ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
(Generate patch)

Comparing jsr166/src/main/java/util/SplittableRandom.java (file contents):
Revision 1.4 by dl, Thu Jul 11 13:40:42 2013 UTC vs.
Revision 1.30 by jsr166, Sat Jan 2 02:27:03 2016 UTC

# Line 26 | Line 26
26   package java.util;
27  
28   import java.util.concurrent.atomic.AtomicLong;
29 < import java.util.Spliterator;
29 > import java.util.function.DoubleConsumer;
30   import java.util.function.IntConsumer;
31   import java.util.function.LongConsumer;
32 < import java.util.function.DoubleConsumer;
33 < import java.util.stream.StreamSupport;
32 > import java.util.stream.DoubleStream;
33   import java.util.stream.IntStream;
34   import java.util.stream.LongStream;
35 < import java.util.stream.DoubleStream;
37 <
35 > import java.util.stream.StreamSupport;
36  
37   /**
38   * A generator of uniform pseudorandom values applicable for use in
39   * (among other contexts) isolated parallel computations that may
40 < * generate subtasks. Class SplittableRandom supports methods for
40 > * generate subtasks. Class {@code SplittableRandom} supports methods for
41   * producing pseudorandom numbers of type {@code int}, {@code long},
42   * and {@code double} with similar usages as for class
43 < * {@link java.util.Random} but differs in the following ways: <ul>
43 > * {@link java.util.Random} but differs in the following ways:
44 > *
45 > * <ul>
46   *
47   * <li>Series of generated values pass the DieHarder suite testing
48   * independence and uniformity properties of random number generators.
# Line 50 | Line 50 | import java.util.stream.DoubleStream;
50   * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51   * 3.31.1</a>.) These tests validate only the methods for certain
52   * types and ranges, but similar properties are expected to hold, at
53 < * least approximately, for others as well.  </li>
53 > * least approximately, for others as well. The <em>period</em>
54 > * (length of any series of generated values before it repeats) is at
55 > * least 2<sup>64</sup>.
56   *
57 < * <li> Method {@link #split} constructs and returns a new
57 > * <li>Method {@link #split} constructs and returns a new
58   * SplittableRandom instance that shares no mutable state with the
59 < * current instance. However, with very high probability, the set of
60 < * values collectively generated by the two objects has the same
59 > * current instance. However, with very high probability, the
60 > * values collectively generated by the two objects have the same
61   * statistical properties as if the same quantity of values were
62   * generated by a single thread using a single {@code
63 < * SplittableRandom} object.  </li>
63 > * SplittableRandom} object.
64   *
65   * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66   * They are designed to be split, not shared, across threads. For
# Line 69 | Line 71 | import java.util.stream.DoubleStream;
71   *
72   * <li>This class provides additional methods for generating random
73   * streams, that employ the above techniques when used in {@code
74 < * stream.parallel()} mode.</li>
74 > * stream.parallel()} mode.
75   *
76   * </ul>
77   *
78 + * <p>Instances of {@code SplittableRandom} are not cryptographically
79 + * secure.  Consider instead using {@link java.security.SecureRandom}
80 + * in security-sensitive applications. Additionally,
81 + * default-constructed instances do not use a cryptographically random
82 + * seed unless the {@linkplain System#getProperty system property}
83 + * {@code java.util.secureRandomSeed} is set to {@code true}.
84 + *
85   * @author  Guy Steele
86   * @author  Doug Lea
87   * @since   1.8
88   */
89 < public class SplittableRandom {
81 <
82 <    /*
83 <     * File organization: First the non-public methods that constitute
84 <     * the main algorithm, then the main public methods, followed by
85 <     * some custom spliterator classes needed for stream methods.
86 <     *
87 <     * Credits: Primary algorithm and code by Guy Steele.  Stream
88 <     * support methods by Doug Lea.  Documentation jointly produced
89 <     * with additional help from Brian Goetz.
90 <     */
89 > public final class SplittableRandom {
90  
91      /*
92       * Implementation Overview.
# Line 95 | Line 94 | public class SplittableRandom {
94       * This algorithm was inspired by the "DotMix" algorithm by
95       * Leiserson, Schardl, and Sukha "Deterministic Parallel
96       * Random-Number Generation for Dynamic-Multithreading Platforms",
97 <     * PPoPP 2012, but improves and extends it in several ways.
97 >     * PPoPP 2012, as well as those in "Parallel random numbers: as
98 >     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
99 >     * differs mainly in simplifying and cheapening operations.
100 >     *
101 >     * The primary update step (method nextSeed()) is to add a
102 >     * constant ("gamma") to the current (64 bit) seed, forming a
103 >     * simple sequence.  The seed and the gamma values for any two
104 >     * SplittableRandom instances are highly likely to be different.
105 >     *
106 >     * Methods nextLong, nextInt, and derivatives do not return the
107 >     * sequence (seed) values, but instead a hash-like bit-mix of
108 >     * their bits, producing more independently distributed sequences.
109 >     * For nextLong, the mix64 function is based on David Stafford's
110 >     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111 >     * "Mix13" variant of the "64-bit finalizer" function in Austin
112 >     * Appleby's MurmurHash3 algorithm (see
113 >     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114 >     * function is based on Stafford's Mix04 mix function, but returns
115 >     * the upper 32 bits cast as int.
116 >     *
117 >     * The split operation uses the current generator to form the seed
118 >     * and gamma for another SplittableRandom.  To conservatively
119 >     * avoid potential correlations between seed and value generation,
120 >     * gamma selection (method mixGamma) uses different
121 >     * (Murmurhash3's) mix constants.  To avoid potential weaknesses
122 >     * in bit-mixing transformations, we restrict gammas to odd values
123 >     * with at least 24 0-1 or 1-0 bit transitions.  Rather than
124 >     * rejecting candidates with too few or too many bits set, method
125 >     * mixGamma flips some bits (which has the effect of mapping at
126 >     * most 4 to any given gamma value).  This reduces the effective
127 >     * set of 64bit odd gamma values by about 2%, and serves as an
128 >     * automated screening for sequence constant selection that is
129 >     * left as an empirical decision in some other hashing and crypto
130 >     * algorithms.
131 >     *
132 >     * The resulting generator thus transforms a sequence in which
133 >     * (typically) many bits change on each step, with an inexpensive
134 >     * mixer with good (but less than cryptographically secure)
135 >     * avalanching.
136 >     *
137 >     * The default (no-argument) constructor, in essence, invokes
138 >     * split() for a common "defaultGen" SplittableRandom.  Unlike
139 >     * other cases, this split must be performed in a thread-safe
140 >     * manner, so we use an AtomicLong to represent the seed rather
141 >     * than use an explicit SplittableRandom. To bootstrap the
142 >     * defaultGen, we start off using a seed based on current time
143 >     * unless the java.util.secureRandomSeed property is set. This
144 >     * serves as a slimmed-down (and insecure) variant of SecureRandom
145 >     * that also avoids stalls that may occur when using /dev/random.
146 >     *
147 >     * It is a relatively simple matter to apply the basic design here
148 >     * to use 128 bit seeds. However, emulating 128bit arithmetic and
149 >     * carrying around twice the state add more overhead than appears
150 >     * warranted for current usages.
151       *
152 <     * The primary update step is simply to add a constant ("gamma")
153 <     * to the current seed, modulo a prime ("George"). However, the
154 <     * nextLong and nextInt methods do not return this value, but
155 <     * instead the results of bit-mixing transformations that produce
104 <     * more uniformly distributed sequences.
105 <     *
106 <     * "George" is the otherwise nameless (because it cannot be
107 <     * represented) prime number 2^64+13. Using a prime number larger
108 <     * than can fit in a long ensures that all possible long values
109 <     * can occur, plus 13 others that just get skipped over when they
110 <     * are encountered; see method addGammaModGeorge. For this to
111 <     * work, initial gamma values must be at least 13.
112 <     *
113 <     * The value of gamma differs for each instance across a series of
114 <     * splits, and is generated using a slightly stripped-down variant
115 <     * of the same algorithm, but operating across calls to split(),
116 <     * not calls to nextSeed(): Each instance carries the state of
117 <     * this generator as nextSplit, and uses mix64(nextSplit) as its
118 <     * own gamma value. Computations of gammas themselves use a fixed
119 <     * constant as the second argument to the addGammaModGeorge
120 <     * function, GAMMA_GAMMA, a "genuinely random" number from a
121 <     * radioactive decay reading (obtained from
122 <     * http://www.fourmilab.ch/hotbits/) meeting the above range
123 <     * constraint. Using a fixed constant maintains the invariant that
124 <     * the value of gamma is the same for every instance that is at
125 <     * the same split-distance from their common root. (Note: there is
126 <     * nothing especially magic about obtaining this constant from a
127 <     * "truly random" physical source rather than just choosing one
128 <     * arbitrarily; using "hotbits" was merely an aesthetically pleasing
129 <     * choice.  In either case, good statistical behavior of the
130 <     * algorithm should be, and was, verified by using the DieHarder
131 <     * test suite.)
132 <     *
133 <     * The mix64 bit-mixing function called by nextLong and other
134 <     * methods computes the same value as the "64-bit finalizer"
135 <     * function in Austin Appleby's MurmurHash3 algorithm.  See
136 <     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
137 <     * comments: "The constants for the finalizers were generated by a
138 <     * simple simulated-annealing algorithm, and both avalanche all
139 <     * bits of 'h' to within 0.25% bias." It also appears to work to
140 <     * use instead any of the variants proposed by David Stafford at
141 <     * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
142 <     * but these variants have not yet been tested as thoroughly
143 <     * in the context of the implementation of SplittableRandom.
144 <     *
145 <     * The mix32 function used for nextInt just consists of two of the
146 <     * five lines of mix64; avalanche testing shows that the 64-bit result
147 <     * has its top 32 bits avalanched well, though not the bottom 32 bits.
148 <     * DieHarder tests show that it is adequate for generating one
149 <     * random int from the 64-bit result of nextSeed.
150 <     *
151 <     * Support for the default (no-argument) constructor relies on an
152 <     * AtomicLong (defaultSeedGenerator) to help perform the
153 <     * equivalent of a split of a statically constructed
154 <     * SplittableRandom. Unlike other cases, this split must be
155 <     * performed in a thread-safe manner. We use
156 <     * AtomicLong.compareAndSet as the (typically) most efficient
157 <     * mechanism. To bootstrap, we start off using System.nanotime(),
158 <     * and update using another "genuinely random" constant
159 <     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
160 <     * not 0, for its splitSeed argument (addGammaModGeorge(0,
161 <     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
162 <     * this root generator, even though the root is not explicitly
163 <     * represented as a SplittableRandom.
164 <     */
165 <
166 <    /**
167 <     * The "genuinely random" value for producing new gamma values.
168 <     * The value is arbitrary, subject to the requirement that it be
169 <     * greater or equal to 13.
170 <     */
171 <    private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
172 <
173 <    /**
174 <     * The "genuinely random" seed update value for default constructors.
175 <     * The value is arbitrary, subject to the requirement that it be
176 <     * greater or equal to 13.
177 <     */
178 <    private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
152 >     * File organization: First the non-public methods that constitute
153 >     * the main algorithm, then the main public methods, followed by
154 >     * some custom spliterator classes needed for stream methods.
155 >     */
156  
157      /**
158 <     * The next seed for default constructors.
158 >     * The golden ratio scaled to 64bits, used as the initial gamma
159 >     * value for (unsplit) SplittableRandoms.
160       */
161 <    private static final AtomicLong defaultSeedGenerator =
184 <        new AtomicLong(System.nanoTime());
161 >    private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162  
163      /**
164 <     * The seed, updated only via method nextSeed.
164 >     * The least non-zero value returned by nextDouble(). This value
165 >     * is scaled by a random value of 53 bits to produce a result.
166       */
167 <    private long seed;
167 >    private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168  
169      /**
170 <     * The constant value added to seed (mod George) on each update.
170 >     * The seed. Updated only via method nextSeed.
171       */
172 <    private final long gamma;
172 >    private long seed;
173  
174      /**
175 <     * The next seed to use for splits. Propagated using
198 <     * addGammaModGeorge across instances.
175 >     * The step value.
176       */
177 <    private final long nextSplit;
177 >    private final long gamma;
178  
179      /**
180 <     * Internal constructor used by all other constructors and by
204 <     * method split. Establishes the initial seed for this instance,
205 <     * and uses the given splitSeed to establish gamma, as well as the
206 <     * nextSplit to use by this instance.
180 >     * Internal constructor used by all others except default constructor.
181       */
182 <    private SplittableRandom(long seed, long splitSeed) {
182 >    private SplittableRandom(long seed, long gamma) {
183          this.seed = seed;
184 <        long s = splitSeed, g;
211 <        do { // ensure gamma >= 13, considered as an unsigned integer
212 <            s = addGammaModGeorge(s, GAMMA_GAMMA);
213 <            g = mix64(s);
214 <        } while (Long.compareUnsigned(g, 13L) < 0);
215 <        this.gamma = g;
216 <        this.nextSplit = s;
184 >        this.gamma = gamma;
185      }
186  
187      /**
188 <     * Adds the given gamma value, g, to the given seed value s, mod
189 <     * George (2^64+13). We regard s and g as unsigned values
190 <     * (ranging from 0 to 2^64-1). We add g to s either once or twice
191 <     * (mod George) as necessary to produce an (unsigned) result less
192 <     * than 2^64.  We require that g must be at least 13. This
193 <     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
226 <     * George < 2^64; thus we need only a conditional, not a loop,
227 <     * to be sure of getting a representable value.
228 <     *
229 <     * @param s a seed value
230 <     * @param g a gamma value, 13 <= g (as unsigned)
231 <     */
232 <    private static long addGammaModGeorge(long s, long g) {
233 <        long p = s + g;
234 <        if (Long.compareUnsigned(p, g) >= 0)
235 <            return p;
236 <        long q = p - 13L;
237 <        return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
188 >     * Computes Stafford variant 13 of 64bit mix function.
189 >     */
190 >    private static long mix64(long z) {
191 >        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192 >        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193 >        return z ^ (z >>> 31);
194      }
195  
196      /**
197 <     * Updates in-place and returns seed.
242 <     * See above for explanation.
197 >     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198       */
199 <    private long nextSeed() {
200 <        return seed = addGammaModGeorge(seed, gamma);
199 >    private static int mix32(long z) {
200 >        z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201 >        return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202      }
203  
204      /**
205 <     * Returns a bit-mixed transformation of its argument.
250 <     * See above for explanation.
205 >     * Returns the gamma value to use for a new split instance.
206       */
207 <    private static long mix64(long z) {
208 <        z ^= (z >>> 33);
209 <        z *= 0xff51afd7ed558ccdL;
210 <        z ^= (z >>> 33);
211 <        z *= 0xc4ceb9fe1a85ec53L;
212 <        z ^= (z >>> 33);
258 <        return z;
207 >    private static long mixGamma(long z) {
208 >        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209 >        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210 >        z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
211 >        int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
212 >        return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213      }
214  
215      /**
216 <     * Returns a bit-mixed int transformation of its argument.
263 <     * See above for explanation.
216 >     * Adds gamma to seed.
217       */
218 <    private static int mix32(long z) {
219 <        z ^= (z >>> 33);
267 <        z *= 0xc4ceb9fe1a85ec53L;
268 <        return (int)(z >>> 32);
218 >    private long nextSeed() {
219 >        return seed += gamma;
220      }
221  
222      /**
223 <     * Atomically updates and returns next seed for default constructor
223 >     * The seed generator for default constructors.
224       */
225 <    private static long nextDefaultSeed() {
226 <        long oldSeed, newSeed;
227 <        do {
228 <            oldSeed = defaultSeedGenerator.get();
229 <            newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
230 <        } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
231 <        return mix64(newSeed);
225 >    private static final AtomicLong defaultGen = new AtomicLong(initialSeed());
226 >
227 >    private static long initialSeed() {
228 >        java.security.PrivilegedAction<Boolean> action =
229 >            () -> Boolean.getBoolean("java.util.secureRandomSeed");
230 >        if (java.security.AccessController.doPrivileged(action)) {
231 >            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
232 >            long s = (long)seedBytes[0] & 0xffL;
233 >            for (int i = 1; i < 8; ++i)
234 >                s = (s << 8) | ((long)seedBytes[i] & 0xffL);
235 >            return s;
236 >        }
237 >        return (mix64(System.currentTimeMillis()) ^
238 >                mix64(System.nanoTime()));
239      }
240  
241 +    // IllegalArgumentException messages
242 +    static final String BAD_BOUND = "bound must be positive";
243 +    static final String BAD_RANGE = "bound must be greater than origin";
244 +    static final String BAD_SIZE  = "size must be non-negative";
245 +
246      /*
247       * Internal versions of nextX methods used by streams, as well as
248       * the public nextX(origin, bound) methods.  These exist mainly to
# Line 326 | Line 289 | public class SplittableRandom {
289          long r = mix64(nextSeed());
290          if (origin < bound) {
291              long n = bound - origin, m = n - 1;
292 <            if ((n & m) == 0L) // power of two
292 >            if ((n & m) == 0L)  // power of two
293                  r = (r & m) + origin;
294 <            else if (n > 0) { // reject over-represented candidates
294 >            else if (n > 0L) {  // reject over-represented candidates
295                  for (long u = r >>> 1;            // ensure nonnegative
296 <                     u + m - (r = u % n) < 0L;    // reject
296 >                     u + m - (r = u % n) < 0L;    // rejection check
297                       u = mix64(nextSeed()) >>> 1) // retry
298                      ;
299                  r += origin;
300              }
301 <            else {             // range not representable as long
301 >            else {              // range not representable as long
302                  while (r < origin || r >= bound)
303                      r = mix64(nextSeed());
304              }
# Line 355 | Line 318 | public class SplittableRandom {
318          int r = mix32(nextSeed());
319          if (origin < bound) {
320              int n = bound - origin, m = n - 1;
321 <            if ((n & m) == 0L)
321 >            if ((n & m) == 0)
322                  r = (r & m) + origin;
323              else if (n > 0) {
324                  for (int u = r >>> 1;
325 <                     u + m - (r = u % n) < 0L;
325 >                     u + m - (r = u % n) < 0;
326                       u = mix32(nextSeed()) >>> 1)
327                      ;
328                  r += origin;
# Line 380 | Line 343 | public class SplittableRandom {
343       * @return a pseudorandom value
344       */
345      final double internalNextDouble(double origin, double bound) {
346 <        long bits = (1023L << 52) | (nextLong() >>> 12);
384 <        double r = Double.longBitsToDouble(bits) - 1.0;
346 >        double r = (nextLong() >>> 11) * DOUBLE_UNIT;
347          if (origin < bound) {
348              r = r * (bound - origin) + origin;
349 <            if (r == bound) // correct for rounding
349 >            if (r >= bound) // correct for rounding
350                  r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
351          }
352          return r;
# Line 393 | Line 355 | public class SplittableRandom {
355      /* ---------------- public methods ---------------- */
356  
357      /**
358 <     * Creates a new SplittableRandom instance using the given initial
359 <     * seed. Two SplittableRandom instances created with the same seed
360 <     * generate identical sequences of values.
358 >     * Creates a new SplittableRandom instance using the specified
359 >     * initial seed. SplittableRandom instances created with the same
360 >     * seed in the same program generate identical sequences of values.
361       *
362       * @param seed the initial seed
363       */
364      public SplittableRandom(long seed) {
365 <        this(seed, 0);
365 >        this(seed, GOLDEN_GAMMA);
366      }
367  
368      /**
# Line 409 | Line 371 | public class SplittableRandom {
371       * of those of any other instances in the current program; and
372       * may, and typically does, vary across program invocations.
373       */
374 <    public SplittableRandom() {
375 <        this(nextDefaultSeed(), GAMMA_GAMMA);
374 >    public SplittableRandom() { // emulate defaultGen.split()
375 >        long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
376 >        this.seed = mix64(s);
377 >        this.gamma = mixGamma(s + GOLDEN_GAMMA);
378      }
379  
380      /**
# Line 428 | Line 392 | public class SplittableRandom {
392       * @return the new SplittableRandom instance
393       */
394      public SplittableRandom split() {
395 <        return new SplittableRandom(nextSeed(), nextSplit);
395 >        return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
396      }
397  
398      /**
399       * Returns a pseudorandom {@code int} value.
400       *
401 <     * @return a pseudorandom value
401 >     * @return a pseudorandom {@code int} value
402       */
403      public int nextInt() {
404          return mix32(nextSeed());
405      }
406  
407      /**
408 <     * Returns a pseudorandom {@code int} value between 0 (inclusive)
408 >     * Returns a pseudorandom {@code int} value between zero (inclusive)
409       * and the specified bound (exclusive).
410       *
411 <     * @param bound the bound on the random number to be returned.  Must be
412 <     *        positive.
413 <     * @return a pseudorandom {@code int} value between {@code 0}
414 <     *         (inclusive) and the bound (exclusive).
451 <     * @exception IllegalArgumentException if the bound is not positive
411 >     * @param bound the upper bound (exclusive).  Must be positive.
412 >     * @return a pseudorandom {@code int} value between zero
413 >     *         (inclusive) and the bound (exclusive)
414 >     * @throws IllegalArgumentException if {@code bound} is not positive
415       */
416      public int nextInt(int bound) {
417          if (bound <= 0)
418 <            throw new IllegalArgumentException("bound must be positive");
418 >            throw new IllegalArgumentException(BAD_BOUND);
419          // Specialize internalNextInt for origin 0
420          int r = mix32(nextSeed());
421          int m = bound - 1;
422 <        if ((bound & m) == 0L) // power of two
422 >        if ((bound & m) == 0) // power of two
423              r &= m;
424          else { // reject over-represented candidates
425              for (int u = r >>> 1;
426 <                 u + m - (r = u % bound) < 0L;
426 >                 u + m - (r = u % bound) < 0;
427                   u = mix32(nextSeed()) >>> 1)
428                  ;
429          }
# Line 474 | Line 437 | public class SplittableRandom {
437       * @param origin the least value returned
438       * @param bound the upper bound (exclusive)
439       * @return a pseudorandom {@code int} value between the origin
440 <     *         (inclusive) and the bound (exclusive).
441 <     * @exception IllegalArgumentException if {@code origin} is greater than
440 >     *         (inclusive) and the bound (exclusive)
441 >     * @throws IllegalArgumentException if {@code origin} is greater than
442       *         or equal to {@code bound}
443       */
444      public int nextInt(int origin, int bound) {
445          if (origin >= bound)
446 <            throw new IllegalArgumentException("bound must be greater than origin");
446 >            throw new IllegalArgumentException(BAD_RANGE);
447          return internalNextInt(origin, bound);
448      }
449  
450      /**
451       * Returns a pseudorandom {@code long} value.
452       *
453 <     * @return a pseudorandom value
453 >     * @return a pseudorandom {@code long} value
454       */
455      public long nextLong() {
456          return mix64(nextSeed());
457      }
458  
459      /**
460 <     * Returns a pseudorandom {@code long} value between 0 (inclusive)
460 >     * Returns a pseudorandom {@code long} value between zero (inclusive)
461       * and the specified bound (exclusive).
462       *
463 <     * @param bound the bound on the random number to be returned.  Must be
464 <     *        positive.
465 <     * @return a pseudorandom {@code long} value between {@code 0}
466 <     *         (inclusive) and the bound (exclusive).
504 <     * @exception IllegalArgumentException if the bound is not positive
463 >     * @param bound the upper bound (exclusive).  Must be positive.
464 >     * @return a pseudorandom {@code long} value between zero
465 >     *         (inclusive) and the bound (exclusive)
466 >     * @throws IllegalArgumentException if {@code bound} is not positive
467       */
468      public long nextLong(long bound) {
469          if (bound <= 0)
470 <            throw new IllegalArgumentException("bound must be positive");
470 >            throw new IllegalArgumentException(BAD_BOUND);
471          // Specialize internalNextLong for origin 0
472          long r = mix64(nextSeed());
473          long m = bound - 1;
# Line 527 | Line 489 | public class SplittableRandom {
489       * @param origin the least value returned
490       * @param bound the upper bound (exclusive)
491       * @return a pseudorandom {@code long} value between the origin
492 <     *         (inclusive) and the bound (exclusive).
493 <     * @exception IllegalArgumentException if {@code origin} is greater than
492 >     *         (inclusive) and the bound (exclusive)
493 >     * @throws IllegalArgumentException if {@code origin} is greater than
494       *         or equal to {@code bound}
495       */
496      public long nextLong(long origin, long bound) {
497          if (origin >= bound)
498 <            throw new IllegalArgumentException("bound must be greater than origin");
498 >            throw new IllegalArgumentException(BAD_RANGE);
499          return internalNextLong(origin, bound);
500      }
501  
502      /**
503 <     * Returns a pseudorandom {@code double} value between {@code 0.0}
504 <     * (inclusive) and {@code 1.0} (exclusive).
503 >     * Returns a pseudorandom {@code double} value between zero
504 >     * (inclusive) and one (exclusive).
505       *
506 <     * @return a pseudorandom value between {@code 0.0}
507 <     * (inclusive) and {@code 1.0} (exclusive)
506 >     * @return a pseudorandom {@code double} value between zero
507 >     *         (inclusive) and one (exclusive)
508       */
509      public double nextDouble() {
510 <        long bits = (1023L << 52) | (nextLong() >>> 12);
549 <        return Double.longBitsToDouble(bits) - 1.0;
510 >        return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
511      }
512  
513      /**
514       * Returns a pseudorandom {@code double} value between 0.0
515       * (inclusive) and the specified bound (exclusive).
516       *
517 <     * @param bound the bound on the random number to be returned.  Must be
518 <     *        positive.
519 <     * @return a pseudorandom {@code double} value between {@code 0.0}
559 <     *         (inclusive) and the bound (exclusive).
517 >     * @param bound the upper bound (exclusive).  Must be positive.
518 >     * @return a pseudorandom {@code double} value between zero
519 >     *         (inclusive) and the bound (exclusive)
520       * @throws IllegalArgumentException if {@code bound} is not positive
521       */
522      public double nextDouble(double bound) {
523 <        if (bound <= 0.0)
524 <            throw new IllegalArgumentException("bound must be positive");
525 <        double result = nextDouble() * bound;
523 >        if (!(bound > 0.0))
524 >            throw new IllegalArgumentException(BAD_BOUND);
525 >        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
526          return (result < bound) ?  result : // correct for rounding
527              Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
528      }
529  
530      /**
531 <     * Returns a pseudorandom {@code double} value between the given
531 >     * Returns a pseudorandom {@code double} value between the specified
532       * origin (inclusive) and bound (exclusive).
533       *
534       * @param origin the least value returned
535 <     * @param bound the upper bound
535 >     * @param bound the upper bound (exclusive)
536       * @return a pseudorandom {@code double} value between the origin
537 <     *         (inclusive) and the bound (exclusive).
537 >     *         (inclusive) and the bound (exclusive)
538       * @throws IllegalArgumentException if {@code origin} is greater than
539       *         or equal to {@code bound}
540       */
541      public double nextDouble(double origin, double bound) {
542 <        if (origin >= bound)
543 <            throw new IllegalArgumentException("bound must be greater than origin");
542 >        if (!(origin < bound))
543 >            throw new IllegalArgumentException(BAD_RANGE);
544          return internalNextDouble(origin, bound);
545      }
546  
547 +    /**
548 +     * Returns a pseudorandom {@code boolean} value.
549 +     *
550 +     * @return a pseudorandom {@code boolean} value
551 +     */
552 +    public boolean nextBoolean() {
553 +        return mix32(nextSeed()) < 0;
554 +    }
555 +
556      // stream methods, coded in a way intended to better isolate for
557      // maintenance purposes the small differences across forms.
558  
559      /**
560 <     * Returns a stream with the given {@code streamSize} number of
561 <     * pseudorandom {@code int} values.
560 >     * Returns a stream producing the given {@code streamSize} number
561 >     * of pseudorandom {@code int} values from this generator and/or
562 >     * one split from it.
563       *
564       * @param streamSize the number of values to generate
565       * @return a stream of pseudorandom {@code int} values
566       * @throws IllegalArgumentException if {@code streamSize} is
567 <     * less than zero
567 >     *         less than zero
568       */
569      public IntStream ints(long streamSize) {
570          if (streamSize < 0L)
571 <            throw new IllegalArgumentException("negative Stream size");
571 >            throw new IllegalArgumentException(BAD_SIZE);
572          return StreamSupport.intStream
573              (new RandomIntsSpliterator
574               (this, 0L, streamSize, Integer.MAX_VALUE, 0),
# Line 607 | Line 577 | public class SplittableRandom {
577  
578      /**
579       * Returns an effectively unlimited stream of pseudorandom {@code int}
580 <     * values
580 >     * values from this generator and/or one split from it.
581       *
582       * @implNote This method is implemented to be equivalent to {@code
583       * ints(Long.MAX_VALUE)}.
# Line 622 | Line 592 | public class SplittableRandom {
592      }
593  
594      /**
595 <     * Returns a stream with the given {@code streamSize} number of
596 <     * pseudorandom {@code int} values, each conforming to the given
597 <     * origin and bound.
595 >     * Returns a stream producing the given {@code streamSize} number
596 >     * of pseudorandom {@code int} values from this generator and/or one split
597 >     * from it; each value conforms to the given origin (inclusive) and bound
598 >     * (exclusive).
599       *
600       * @param streamSize the number of values to generate
601 <     * @param randomNumberOrigin the origin of each random value
602 <     * @param randomNumberBound the bound of each random value
601 >     * @param randomNumberOrigin the origin (inclusive) of each random value
602 >     * @param randomNumberBound the bound (exclusive) of each random value
603       * @return a stream of pseudorandom {@code int} values,
604 <     * each with the given origin and bound.
604 >     *         each with the given origin (inclusive) and bound (exclusive)
605       * @throws IllegalArgumentException if {@code streamSize} is
606 <     * less than zero.
636 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
606 >     *         less than zero, or {@code randomNumberOrigin}
607       *         is greater than or equal to {@code randomNumberBound}
608       */
609      public IntStream ints(long streamSize, int randomNumberOrigin,
610                            int randomNumberBound) {
611          if (streamSize < 0L)
612 <            throw new IllegalArgumentException("negative Stream size");
612 >            throw new IllegalArgumentException(BAD_SIZE);
613          if (randomNumberOrigin >= randomNumberBound)
614 <            throw new IllegalArgumentException("bound must be greater than origin");
614 >            throw new IllegalArgumentException(BAD_RANGE);
615          return StreamSupport.intStream
616              (new RandomIntsSpliterator
617               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 650 | Line 620 | public class SplittableRandom {
620  
621      /**
622       * Returns an effectively unlimited stream of pseudorandom {@code
623 <     * int} values, each conforming to the given origin and bound.
623 >     * int} values from this generator and/or one split from it; each value
624 >     * conforms to the given origin (inclusive) and bound (exclusive).
625       *
626       * @implNote This method is implemented to be equivalent to {@code
627       * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
628       *
629 <     * @param randomNumberOrigin the origin of each random value
630 <     * @param randomNumberBound the bound of each random value
629 >     * @param randomNumberOrigin the origin (inclusive) of each random value
630 >     * @param randomNumberBound the bound (exclusive) of each random value
631       * @return a stream of pseudorandom {@code int} values,
632 <     * each with the given origin and bound.
632 >     *         each with the given origin (inclusive) and bound (exclusive)
633       * @throws IllegalArgumentException if {@code randomNumberOrigin}
634       *         is greater than or equal to {@code randomNumberBound}
635       */
636      public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
637          if (randomNumberOrigin >= randomNumberBound)
638 <            throw new IllegalArgumentException("bound must be greater than origin");
638 >            throw new IllegalArgumentException(BAD_RANGE);
639          return StreamSupport.intStream
640              (new RandomIntsSpliterator
641               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 672 | Line 643 | public class SplittableRandom {
643      }
644  
645      /**
646 <     * Returns a stream with the given {@code streamSize} number of
647 <     * pseudorandom {@code long} values.
646 >     * Returns a stream producing the given {@code streamSize} number
647 >     * of pseudorandom {@code long} values from this generator and/or
648 >     * one split from it.
649       *
650       * @param streamSize the number of values to generate
651 <     * @return a stream of {@code long} values
651 >     * @return a stream of pseudorandom {@code long} values
652       * @throws IllegalArgumentException if {@code streamSize} is
653 <     * less than zero
653 >     *         less than zero
654       */
655      public LongStream longs(long streamSize) {
656          if (streamSize < 0L)
657 <            throw new IllegalArgumentException("negative Stream size");
657 >            throw new IllegalArgumentException(BAD_SIZE);
658          return StreamSupport.longStream
659              (new RandomLongsSpliterator
660               (this, 0L, streamSize, Long.MAX_VALUE, 0L),
# Line 690 | Line 662 | public class SplittableRandom {
662      }
663  
664      /**
665 <     * Returns an effectively unlimited stream of pseudorandom {@code long}
666 <     * values.
665 >     * Returns an effectively unlimited stream of pseudorandom {@code
666 >     * long} values from this generator and/or one split from it.
667       *
668       * @implNote This method is implemented to be equivalent to {@code
669       * longs(Long.MAX_VALUE)}.
# Line 706 | Line 678 | public class SplittableRandom {
678      }
679  
680      /**
681 <     * Returns a stream with the given {@code streamSize} number of
682 <     * pseudorandom {@code long} values, each conforming to the
683 <     * given origin and bound.
681 >     * Returns a stream producing the given {@code streamSize} number of
682 >     * pseudorandom {@code long} values from this generator and/or one split
683 >     * from it; each value conforms to the given origin (inclusive) and bound
684 >     * (exclusive).
685       *
686       * @param streamSize the number of values to generate
687 <     * @param randomNumberOrigin the origin of each random value
688 <     * @param randomNumberBound the bound of each random value
687 >     * @param randomNumberOrigin the origin (inclusive) of each random value
688 >     * @param randomNumberBound the bound (exclusive) of each random value
689       * @return a stream of pseudorandom {@code long} values,
690 <     * each with the given origin and bound.
690 >     *         each with the given origin (inclusive) and bound (exclusive)
691       * @throws IllegalArgumentException if {@code streamSize} is
692 <     * less than zero.
720 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
692 >     *         less than zero, or {@code randomNumberOrigin}
693       *         is greater than or equal to {@code randomNumberBound}
694       */
695      public LongStream longs(long streamSize, long randomNumberOrigin,
696                              long randomNumberBound) {
697          if (streamSize < 0L)
698 <            throw new IllegalArgumentException("negative Stream size");
698 >            throw new IllegalArgumentException(BAD_SIZE);
699          if (randomNumberOrigin >= randomNumberBound)
700 <            throw new IllegalArgumentException("bound must be greater than origin");
700 >            throw new IllegalArgumentException(BAD_RANGE);
701          return StreamSupport.longStream
702              (new RandomLongsSpliterator
703               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 734 | Line 706 | public class SplittableRandom {
706  
707      /**
708       * Returns an effectively unlimited stream of pseudorandom {@code
709 <     * long} values, each conforming to the given origin and bound.
709 >     * long} values from this generator and/or one split from it; each value
710 >     * conforms to the given origin (inclusive) and bound (exclusive).
711       *
712       * @implNote This method is implemented to be equivalent to {@code
713       * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
714       *
715 <     * @param randomNumberOrigin the origin of each random value
716 <     * @param randomNumberBound the bound of each random value
715 >     * @param randomNumberOrigin the origin (inclusive) of each random value
716 >     * @param randomNumberBound the bound (exclusive) of each random value
717       * @return a stream of pseudorandom {@code long} values,
718 <     * each with the given origin and bound.
718 >     *         each with the given origin (inclusive) and bound (exclusive)
719       * @throws IllegalArgumentException if {@code randomNumberOrigin}
720       *         is greater than or equal to {@code randomNumberBound}
721       */
722      public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
723          if (randomNumberOrigin >= randomNumberBound)
724 <            throw new IllegalArgumentException("bound must be greater than origin");
724 >            throw new IllegalArgumentException(BAD_RANGE);
725          return StreamSupport.longStream
726              (new RandomLongsSpliterator
727               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 756 | Line 729 | public class SplittableRandom {
729      }
730  
731      /**
732 <     * Returns a stream with the given {@code streamSize} number of
733 <     * pseudorandom {@code double} values, each between {@code 0.0}
734 <     * (inclusive) and {@code 1.0} (exclusive).
732 >     * Returns a stream producing the given {@code streamSize} number of
733 >     * pseudorandom {@code double} values from this generator and/or one split
734 >     * from it; each value is between zero (inclusive) and one (exclusive).
735       *
736       * @param streamSize the number of values to generate
737       * @return a stream of {@code double} values
738       * @throws IllegalArgumentException if {@code streamSize} is
739 <     * less than zero
739 >     *         less than zero
740       */
741      public DoubleStream doubles(long streamSize) {
742          if (streamSize < 0L)
743 <            throw new IllegalArgumentException("negative Stream size");
743 >            throw new IllegalArgumentException(BAD_SIZE);
744          return StreamSupport.doubleStream
745              (new RandomDoublesSpliterator
746               (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
# Line 776 | Line 749 | public class SplittableRandom {
749  
750      /**
751       * Returns an effectively unlimited stream of pseudorandom {@code
752 <     * double} values, each between {@code 0.0} (inclusive) and {@code
753 <     * 1.0} (exclusive).
752 >     * double} values from this generator and/or one split from it; each value
753 >     * is between zero (inclusive) and one (exclusive).
754       *
755       * @implNote This method is implemented to be equivalent to {@code
756       * doubles(Long.MAX_VALUE)}.
# Line 792 | Line 765 | public class SplittableRandom {
765      }
766  
767      /**
768 <     * Returns a stream with the given {@code streamSize} number of
769 <     * pseudorandom {@code double} values, each conforming to the
770 <     * given origin and bound.
768 >     * Returns a stream producing the given {@code streamSize} number of
769 >     * pseudorandom {@code double} values from this generator and/or one split
770 >     * from it; each value conforms to the given origin (inclusive) and bound
771 >     * (exclusive).
772       *
773       * @param streamSize the number of values to generate
774 <     * @param randomNumberOrigin the origin of each random value
775 <     * @param randomNumberBound the bound of each random value
774 >     * @param randomNumberOrigin the origin (inclusive) of each random value
775 >     * @param randomNumberBound the bound (exclusive) of each random value
776       * @return a stream of pseudorandom {@code double} values,
777 <     * each with the given origin and bound.
777 >     *         each with the given origin (inclusive) and bound (exclusive)
778       * @throws IllegalArgumentException if {@code streamSize} is
779 <     * less than zero.
779 >     *         less than zero
780       * @throws IllegalArgumentException if {@code randomNumberOrigin}
781       *         is greater than or equal to {@code randomNumberBound}
782       */
783      public DoubleStream doubles(long streamSize, double randomNumberOrigin,
784                                  double randomNumberBound) {
785          if (streamSize < 0L)
786 <            throw new IllegalArgumentException("negative Stream size");
787 <        if (randomNumberOrigin >= randomNumberBound)
788 <            throw new IllegalArgumentException("bound must be greater than origin");
786 >            throw new IllegalArgumentException(BAD_SIZE);
787 >        if (!(randomNumberOrigin < randomNumberBound))
788 >            throw new IllegalArgumentException(BAD_RANGE);
789          return StreamSupport.doubleStream
790              (new RandomDoublesSpliterator
791               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 820 | Line 794 | public class SplittableRandom {
794  
795      /**
796       * Returns an effectively unlimited stream of pseudorandom {@code
797 <     * double} values, each conforming to the given origin and bound.
797 >     * double} values from this generator and/or one split from it; each value
798 >     * conforms to the given origin (inclusive) and bound (exclusive).
799       *
800       * @implNote This method is implemented to be equivalent to {@code
801       * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
802       *
803 <     * @param randomNumberOrigin the origin of each random value
804 <     * @param randomNumberBound the bound of each random value
803 >     * @param randomNumberOrigin the origin (inclusive) of each random value
804 >     * @param randomNumberBound the bound (exclusive) of each random value
805       * @return a stream of pseudorandom {@code double} values,
806 <     * each with the given origin and bound.
806 >     *         each with the given origin (inclusive) and bound (exclusive)
807       * @throws IllegalArgumentException if {@code randomNumberOrigin}
808       *         is greater than or equal to {@code randomNumberBound}
809       */
810      public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
811 <        if (randomNumberOrigin >= randomNumberBound)
812 <            throw new IllegalArgumentException("bound must be greater than origin");
811 >        if (!(randomNumberOrigin < randomNumberBound))
812 >            throw new IllegalArgumentException(BAD_RANGE);
813          return StreamSupport.doubleStream
814              (new RandomDoublesSpliterator
815               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 843 | Line 818 | public class SplittableRandom {
818  
819      /**
820       * Spliterator for int streams.  We multiplex the four int
821 <     * versions into one class by treating and bound < origin as
821 >     * versions into one class by treating a bound less than origin as
822       * unbounded, and also by treating "infinite" as equivalent to
823       * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
824       * approach. The long and double versions of this class are
825       * identical except for types.
826       */
827 <    static class RandomIntsSpliterator implements Spliterator.OfInt {
827 >    private static final class RandomIntsSpliterator
828 >            implements Spliterator.OfInt {
829          final SplittableRandom rng;
830          long index;
831          final long fence;
# Line 892 | Line 868 | public class SplittableRandom {
868              long i = index, f = fence;
869              if (i < f) {
870                  index = f;
871 +                SplittableRandom r = rng;
872                  int o = origin, b = bound;
873                  do {
874 <                    consumer.accept(rng.internalNextInt(o, b));
874 >                    consumer.accept(r.internalNextInt(o, b));
875                  } while (++i < f);
876              }
877          }
# Line 903 | Line 880 | public class SplittableRandom {
880      /**
881       * Spliterator for long streams.
882       */
883 <    static class RandomLongsSpliterator implements Spliterator.OfLong {
883 >    private static final class RandomLongsSpliterator
884 >            implements Spliterator.OfLong {
885          final SplittableRandom rng;
886          long index;
887          final long fence;
# Line 946 | Line 924 | public class SplittableRandom {
924              long i = index, f = fence;
925              if (i < f) {
926                  index = f;
927 +                SplittableRandom r = rng;
928                  long o = origin, b = bound;
929                  do {
930 <                    consumer.accept(rng.internalNextLong(o, b));
930 >                    consumer.accept(r.internalNextLong(o, b));
931                  } while (++i < f);
932              }
933          }
# Line 958 | Line 937 | public class SplittableRandom {
937      /**
938       * Spliterator for double streams.
939       */
940 <    static class RandomDoublesSpliterator implements Spliterator.OfDouble {
940 >    private static final class RandomDoublesSpliterator
941 >            implements Spliterator.OfDouble {
942          final SplittableRandom rng;
943          long index;
944          final long fence;
# Line 1001 | Line 981 | public class SplittableRandom {
981              long i = index, f = fence;
982              if (i < f) {
983                  index = f;
984 +                SplittableRandom r = rng;
985                  double o = origin, b = bound;
986                  do {
987 <                    consumer.accept(rng.internalNextDouble(o, b));
987 >                    consumer.accept(r.internalNextDouble(o, b));
988                  } while (++i < f);
989              }
990          }
991      }
992  
993   }
1013

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines