableRandom {
615  
616      /**
617       * Returns an effectively unlimited stream of pseudorandom {@code int}
618 <     * values.
618 >     * values from this generator and/or one split from it.
619       *
620       * @implNote This method is implemented to be equivalent to {@code
621       * ints(Long.MAX_VALUE)}.
# Line 672 | Line 630 | public class SplittableRandom {
630      }
631  
632      /**
633 <     * Returns a stream producing the given {@code streamSize} number of
634 <     * pseudorandom {@code int} values, each conforming to the given
635 <     * origin and bound.
633 >     * Returns a stream producing the given {@code streamSize} number
634 >     * of pseudorandom {@code int} values from this generator and/or one split
635 >     * from it; each value conforms to the given origin (inclusive) and bound
636 >     * (exclusive).
637       *
638       * @param streamSize the number of values to generate
639 <     * @param randomNumberOrigin the origin of each random value
640 <     * @param randomNumberBound the bound of each random value
639 >     * @param randomNumberOrigin the origin (inclusive) of each random value
640 >     * @param randomNumberBound the bound (exclusive) of each random value
641       * @return a stream of pseudorandom {@code int} values,
642 <     *         each with the given origin and bound
642 >     *         each with the given origin (inclusive) and bound (exclusive)
643       * @throws IllegalArgumentException if {@code streamSize} is
644       *         less than zero, or {@code randomNumberOrigin}
645       *         is greater than or equal to {@code randomNumberBound}
# Line 688 | Line 647 | public class SplittableRandom {
647      public IntStream ints(long streamSize, int randomNumberOrigin,
648                            int randomNumberBound) {
649          if (streamSize < 0L)
650 <            throw new IllegalArgumentException("negative Stream size");
650 >            throw new IllegalArgumentException(BadSize);
651          if (randomNumberOrigin >= randomNumberBound)
652 <            throw new IllegalArgumentException("bound must be greater than origin");
652 >            throw new IllegalArgumentException(BadRange);
653          return StreamSupport.intStream
654              (new RandomIntsSpliterator
655               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 699 | Line 658 | public class SplittableRandom {
658  
659      /**
660       * Returns an effectively unlimited stream of pseudorandom {@code
661 <     * int} values, each conforming to the given origin and bound.
661 >     * int} values from this generator and/or one split from it; each value
662 >     * conforms to the given origin (inclusive) and bound (exclusive).
663       *
664       * @implNote This method is implemented to be equivalent to {@code
665       * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
666       *
667 <     * @param randomNumberOrigin the origin of each random value
668 <     * @param randomNumberBound the bound of each random value
667 >     * @param randomNumberOrigin the origin (inclusive) of each random value
668 >     * @param randomNumberBound the bound (exclusive) of each random value
669       * @return a stream of pseudorandom {@code int} values,
670 <     *         each with the given origin and bound
670 >     *         each with the given origin (inclusive) and bound (exclusive)
671       * @throws IllegalArgumentException if {@code randomNumberOrigin}
672       *         is greater than or equal to {@code randomNumberBound}
673       */
674      public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
675          if (randomNumberOrigin >= randomNumberBound)
676 <            throw new IllegalArgumentException("bound must be greater than origin");
676 >            throw new IllegalArgumentException(BadRange);
677          return StreamSupport.intStream
678              (new RandomIntsSpliterator
679               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 721 | Line 681 | public class SplittableRandom {
681      }
682  
683      /**
684 <     * Returns a stream producing the given {@code streamSize} number of
685 <     * pseudorandom {@code long} values.
684 >     * Returns a stream producing the given {@code streamSize} number
685 >     * of pseudorandom {@code long} values from this generator and/or
686 >     * one split from it.
687       *
688       * @param streamSize the number of values to generate
689       * @return a stream of pseudorandom {@code long} values
# Line 731 | Line 692 | public class SplittableRandom {
692       */
693      public LongStream longs(long streamSize) {
694          if (streamSize < 0L)
695 <            throw new IllegalArgumentException("negative Stream size");
695 >            throw new IllegalArgumentException(BadSize);
696          return StreamSupport.longStream
697              (new RandomLongsSpliterator
698               (this, 0L, streamSize, Long.MAX_VALUE, 0L),
# Line 739 | Line 700 | public class SplittableRandom {
700      }
701  
702      /**
703 <     * Returns an effectively unlimited stream of pseudorandom {@code long}
704 <     * values.
703 >     * Returns an effectively unlimited stream of pseudorandom {@code
704 >     * long} values from this generator and/or one split from it.
705       *
706       * @implNote This method is implemented to be equivalent to {@code
707       * longs(Long.MAX_VALUE)}.
# Line 756 | Line 717 | public class SplittableRandom {
717  
718      /**
719       * Returns a stream producing the given {@code streamSize} number of
720 <     * pseudorandom {@code long} values, each conforming to the
721 <     * given origin and bound.
720 >     * pseudorandom {@code long} values from this generator and/or one split
721 >     * from it; each value conforms to the given origin (inclusive) and bound
722 >     * (exclusive).
723       *
724       * @param streamSize the number of values to generate
725 <     * @param randomNumberOrigin the origin of each random value
726 <     * @param randomNumberBound the bound of each random value
725 >     * @param randomNumberOrigin the origin (inclusive) of each random value
726 >     * @param randomNumberBound the bound (exclusive) of each random value
727       * @return a stream of pseudorandom {@code long} values,
728 <     *         each with the given origin and bound
728 >     *         each with the given origin (inclusive) and bound (exclusive)
729       * @throws IllegalArgumentException if {@code streamSize} is
730       *         less than zero, or {@code randomNumberOrigin}
731       *         is greater than or equal to {@code randomNumberBound}
# Line 771 | Line 733 | public class SplittableRandom {
733      public LongStream longs(long streamSize, long randomNumberOrigin,
734                              long randomNumberBound) {
735          if (streamSize < 0L)
736 <            throw new IllegalArgumentException("negative Stream size");
736 >            throw new IllegalArgumentException(BadSize);
737          if (randomNumberOrigin >= randomNumberBound)
738 <            throw new IllegalArgumentException("bound must be greater than origin");
738 >            throw new IllegalArgumentException(BadRange);
739          return StreamSupport.longStream
740              (new RandomLongsSpliterator
741               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 782 | Line 744 | public class SplittableRandom {
744  
745      /**
746       * Returns an effectively unlimited stream of pseudorandom {@code
747 <     * long} values, each conforming to the given origin and bound.
747 >     * long} values from this generator and/or one split from it; each value
748 >     * conforms to the given origin (inclusive) and bound (exclusive).
749       *
750       * @implNote This method is implemented to be equivalent to {@code
751       * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
752       *
753 <     * @param randomNumberOrigin the origin of each random value
754 <     * @param randomNumberBound the bound of each random value
753 >     * @param randomNumberOrigin the origin (inclusive) of each random value
754 >     * @param randomNumberBound the bound (exclusive) of each random value
755       * @return a stream of pseudorandom {@code long} values,
756 <     *         each with the given origin and bound
756 >     *         each with the given origin (inclusive) and bound (exclusive)
757       * @throws IllegalArgumentException if {@code randomNumberOrigin}
758       *         is greater than or equal to {@code randomNumberBound}
759       */
760      public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
761          if (randomNumberOrigin >= randomNumberBound)
762 <            throw new IllegalArgumentException("bound must be greater than origin");
762 >            throw new IllegalArgumentException(BadRange);
763          return StreamSupport.longStream
764              (new RandomLongsSpliterator
765               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 805 | Line 768 | public class SplittableRandom {
768  
769      /**
770       * Returns a stream producing the given {@code streamSize} number of
771 <     * pseudorandom {@code double} values, each between zero
772 <     * (inclusive) and one (exclusive).
771 >     * pseudorandom {@code double} values from this generator and/or one split
772 >     * from it; each value is between zero (inclusive) and one (exclusive).
773       *
774       * @param streamSize the number of values to generate
775       * @return a stream of {@code double} values
# Line 815 | Line 778 | public class SplittableRandom {
778       */
779      public DoubleStream doubles(long streamSize) {
780          if (streamSize < 0L)
781 <            throw new IllegalArgumentException("negative Stream size");
781 >            throw new IllegalArgumentException(BadSize);
782          return StreamSupport.doubleStream
783              (new RandomDoublesSpliterator
784               (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
# Line 824 | Line 787 | public class SplittableRandom {
787  
788      /**
789       * Returns an effectively unlimited stream of pseudorandom {@code
790 <     * double} values, each between zero (inclusive) and one
791 <     * (exclusive).
790 >     * double} values from this generator and/or one split from it; each value
791 >     * is between zero (inclusive) and one (exclusive).
792       *
793       * @implNote This method is implemented to be equivalent to {@code
794       * doubles(Long.MAX_VALUE)}.
# Line 841 | Line 804 | public class SplittableRandom {
804  
805      /**
806       * Returns a stream producing the given {@code streamSize} number of
807 <     * pseudorandom {@code double} values, each conforming to the
808 <     * given origin and bound.
807 >     * pseudorandom {@code double} values from this generator and/or one split
808 >     * from it; each value conforms to the given origin (inclusive) and bound
809 >     * (exclusive).
810       *
811       * @param streamSize the number of values to generate
812 <     * @param randomNumberOrigin the origin of each random value
813 <     * @param randomNumberBound the bound of each random value
812 >     * @param randomNumberOrigin the origin (inclusive) of each random value
813 >     * @param randomNumberBound the bound (exclusive) of each random value
814       * @return a stream of pseudorandom {@code double} values,
815 <     * each with the given origin and bound
815 >     *         each with the given origin (inclusive) and bound (exclusive)
816       * @throws IllegalArgumentException if {@code streamSize} is
817 <     * less than zero
817 >     *         less than zero
818       * @throws IllegalArgumentException if {@code randomNumberOrigin}
819       *         is greater than or equal to {@code randomNumberBound}
820       */
821      public DoubleStream doubles(long streamSize, double randomNumberOrigin,
822                                  double randomNumberBound) {
823          if (streamSize < 0L)
824 <            throw new IllegalArgumentException("negative Stream size");
824 >            throw new IllegalArgumentException(BadSize);
825          if (!(randomNumberOrigin < randomNumberBound))
826 <            throw new IllegalArgumentException("bound must be greater than origin");
826 >            throw new IllegalArgumentException(BadRange);
827          return StreamSupport.doubleStream
828              (new RandomDoublesSpliterator
829               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 868 | Line 832 | public class SplittableRandom {
832  
833      /**
834       * Returns an effectively unlimited stream of pseudorandom {@code
835 <     * double} values, each conforming to the given origin and bound.
835 >     * double} values from this generator and/or one split from it; each value
836 >     * conforms to the given origin (inclusive) and bound (exclusive).
837       *
838       * @implNote This method is implemented to be equivalent to {@code
839       * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
840       *
841 <     * @param randomNumberOrigin the origin of each random value
842 <     * @param randomNumberBound the bound of each random value
841 >     * @param randomNumberOrigin the origin (inclusive) of each random value
842 >     * @param randomNumberBound the bound (exclusive) of each random value
843       * @return a stream of pseudorandom {@code double} values,
844 <     * each with the given origin and bound
844 >     *         each with the given origin (inclusive) and bound (exclusive)
845       * @throws IllegalArgumentException if {@code randomNumberOrigin}
846       *         is greater than or equal to {@code randomNumberBound}
847       */
848      public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
849          if (!(randomNumberOrigin < randomNumberBound))
850 <            throw new IllegalArgumentException("bound must be greater than origin");
850 >            throw new IllegalArgumentException(BadRange);
851          return StreamSupport.doubleStream
852              (new RandomDoublesSpliterator
853               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 940 | Line 905 | public class SplittableRandom {
905              long i = index, f = fence;
906              if (i < f) {
907                  index = f;
908 +                SplittableRandom r = rng;
909                  int o = origin, b = bound;
910                  do {
911 <                    consumer.accept(rng.internalNextInt(o, b));
911 >                    consumer.accept(r.internalNextInt(o, b));
912                  } while (++i < f);
913              }
914          }
# Line 994 | Line 960 | public class SplittableRandom {
960              long i = index, f = fence;
961              if (i < f) {
962                  index = f;
963 +                SplittableRandom r = rng;
964                  long o = origin, b = bound;
965                  do {
966 <                    consumer.accept(rng.internalNextLong(o, b));
966 >                    consumer.accept(r.internalNextLong(o, b));
967                  } while (++i < f);
968              }
969          }
# Line 1049 | Line 1016 | public class SplittableRandom {
1016              long i = index, f = fence;
1017              if (i < f) {
1018                  index = f;
1019 +                SplittableRandom r = rng;
1020                  double o = origin, b = bound;
1021                  do {
1022 <                    consumer.accept(rng.internalNextDouble(o, b));
1022 >                    consumer.accept(r.internalNextDouble(o, b));
1023                  } while (++i < f);
1024              }
1025          }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines