ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
(Generate patch)

Comparing jsr166/src/main/java/util/SplittableRandom.java (file contents):
Revision 1.2 by dl, Wed Jul 10 23:42:43 2013 UTC vs.
Revision 1.31 by jsr166, Fri Feb 19 03:39:15 2016 UTC

# Line 26 | Line 26
26   package java.util;
27  
28   import java.util.concurrent.atomic.AtomicLong;
29 < import java.util.Spliterator;
29 > import java.util.function.DoubleConsumer;
30   import java.util.function.IntConsumer;
31   import java.util.function.LongConsumer;
32 < import java.util.function.DoubleConsumer;
33 < import java.util.stream.StreamSupport;
32 > import java.util.stream.DoubleStream;
33   import java.util.stream.IntStream;
34   import java.util.stream.LongStream;
35 < import java.util.stream.DoubleStream;
37 <
35 > import java.util.stream.StreamSupport;
36  
37   /**
38   * A generator of uniform pseudorandom values applicable for use in
39   * (among other contexts) isolated parallel computations that may
40 < * generate subtasks. Class SplittableRandom supports methods for
41 < * producing pseudorandom nunmbers of type {@code int}, {@code long},
40 > * generate subtasks. Class {@code SplittableRandom} supports methods for
41 > * producing pseudorandom numbers of type {@code int}, {@code long},
42   * and {@code double} with similar usages as for class
43 < * {@link java.util.Random} but differs in the following ways: <ul>
43 > * {@link java.util.Random} but differs in the following ways:
44 > *
45 > * <ul>
46   *
47   * <li>Series of generated values pass the DieHarder suite testing
48   * independence and uniformity properties of random number generators.
# Line 50 | Line 50 | import java.util.stream.DoubleStream;
50   * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51   * 3.31.1</a>.) These tests validate only the methods for certain
52   * types and ranges, but similar properties are expected to hold, at
53 < * least approximately, for others as well.  </li>
53 > * least approximately, for others as well. The <em>period</em>
54 > * (length of any series of generated values before it repeats) is at
55 > * least 2<sup>64</sup>.
56   *
57 < * <li> Method {@link #split} constructs and returns a new
57 > * <li>Method {@link #split} constructs and returns a new
58   * SplittableRandom instance that shares no mutable state with the
59 < * current instance. However, with very high probability, the set of
60 < * values collectively generated by the two objects has the same
59 > * current instance. However, with very high probability, the
60 > * values collectively generated by the two objects have the same
61   * statistical properties as if the same quantity of values were
62   * generated by a single thread using a single {@code
63 < * SplittableRandom} object.  </li>
63 > * SplittableRandom} object.
64   *
65   * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66   * They are designed to be split, not shared, across threads. For
# Line 69 | Line 71 | import java.util.stream.DoubleStream;
71   *
72   * <li>This class provides additional methods for generating random
73   * streams, that employ the above techniques when used in {@code
74 < * stream.parallel()} mode.</li>
74 > * stream.parallel()} mode.
75   *
76   * </ul>
77   *
78 + * <p>Instances of {@code SplittableRandom} are not cryptographically
79 + * secure.  Consider instead using {@link java.security.SecureRandom}
80 + * in security-sensitive applications. Additionally,
81 + * default-constructed instances do not use a cryptographically random
82 + * seed unless the {@linkplain System#getProperty system property}
83 + * {@code java.util.secureRandomSeed} is set to {@code true}.
84 + *
85   * @author  Guy Steele
86   * @author  Doug Lea
87   * @since   1.8
88   */
89 < public class SplittableRandom {
81 <
82 <    /*
83 <     * File organization: First the non-public methods that constitute
84 <     * the main algorithm, then the main public methods, followed by
85 <     * some custom spliterator classes needed for stream methods.
86 <     *
87 <     * Credits: Primary algorithm and code by Guy Steele.  Stream
88 <     * support methods by Doug Lea.  Documentation jointly produced
89 <     * with additional help from Brian Goetz.
90 <     */
89 > public final class SplittableRandom {
90  
91      /*
92       * Implementation Overview.
# Line 95 | Line 94 | public class SplittableRandom {
94       * This algorithm was inspired by the "DotMix" algorithm by
95       * Leiserson, Schardl, and Sukha "Deterministic Parallel
96       * Random-Number Generation for Dynamic-Multithreading Platforms",
97 <     * PPoPP 2012, but improves and extends it in several ways.
97 >     * PPoPP 2012, as well as those in "Parallel random numbers: as
98 >     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
99 >     * differs mainly in simplifying and cheapening operations.
100 >     *
101 >     * The primary update step (method nextSeed()) is to add a
102 >     * constant ("gamma") to the current (64 bit) seed, forming a
103 >     * simple sequence.  The seed and the gamma values for any two
104 >     * SplittableRandom instances are highly likely to be different.
105 >     *
106 >     * Methods nextLong, nextInt, and derivatives do not return the
107 >     * sequence (seed) values, but instead a hash-like bit-mix of
108 >     * their bits, producing more independently distributed sequences.
109 >     * For nextLong, the mix64 function is based on David Stafford's
110 >     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111 >     * "Mix13" variant of the "64-bit finalizer" function in Austin
112 >     * Appleby's MurmurHash3 algorithm (see
113 >     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114 >     * function is based on Stafford's Mix04 mix function, but returns
115 >     * the upper 32 bits cast as int.
116 >     *
117 >     * The split operation uses the current generator to form the seed
118 >     * and gamma for another SplittableRandom.  To conservatively
119 >     * avoid potential correlations between seed and value generation,
120 >     * gamma selection (method mixGamma) uses different
121 >     * (Murmurhash3's) mix constants.  To avoid potential weaknesses
122 >     * in bit-mixing transformations, we restrict gammas to odd values
123 >     * with at least 24 0-1 or 1-0 bit transitions.  Rather than
124 >     * rejecting candidates with too few or too many bits set, method
125 >     * mixGamma flips some bits (which has the effect of mapping at
126 >     * most 4 to any given gamma value).  This reduces the effective
127 >     * set of 64bit odd gamma values by about 2%, and serves as an
128 >     * automated screening for sequence constant selection that is
129 >     * left as an empirical decision in some other hashing and crypto
130 >     * algorithms.
131 >     *
132 >     * The resulting generator thus transforms a sequence in which
133 >     * (typically) many bits change on each step, with an inexpensive
134 >     * mixer with good (but less than cryptographically secure)
135 >     * avalanching.
136 >     *
137 >     * The default (no-argument) constructor, in essence, invokes
138 >     * split() for a common "defaultGen" SplittableRandom.  Unlike
139 >     * other cases, this split must be performed in a thread-safe
140 >     * manner, so we use an AtomicLong to represent the seed rather
141 >     * than use an explicit SplittableRandom. To bootstrap the
142 >     * defaultGen, we start off using a seed based on current time
143 >     * unless the java.util.secureRandomSeed property is set. This
144 >     * serves as a slimmed-down (and insecure) variant of SecureRandom
145 >     * that also avoids stalls that may occur when using /dev/random.
146 >     *
147 >     * It is a relatively simple matter to apply the basic design here
148 >     * to use 128 bit seeds. However, emulating 128bit arithmetic and
149 >     * carrying around twice the state add more overhead than appears
150 >     * warranted for current usages.
151       *
152 <     * The primary update step is simply to add a constant ("gamma")
153 <     * to the current seed, modulo a prime ("George"). However, the
154 <     * nextLong and nextInt methods do not return this value, but
155 <     * instead the results of bit-mixing transformations that produce
104 <     * more uniformly distributed sequences.
105 <     *
106 <     * "George" is the otherwise nameless (because it cannot be
107 <     * represented) prime number 2^64+13. Using a prime number larger
108 <     * than can fit in a long ensures that all possible long values
109 <     * can occur, plus 13 others that just get skipped over when they
110 <     * are encountered; see method addGammaModGeorge. For this to
111 <     * work, initial gamma values must be at least 13.
112 <     *
113 <     * The value of gamma differs for each instance across a series of
114 <     * splits, and is generated using a slightly stripped-down variant
115 <     * of the same algorithm, but operating across calls to split(),
116 <     * not calls to nextSeed(): Each instance carries the state of
117 <     * this generator as nextSplit, and uses mix64(nextSplit) as its
118 <     * own gamma value. Computations of gammas themselves use a fixed
119 <     * constant as the second argument to the addGammaModGeorge
120 <     * function, GAMMA_GAMMA, a "genuinely random" number from a
121 <     * radioactive decay reading (obtained from
122 <     * http://www.fourmilab.ch/hotbits/) meeting the above range
123 <     * constraint. Using a fixed constant maintains the invariant that
124 <     * the value of gamma is the same for every instance that is at
125 <     * the same split-distance from their common root. (Note: there is
126 <     * nothing especially magic about obtaining this constant from a
127 <     * "truly random" physical source rather than just choosing one
128 <     * arbitrarily; using "hotbits" was merely an aesthetically pleasing
129 <     * choice.  In either case, good statistical behavior of the
130 <     * algorithm should be, and was, verified by using the DieHarder
131 <     * test suite.)
132 <     *
133 <     * The mix64 bit-mixing function called by nextLong and other
134 <     * methods computes the same value as the "64-bit finalizer"
135 <     * function in Austin Appleby's MurmurHash3 algorithm.  See
136 <     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
137 <     * comments: "The constants for the finalizers were generated by a
138 <     * simple simulated-annealing algorithm, and both avalanche all
139 <     * bits of 'h' to within 0.25% bias." It also appears to work to
140 <     * use instead any of the variants proposed by David Stafford at
141 <     * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
142 <     * but these variants have not yet been tested as thoroughly
143 <     * in the context of the implementation of SplittableRandom.
144 <     *
145 <     * The mix32 function used for nextInt just consists of two of the
146 <     * five lines of mix64; avalanche testing shows that the 64-bit result
147 <     * has its top 32 bits avalanched well, though not the bottom 32 bits.
148 <     * DieHarder tests show that it is adequate for generating one
149 <     * random int from the 64-bit result of nextSeed.
150 <     *
151 <     * Support for the default (no-argument) constructor relies on an
152 <     * AtomicLong (defaultSeedGenerator) to help perform the
153 <     * equivalent of a split of a statically constructed
154 <     * SplittableRandom. Unlike other cases, this split must be
155 <     * performed in a thread-safe manner. We use
156 <     * AtomicLong.compareAndSet as the (typically) most efficient
157 <     * mechanism. To bootstrap, we start off using System.nanotime(),
158 <     * and update using another "genuinely random" constant
159 <     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
160 <     * not 0, for its splitSeed argument (addGammaModGeorge(0,
161 <     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
162 <     * this root generator, even though the root is not explicitly
163 <     * represented as a SplittableRandom.
164 <     */
165 <
166 <    /**
167 <     * The "genuinely random" value for producing new gamma values.
168 <     * The value is arbitrary, subject to the requirement that it be
169 <     * greater or equal to 13.
170 <     */
171 <    private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
172 <
173 <    /**
174 <     * The "genuinely random" seed update value for default constructors.
175 <     * The value is arbitrary, subject to the requirement that it be
176 <     * greater or equal to 13.
177 <     */
178 <    private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
152 >     * File organization: First the non-public methods that constitute
153 >     * the main algorithm, then the main public methods, followed by
154 >     * some custom spliterator classes needed for stream methods.
155 >     */
156  
157      /**
158 <     * The next seed for default constructors.
158 >     * The golden ratio scaled to 64bits, used as the initial gamma
159 >     * value for (unsplit) SplittableRandoms.
160       */
161 <    private static final AtomicLong defaultSeedGenerator =
184 <        new AtomicLong(System.nanoTime());
161 >    private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162  
163      /**
164 <     * The seed, updated only via method nextSeed.
164 >     * The least non-zero value returned by nextDouble(). This value
165 >     * is scaled by a random value of 53 bits to produce a result.
166       */
167 <    private long seed;
167 >    private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168  
169      /**
170 <     * The constant value added to seed (mod George) on each update.
170 >     * The seed. Updated only via method nextSeed.
171       */
172 <    private final long gamma;
172 >    private long seed;
173  
174      /**
175 <     * The next seed to use for splits. Propagated using
198 <     * addGammaModGeorge across instances.
175 >     * The step value.
176       */
177 <    private final long nextSplit;
177 >    private final long gamma;
178  
179      /**
180 <     * Internal constructor used by all other constructors and by
204 <     * method split. Establishes the initial seed for this instance,
205 <     * and uses the given splitSeed to establish gamma, as well as the
206 <     * nextSplit to use by this instance.
180 >     * Internal constructor used by all others except default constructor.
181       */
182 <    private SplittableRandom(long seed, long splitSeed) {
182 >    private SplittableRandom(long seed, long gamma) {
183          this.seed = seed;
184 <        long s = splitSeed, g;
211 <        do { // ensure gamma >= 13, considered as an unsigned integer
212 <            s = addGammaModGeorge(s, GAMMA_GAMMA);
213 <            g = mix64(s);
214 <        } while (Long.compareUnsigned(g, 13L) < 0);
215 <        this.gamma = g;
216 <        this.nextSplit = s;
184 >        this.gamma = gamma;
185      }
186  
187      /**
188 <     * Adds the given gamma value, g, to the given seed value s, mod
189 <     * George (2^64+13). We regard s and g as unsigned values
190 <     * (ranging from 0 to 2^64-1). We add g to s either once or twice
191 <     * (mod George) as necessary to produce an (unsigned) result less
192 <     * than 2^64.  We require that g must be at least 13. This
193 <     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
226 <     * George < 2^64; thus we need only a conditional, not a loop,
227 <     * to be sure of getting a representable value.
228 <     *
229 <     * @param s a seed value
230 <     * @param g a gamma value, 13 <= g (as unsigned)
231 <     */
232 <    private static long addGammaModGeorge(long s, long g) {
233 <        long p = s + g;
234 <        if (Long.compareUnsigned(p, g) >= 0)
235 <            return p;
236 <        long q = p - 13L;
237 <        return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
188 >     * Computes Stafford variant 13 of 64bit mix function.
189 >     */
190 >    private static long mix64(long z) {
191 >        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192 >        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193 >        return z ^ (z >>> 31);
194      }
195  
196      /**
197 <     * Updates in-place and returns seed.
242 <     * See above for explanation.
197 >     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198       */
199 <    private long nextSeed() {
200 <        return seed = addGammaModGeorge(seed, gamma);
199 >    private static int mix32(long z) {
200 >        z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201 >        return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202      }
203  
204      /**
205 <     * Returns a bit-mixed transformation of its argument.
250 <     * See above for explanation.
205 >     * Returns the gamma value to use for a new split instance.
206       */
207 <    private static long mix64(long z) {
208 <        z ^= (z >>> 33);
209 <        z *= 0xff51afd7ed558ccdL;
210 <        z ^= (z >>> 33);
211 <        z *= 0xc4ceb9fe1a85ec53L;
212 <        z ^= (z >>> 33);
258 <        return z;
207 >    private static long mixGamma(long z) {
208 >        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209 >        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210 >        z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
211 >        int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
212 >        return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213      }
214  
215      /**
216 <     * Returns a bit-mixed int transformation of its argument.
263 <     * See above for explanation.
216 >     * Adds gamma to seed.
217       */
218 <    private static int mix32(long z) {
219 <        z ^= (z >>> 33);
267 <        z *= 0xc4ceb9fe1a85ec53L;
268 <        return (int)(z >>> 32);
218 >    private long nextSeed() {
219 >        return seed += gamma;
220      }
221  
222      /**
223 <     * Atomically updates and returns next seed for default constructor
223 >     * The seed generator for default constructors.
224       */
225 <    private static long nextDefaultSeed() {
226 <        long oldSeed, newSeed;
227 <        do {
228 <            oldSeed = defaultSeedGenerator.get();
229 <            newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
230 <        } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
231 <        return mix64(newSeed);
225 >    private static final AtomicLong defaultGen = new AtomicLong(initialSeed());
226 >
227 >    private static long initialSeed() {
228 >        if (java.security.AccessController.doPrivileged(
229 >            new java.security.PrivilegedAction<Boolean>() {
230 >                public Boolean run() {
231 >                    return Boolean.getBoolean("java.util.secureRandomSeed");
232 >                }})) {
233 >            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
234 >            long s = (long)seedBytes[0] & 0xffL;
235 >            for (int i = 1; i < 8; ++i)
236 >                s = (s << 8) | ((long)seedBytes[i] & 0xffL);
237 >            return s;
238 >        }
239 >        return (mix64(System.currentTimeMillis()) ^
240 >                mix64(System.nanoTime()));
241      }
242  
243 +    // IllegalArgumentException messages
244 +    static final String BAD_BOUND = "bound must be positive";
245 +    static final String BAD_RANGE = "bound must be greater than origin";
246 +    static final String BAD_SIZE  = "size must be non-negative";
247 +
248      /*
249       * Internal versions of nextX methods used by streams, as well as
250       * the public nextX(origin, bound) methods.  These exist mainly to
# Line 311 | Line 276 | public class SplittableRandom {
276           * evenly divisible by the range. The loop rejects candidates
277           * computed from otherwise over-represented values.  The
278           * expected number of iterations under an ideal generator
279 <         * varies from 1 to 2, depending on the bound.
279 >         * varies from 1 to 2, depending on the bound. The loop itself
280 >         * takes an unlovable form. Because the first candidate is
281 >         * already available, we need a break-in-the-middle
282 >         * construction, which is concisely but cryptically performed
283 >         * within the while-condition of a body-less for loop.
284           *
285           * 4. Otherwise, the range cannot be represented as a positive
286 <         * long.  Repeatedly generate unbounded longs until obtaining
287 <         * a candidate meeting constraints (with an expected number of
288 <         * iterations of less than two).
286 >         * long.  The loop repeatedly generates unbounded longs until
287 >         * obtaining a candidate meeting constraints (with an expected
288 >         * number of iterations of less than two).
289           */
290  
291          long r = mix64(nextSeed());
292          if (origin < bound) {
293              long n = bound - origin, m = n - 1;
294 <            if ((n & m) == 0L) // power of two
294 >            if ((n & m) == 0L)  // power of two
295                  r = (r & m) + origin;
296 <            else if (n > 0) { // reject over-represented candidates
296 >            else if (n > 0L) {  // reject over-represented candidates
297                  for (long u = r >>> 1;            // ensure nonnegative
298 <                     u + m - (r = u % n) < 0L;    // reject
298 >                     u + m - (r = u % n) < 0L;    // rejection check
299                       u = mix64(nextSeed()) >>> 1) // retry
300                      ;
301                  r += origin;
302              }
303 <            else {             // range not representable as long
303 >            else {              // range not representable as long
304                  while (r < origin || r >= bound)
305                      r = mix64(nextSeed());
306              }
# Line 351 | Line 320 | public class SplittableRandom {
320          int r = mix32(nextSeed());
321          if (origin < bound) {
322              int n = bound - origin, m = n - 1;
323 <            if ((n & m) == 0L)
323 >            if ((n & m) == 0)
324                  r = (r & m) + origin;
325              else if (n > 0) {
326                  for (int u = r >>> 1;
327 <                     u + m - (r = u % n) < 0L;
327 >                     u + m - (r = u % n) < 0;
328                       u = mix32(nextSeed()) >>> 1)
329                      ;
330                  r += origin;
# Line 376 | Line 345 | public class SplittableRandom {
345       * @return a pseudorandom value
346       */
347      final double internalNextDouble(double origin, double bound) {
348 <        long bits = (1023L << 52) | (nextLong() >>> 12);
380 <        double r = Double.longBitsToDouble(bits) - 1.0;
348 >        double r = (nextLong() >>> 11) * DOUBLE_UNIT;
349          if (origin < bound) {
350              r = r * (bound - origin) + origin;
351 <            if (r == bound) // correct for rounding
351 >            if (r >= bound) // correct for rounding
352                  r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
353          }
354          return r;
# Line 389 | Line 357 | public class SplittableRandom {
357      /* ---------------- public methods ---------------- */
358  
359      /**
360 <     * Creates a new SplittableRandom instance using the given initial
361 <     * seed. Two SplittableRandom instances created with the same seed
362 <     * generate identical sequences of values.
360 >     * Creates a new SplittableRandom instance using the specified
361 >     * initial seed. SplittableRandom instances created with the same
362 >     * seed in the same program generate identical sequences of values.
363       *
364       * @param seed the initial seed
365       */
366      public SplittableRandom(long seed) {
367 <        this(seed, 0);
367 >        this(seed, GOLDEN_GAMMA);
368      }
369  
370      /**
# Line 405 | Line 373 | public class SplittableRandom {
373       * of those of any other instances in the current program; and
374       * may, and typically does, vary across program invocations.
375       */
376 <    public SplittableRandom() {
377 <        this(nextDefaultSeed(), GAMMA_GAMMA);
376 >    public SplittableRandom() { // emulate defaultGen.split()
377 >        long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
378 >        this.seed = mix64(s);
379 >        this.gamma = mixGamma(s + GOLDEN_GAMMA);
380      }
381  
382      /**
# Line 424 | Line 394 | public class SplittableRandom {
394       * @return the new SplittableRandom instance
395       */
396      public SplittableRandom split() {
397 <        return new SplittableRandom(nextSeed(), nextSplit);
397 >        return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
398      }
399  
400      /**
401       * Returns a pseudorandom {@code int} value.
402       *
403 <     * @return a pseudorandom value
403 >     * @return a pseudorandom {@code int} value
404       */
405      public int nextInt() {
406          return mix32(nextSeed());
407      }
408  
409      /**
410 <     * Returns a pseudorandom {@code int} value between 0 (inclusive)
410 >     * Returns a pseudorandom {@code int} value between zero (inclusive)
411       * and the specified bound (exclusive).
412       *
413 <     * @param bound the bound on the random number to be returned.  Must be
414 <     *        positive.
415 <     * @return a pseudorandom {@code int} value between {@code 0}
416 <     *         (inclusive) and the bound (exclusive).
447 <     * @exception IllegalArgumentException if the bound is not positive
413 >     * @param bound the upper bound (exclusive).  Must be positive.
414 >     * @return a pseudorandom {@code int} value between zero
415 >     *         (inclusive) and the bound (exclusive)
416 >     * @throws IllegalArgumentException if {@code bound} is not positive
417       */
418      public int nextInt(int bound) {
419          if (bound <= 0)
420 <            throw new IllegalArgumentException("bound must be positive");
420 >            throw new IllegalArgumentException(BAD_BOUND);
421          // Specialize internalNextInt for origin 0
422          int r = mix32(nextSeed());
423          int m = bound - 1;
424 <        if ((bound & m) == 0L) // power of two
424 >        if ((bound & m) == 0) // power of two
425              r &= m;
426          else { // reject over-represented candidates
427              for (int u = r >>> 1;
428 <                 u + m - (r = u % bound) < 0L;
428 >                 u + m - (r = u % bound) < 0;
429                   u = mix32(nextSeed()) >>> 1)
430                  ;
431          }
# Line 470 | Line 439 | public class SplittableRandom {
439       * @param origin the least value returned
440       * @param bound the upper bound (exclusive)
441       * @return a pseudorandom {@code int} value between the origin
442 <     *         (inclusive) and the bound (exclusive).
443 <     * @exception IllegalArgumentException if {@code origin} is greater than
442 >     *         (inclusive) and the bound (exclusive)
443 >     * @throws IllegalArgumentException if {@code origin} is greater than
444       *         or equal to {@code bound}
445       */
446      public int nextInt(int origin, int bound) {
447          if (origin >= bound)
448 <            throw new IllegalArgumentException("bound must be greater than origin");
448 >            throw new IllegalArgumentException(BAD_RANGE);
449          return internalNextInt(origin, bound);
450      }
451  
452      /**
453       * Returns a pseudorandom {@code long} value.
454       *
455 <     * @return a pseudorandom value
455 >     * @return a pseudorandom {@code long} value
456       */
457      public long nextLong() {
458          return mix64(nextSeed());
459      }
460  
461      /**
462 <     * Returns a pseudorandom {@code long} value between 0 (inclusive)
462 >     * Returns a pseudorandom {@code long} value between zero (inclusive)
463       * and the specified bound (exclusive).
464       *
465 <     * @param bound the bound on the random number to be returned.  Must be
466 <     *        positive.
467 <     * @return a pseudorandom {@code long} value between {@code 0}
468 <     *         (inclusive) and the bound (exclusive).
500 <     * @exception IllegalArgumentException if the bound is not positive
465 >     * @param bound the upper bound (exclusive).  Must be positive.
466 >     * @return a pseudorandom {@code long} value between zero
467 >     *         (inclusive) and the bound (exclusive)
468 >     * @throws IllegalArgumentException if {@code bound} is not positive
469       */
470      public long nextLong(long bound) {
471          if (bound <= 0)
472 <            throw new IllegalArgumentException("bound must be positive");
472 >            throw new IllegalArgumentException(BAD_BOUND);
473          // Specialize internalNextLong for origin 0
474          long r = mix64(nextSeed());
475          long m = bound - 1;
# Line 523 | Line 491 | public class SplittableRandom {
491       * @param origin the least value returned
492       * @param bound the upper bound (exclusive)
493       * @return a pseudorandom {@code long} value between the origin
494 <     *         (inclusive) and the bound (exclusive).
495 <     * @exception IllegalArgumentException if {@code origin} is greater than
494 >     *         (inclusive) and the bound (exclusive)
495 >     * @throws IllegalArgumentException if {@code origin} is greater than
496       *         or equal to {@code bound}
497       */
498      public long nextLong(long origin, long bound) {
499          if (origin >= bound)
500 <            throw new IllegalArgumentException("bound must be greater than origin");
500 >            throw new IllegalArgumentException(BAD_RANGE);
501          return internalNextLong(origin, bound);
502      }
503  
504      /**
505 <     * Returns a pseudorandom {@code double} value between {@code 0.0}
506 <     * (inclusive) and {@code 1.0} (exclusive).
505 >     * Returns a pseudorandom {@code double} value between zero
506 >     * (inclusive) and one (exclusive).
507       *
508 <     * @return a pseudorandom value between {@code 0.0}
509 <     * (inclusive) and {@code 1.0} (exclusive)
508 >     * @return a pseudorandom {@code double} value between zero
509 >     *         (inclusive) and one (exclusive)
510       */
511      public double nextDouble() {
512 <        long bits = (1023L << 52) | (nextLong() >>> 12);
545 <        return Double.longBitsToDouble(bits) - 1.0;
512 >        return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
513      }
514  
515      /**
516       * Returns a pseudorandom {@code double} value between 0.0
517       * (inclusive) and the specified bound (exclusive).
518       *
519 <     * @param bound the bound on the random number to be returned.  Must be
520 <     *        positive.
521 <     * @return a pseudorandom {@code double} value between {@code 0.0}
555 <     *         (inclusive) and the bound (exclusive).
519 >     * @param bound the upper bound (exclusive).  Must be positive.
520 >     * @return a pseudorandom {@code double} value between zero
521 >     *         (inclusive) and the bound (exclusive)
522       * @throws IllegalArgumentException if {@code bound} is not positive
523       */
524      public double nextDouble(double bound) {
525 <        if (bound <= 0.0)
526 <            throw new IllegalArgumentException("bound must be positive");
527 <        double result = nextDouble() * bound;
525 >        if (!(bound > 0.0))
526 >            throw new IllegalArgumentException(BAD_BOUND);
527 >        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
528          return (result < bound) ?  result : // correct for rounding
529              Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
530      }
531  
532      /**
533 <     * Returns a pseudorandom {@code double} value between the given
533 >     * Returns a pseudorandom {@code double} value between the specified
534       * origin (inclusive) and bound (exclusive).
535       *
536       * @param origin the least value returned
537 <     * @param bound the upper bound
537 >     * @param bound the upper bound (exclusive)
538       * @return a pseudorandom {@code double} value between the origin
539 <     *         (inclusive) and the bound (exclusive).
539 >     *         (inclusive) and the bound (exclusive)
540       * @throws IllegalArgumentException if {@code origin} is greater than
541       *         or equal to {@code bound}
542       */
543      public double nextDouble(double origin, double bound) {
544 <        if (origin >= bound)
545 <            throw new IllegalArgumentException("bound must be greater than origin");
544 >        if (!(origin < bound))
545 >            throw new IllegalArgumentException(BAD_RANGE);
546          return internalNextDouble(origin, bound);
547      }
548  
549 +    /**
550 +     * Returns a pseudorandom {@code boolean} value.
551 +     *
552 +     * @return a pseudorandom {@code boolean} value
553 +     */
554 +    public boolean nextBoolean() {
555 +        return mix32(nextSeed()) < 0;
556 +    }
557 +
558      // stream methods, coded in a way intended to better isolate for
559      // maintenance purposes the small differences across forms.
560  
561      /**
562 <     * Returns a stream with the given {@code streamSize} number of
563 <     * pseudorandom {@code int} values.
562 >     * Returns a stream producing the given {@code streamSize} number
563 >     * of pseudorandom {@code int} values from this generator and/or
564 >     * one split from it.
565       *
566       * @param streamSize the number of values to generate
567       * @return a stream of pseudorandom {@code int} values
568       * @throws IllegalArgumentException if {@code streamSize} is
569 <     * less than zero
569 >     *         less than zero
570       */
571      public IntStream ints(long streamSize) {
572          if (streamSize < 0L)
573 <            throw new IllegalArgumentException("negative Stream size");
573 >            throw new IllegalArgumentException(BAD_SIZE);
574          return StreamSupport.intStream
575              (new RandomIntsSpliterator
576               (this, 0L, streamSize, Integer.MAX_VALUE, 0),
# Line 603 | Line 579 | public class SplittableRandom {
579  
580      /**
581       * Returns an effectively unlimited stream of pseudorandom {@code int}
582 <     * values
582 >     * values from this generator and/or one split from it.
583       *
584       * @implNote This method is implemented to be equivalent to {@code
585       * ints(Long.MAX_VALUE)}.
# Line 618 | Line 594 | public class SplittableRandom {
594      }
595  
596      /**
597 <     * Returns a stream with the given {@code streamSize} number of
598 <     * pseudorandom {@code int} values, each conforming to the given
599 <     * origin and bound.
597 >     * Returns a stream producing the given {@code streamSize} number
598 >     * of pseudorandom {@code int} values from this generator and/or one split
599 >     * from it; each value conforms to the given origin (inclusive) and bound
600 >     * (exclusive).
601       *
602       * @param streamSize the number of values to generate
603 <     * @param randomNumberOrigin the origin of each random value
604 <     * @param randomNumberBound the bound of each random value
603 >     * @param randomNumberOrigin the origin (inclusive) of each random value
604 >     * @param randomNumberBound the bound (exclusive) of each random value
605       * @return a stream of pseudorandom {@code int} values,
606 <     * each with the given origin and bound.
606 >     *         each with the given origin (inclusive) and bound (exclusive)
607       * @throws IllegalArgumentException if {@code streamSize} is
608 <     * less than zero.
632 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
608 >     *         less than zero, or {@code randomNumberOrigin}
609       *         is greater than or equal to {@code randomNumberBound}
610       */
611      public IntStream ints(long streamSize, int randomNumberOrigin,
612                            int randomNumberBound) {
613          if (streamSize < 0L)
614 <            throw new IllegalArgumentException("negative Stream size");
614 >            throw new IllegalArgumentException(BAD_SIZE);
615          if (randomNumberOrigin >= randomNumberBound)
616 <            throw new IllegalArgumentException("bound must be greater than origin");
616 >            throw new IllegalArgumentException(BAD_RANGE);
617          return StreamSupport.intStream
618              (new RandomIntsSpliterator
619               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 646 | Line 622 | public class SplittableRandom {
622  
623      /**
624       * Returns an effectively unlimited stream of pseudorandom {@code
625 <     * int} values, each conforming to the given origin and bound.
625 >     * int} values from this generator and/or one split from it; each value
626 >     * conforms to the given origin (inclusive) and bound (exclusive).
627       *
628       * @implNote This method is implemented to be equivalent to {@code
629       * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
630       *
631 <     * @param randomNumberOrigin the origin of each random value
632 <     * @param randomNumberBound the bound of each random value
631 >     * @param randomNumberOrigin the origin (inclusive) of each random value
632 >     * @param randomNumberBound the bound (exclusive) of each random value
633       * @return a stream of pseudorandom {@code int} values,
634 <     * each with the given origin and bound.
634 >     *         each with the given origin (inclusive) and bound (exclusive)
635       * @throws IllegalArgumentException if {@code randomNumberOrigin}
636       *         is greater than or equal to {@code randomNumberBound}
637       */
638      public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
639          if (randomNumberOrigin >= randomNumberBound)
640 <            throw new IllegalArgumentException("bound must be greater than origin");
640 >            throw new IllegalArgumentException(BAD_RANGE);
641          return StreamSupport.intStream
642              (new RandomIntsSpliterator
643               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 668 | Line 645 | public class SplittableRandom {
645      }
646  
647      /**
648 <     * Returns a stream with the given {@code streamSize} number of
649 <     * pseudorandom {@code long} values.
648 >     * Returns a stream producing the given {@code streamSize} number
649 >     * of pseudorandom {@code long} values from this generator and/or
650 >     * one split from it.
651       *
652       * @param streamSize the number of values to generate
653 <     * @return a stream of {@code long} values
653 >     * @return a stream of pseudorandom {@code long} values
654       * @throws IllegalArgumentException if {@code streamSize} is
655 <     * less than zero
655 >     *         less than zero
656       */
657      public LongStream longs(long streamSize) {
658          if (streamSize < 0L)
659 <            throw new IllegalArgumentException("negative Stream size");
659 >            throw new IllegalArgumentException(BAD_SIZE);
660          return StreamSupport.longStream
661              (new RandomLongsSpliterator
662               (this, 0L, streamSize, Long.MAX_VALUE, 0L),
# Line 686 | Line 664 | public class SplittableRandom {
664      }
665  
666      /**
667 <     * Returns an effectively unlimited stream of pseudorandom {@code long}
668 <     * values.
667 >     * Returns an effectively unlimited stream of pseudorandom {@code
668 >     * long} values from this generator and/or one split from it.
669       *
670       * @implNote This method is implemented to be equivalent to {@code
671       * longs(Long.MAX_VALUE)}.
# Line 702 | Line 680 | public class SplittableRandom {
680      }
681  
682      /**
683 <     * Returns a stream with the given {@code streamSize} number of
684 <     * pseudorandom {@code long} values, each conforming to the
685 <     * given origin and bound.
683 >     * Returns a stream producing the given {@code streamSize} number of
684 >     * pseudorandom {@code long} values from this generator and/or one split
685 >     * from it; each value conforms to the given origin (inclusive) and bound
686 >     * (exclusive).
687       *
688       * @param streamSize the number of values to generate
689 <     * @param randomNumberOrigin the origin of each random value
690 <     * @param randomNumberBound the bound of each random value
689 >     * @param randomNumberOrigin the origin (inclusive) of each random value
690 >     * @param randomNumberBound the bound (exclusive) of each random value
691       * @return a stream of pseudorandom {@code long} values,
692 <     * each with the given origin and bound.
692 >     *         each with the given origin (inclusive) and bound (exclusive)
693       * @throws IllegalArgumentException if {@code streamSize} is
694 <     * less than zero.
716 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
694 >     *         less than zero, or {@code randomNumberOrigin}
695       *         is greater than or equal to {@code randomNumberBound}
696       */
697      public LongStream longs(long streamSize, long randomNumberOrigin,
698                              long randomNumberBound) {
699          if (streamSize < 0L)
700 <            throw new IllegalArgumentException("negative Stream size");
700 >            throw new IllegalArgumentException(BAD_SIZE);
701          if (randomNumberOrigin >= randomNumberBound)
702 <            throw new IllegalArgumentException("bound must be greater than origin");
702 >            throw new IllegalArgumentException(BAD_RANGE);
703          return StreamSupport.longStream
704              (new RandomLongsSpliterator
705               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 730 | Line 708 | public class SplittableRandom {
708  
709      /**
710       * Returns an effectively unlimited stream of pseudorandom {@code
711 <     * long} values, each conforming to the given origin and bound.
711 >     * long} values from this generator and/or one split from it; each value
712 >     * conforms to the given origin (inclusive) and bound (exclusive).
713       *
714       * @implNote This method is implemented to be equivalent to {@code
715       * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
716       *
717 <     * @param randomNumberOrigin the origin of each random value
718 <     * @param randomNumberBound the bound of each random value
717 >     * @param randomNumberOrigin the origin (inclusive) of each random value
718 >     * @param randomNumberBound the bound (exclusive) of each random value
719       * @return a stream of pseudorandom {@code long} values,
720 <     * each with the given origin and bound.
720 >     *         each with the given origin (inclusive) and bound (exclusive)
721       * @throws IllegalArgumentException if {@code randomNumberOrigin}
722       *         is greater than or equal to {@code randomNumberBound}
723       */
724      public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
725          if (randomNumberOrigin >= randomNumberBound)
726 <            throw new IllegalArgumentException("bound must be greater than origin");
726 >            throw new IllegalArgumentException(BAD_RANGE);
727          return StreamSupport.longStream
728              (new RandomLongsSpliterator
729               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 752 | Line 731 | public class SplittableRandom {
731      }
732  
733      /**
734 <     * Returns a stream with the given {@code streamSize} number of
735 <     * pseudorandom {@code double} values, each between {@code 0.0}
736 <     * (inclusive) and {@code 1.0} (exclusive).
734 >     * Returns a stream producing the given {@code streamSize} number of
735 >     * pseudorandom {@code double} values from this generator and/or one split
736 >     * from it; each value is between zero (inclusive) and one (exclusive).
737       *
738       * @param streamSize the number of values to generate
739       * @return a stream of {@code double} values
740       * @throws IllegalArgumentException if {@code streamSize} is
741 <     * less than zero
741 >     *         less than zero
742       */
743      public DoubleStream doubles(long streamSize) {
744          if (streamSize < 0L)
745 <            throw new IllegalArgumentException("negative Stream size");
745 >            throw new IllegalArgumentException(BAD_SIZE);
746          return StreamSupport.doubleStream
747              (new RandomDoublesSpliterator
748               (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
# Line 772 | Line 751 | public class SplittableRandom {
751  
752      /**
753       * Returns an effectively unlimited stream of pseudorandom {@code
754 <     * double} values, each between {@code 0.0} (inclusive) and {@code
755 <     * 1.0} (exclusive).
754 >     * double} values from this generator and/or one split from it; each value
755 >     * is between zero (inclusive) and one (exclusive).
756       *
757       * @implNote This method is implemented to be equivalent to {@code
758       * doubles(Long.MAX_VALUE)}.
# Line 788 | Line 767 | public class SplittableRandom {
767      }
768  
769      /**
770 <     * Returns a stream with the given {@code streamSize} number of
771 <     * pseudorandom {@code double} values, each conforming to the
772 <     * given origin and bound.
770 >     * Returns a stream producing the given {@code streamSize} number of
771 >     * pseudorandom {@code double} values from this generator and/or one split
772 >     * from it; each value conforms to the given origin (inclusive) and bound
773 >     * (exclusive).
774       *
775       * @param streamSize the number of values to generate
776 <     * @param randomNumberOrigin the origin of each random value
777 <     * @param randomNumberBound the bound of each random value
776 >     * @param randomNumberOrigin the origin (inclusive) of each random value
777 >     * @param randomNumberBound the bound (exclusive) of each random value
778       * @return a stream of pseudorandom {@code double} values,
779 <     * each with the given origin and bound.
779 >     *         each with the given origin (inclusive) and bound (exclusive)
780       * @throws IllegalArgumentException if {@code streamSize} is
781 <     * less than zero.
781 >     *         less than zero
782       * @throws IllegalArgumentException if {@code randomNumberOrigin}
783       *         is greater than or equal to {@code randomNumberBound}
784       */
785      public DoubleStream doubles(long streamSize, double randomNumberOrigin,
786                                  double randomNumberBound) {
787          if (streamSize < 0L)
788 <            throw new IllegalArgumentException("negative Stream size");
789 <        if (randomNumberOrigin >= randomNumberBound)
790 <            throw new IllegalArgumentException("bound must be greater than origin");
788 >            throw new IllegalArgumentException(BAD_SIZE);
789 >        if (!(randomNumberOrigin < randomNumberBound))
790 >            throw new IllegalArgumentException(BAD_RANGE);
791          return StreamSupport.doubleStream
792              (new RandomDoublesSpliterator
793               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 816 | Line 796 | public class SplittableRandom {
796  
797      /**
798       * Returns an effectively unlimited stream of pseudorandom {@code
799 <     * double} values, each conforming to the given origin and bound.
799 >     * double} values from this generator and/or one split from it; each value
800 >     * conforms to the given origin (inclusive) and bound (exclusive).
801       *
802       * @implNote This method is implemented to be equivalent to {@code
803       * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
804       *
805 <     * @param randomNumberOrigin the origin of each random value
806 <     * @param randomNumberBound the bound of each random value
805 >     * @param randomNumberOrigin the origin (inclusive) of each random value
806 >     * @param randomNumberBound the bound (exclusive) of each random value
807       * @return a stream of pseudorandom {@code double} values,
808 <     * each with the given origin and bound.
808 >     *         each with the given origin (inclusive) and bound (exclusive)
809       * @throws IllegalArgumentException if {@code randomNumberOrigin}
810       *         is greater than or equal to {@code randomNumberBound}
811       */
812      public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
813 <        if (randomNumberOrigin >= randomNumberBound)
814 <            throw new IllegalArgumentException("bound must be greater than origin");
813 >        if (!(randomNumberOrigin < randomNumberBound))
814 >            throw new IllegalArgumentException(BAD_RANGE);
815          return StreamSupport.doubleStream
816              (new RandomDoublesSpliterator
817               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 839 | Line 820 | public class SplittableRandom {
820  
821      /**
822       * Spliterator for int streams.  We multiplex the four int
823 <     * versions into one class by treating and bound < origin as
823 >     * versions into one class by treating a bound less than origin as
824       * unbounded, and also by treating "infinite" as equivalent to
825       * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
826       * approach. The long and double versions of this class are
827       * identical except for types.
828       */
829 <    static class RandomIntsSpliterator implements Spliterator.OfInt {
829 >    private static final class RandomIntsSpliterator
830 >            implements Spliterator.OfInt {
831          final SplittableRandom rng;
832          long index;
833          final long fence;
# Line 869 | Line 851 | public class SplittableRandom {
851  
852          public int characteristics() {
853              return (Spliterator.SIZED | Spliterator.SUBSIZED |
854 <                    Spliterator.ORDERED | Spliterator.NONNULL |
873 <                    Spliterator.IMMUTABLE);
854 >                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
855          }
856  
857          public boolean tryAdvance(IntConsumer consumer) {
# Line 889 | Line 870 | public class SplittableRandom {
870              long i = index, f = fence;
871              if (i < f) {
872                  index = f;
873 +                SplittableRandom r = rng;
874                  int o = origin, b = bound;
875                  do {
876 <                    consumer.accept(rng.internalNextInt(o, b));
876 >                    consumer.accept(r.internalNextInt(o, b));
877                  } while (++i < f);
878              }
879          }
# Line 900 | Line 882 | public class SplittableRandom {
882      /**
883       * Spliterator for long streams.
884       */
885 <    static class RandomLongsSpliterator implements Spliterator.OfLong {
885 >    private static final class RandomLongsSpliterator
886 >            implements Spliterator.OfLong {
887          final SplittableRandom rng;
888          long index;
889          final long fence;
# Line 924 | Line 907 | public class SplittableRandom {
907  
908          public int characteristics() {
909              return (Spliterator.SIZED | Spliterator.SUBSIZED |
910 <                    Spliterator.ORDERED | Spliterator.NONNULL |
928 <                    Spliterator.IMMUTABLE);
910 >                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
911          }
912  
913          public boolean tryAdvance(LongConsumer consumer) {
# Line 944 | Line 926 | public class SplittableRandom {
926              long i = index, f = fence;
927              if (i < f) {
928                  index = f;
929 +                SplittableRandom r = rng;
930                  long o = origin, b = bound;
931                  do {
932 <                    consumer.accept(rng.internalNextLong(o, b));
932 >                    consumer.accept(r.internalNextLong(o, b));
933                  } while (++i < f);
934              }
935          }
# Line 956 | Line 939 | public class SplittableRandom {
939      /**
940       * Spliterator for double streams.
941       */
942 <    static class RandomDoublesSpliterator implements Spliterator.OfDouble {
942 >    private static final class RandomDoublesSpliterator
943 >            implements Spliterator.OfDouble {
944          final SplittableRandom rng;
945          long index;
946          final long fence;
# Line 980 | Line 964 | public class SplittableRandom {
964  
965          public int characteristics() {
966              return (Spliterator.SIZED | Spliterator.SUBSIZED |
967 <                    Spliterator.ORDERED | Spliterator.NONNULL |
984 <                    Spliterator.IMMUTABLE);
967 >                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
968          }
969  
970          public boolean tryAdvance(DoubleConsumer consumer) {
# Line 1000 | Line 983 | public class SplittableRandom {
983              long i = index, f = fence;
984              if (i < f) {
985                  index = f;
986 +                SplittableRandom r = rng;
987                  double o = origin, b = bound;
988                  do {
989 <                    consumer.accept(rng.internalNextDouble(o, b));
989 >                    consumer.accept(r.internalNextDouble(o, b));
990                  } while (++i < f);
991              }
992          }
993      }
994  
995   }
1012

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines