ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
(Generate patch)

Comparing jsr166/src/main/java/util/SplittableRandom.java (file contents):
Revision 1.3 by jsr166, Thu Jul 11 03:31:26 2013 UTC vs.
Revision 1.39 by jsr166, Mon Feb 20 22:07:50 2017 UTC

# Line 26 | Line 26
26   package java.util;
27  
28   import java.util.concurrent.atomic.AtomicLong;
29 < import java.util.Spliterator;
29 > import java.util.function.DoubleConsumer;
30   import java.util.function.IntConsumer;
31   import java.util.function.LongConsumer;
32 < import java.util.function.DoubleConsumer;
33 < import java.util.stream.StreamSupport;
32 > import java.util.stream.DoubleStream;
33   import java.util.stream.IntStream;
34   import java.util.stream.LongStream;
35 < import java.util.stream.DoubleStream;
37 <
35 > import java.util.stream.StreamSupport;
36  
37   /**
38   * A generator of uniform pseudorandom values applicable for use in
39   * (among other contexts) isolated parallel computations that may
40 < * generate subtasks. Class SplittableRandom supports methods for
40 > * generate subtasks. Class {@code SplittableRandom} supports methods for
41   * producing pseudorandom numbers of type {@code int}, {@code long},
42   * and {@code double} with similar usages as for class
43 < * {@link java.util.Random} but differs in the following ways: <ul>
43 > * {@link java.util.Random} but differs in the following ways:
44 > *
45 > * <ul>
46   *
47   * <li>Series of generated values pass the DieHarder suite testing
48   * independence and uniformity properties of random number generators.
# Line 50 | Line 50 | import java.util.stream.DoubleStream;
50   * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51   * 3.31.1</a>.) These tests validate only the methods for certain
52   * types and ranges, but similar properties are expected to hold, at
53 < * least approximately, for others as well.  </li>
53 > * least approximately, for others as well. The <em>period</em>
54 > * (length of any series of generated values before it repeats) is at
55 > * least 2<sup>64</sup>.
56   *
57 < * <li> Method {@link #split} constructs and returns a new
57 > * <li>Method {@link #split} constructs and returns a new
58   * SplittableRandom instance that shares no mutable state with the
59 < * current instance. However, with very high probability, the set of
60 < * values collectively generated by the two objects has the same
59 > * current instance. However, with very high probability, the
60 > * values collectively generated by the two objects have the same
61   * statistical properties as if the same quantity of values were
62   * generated by a single thread using a single {@code
63 < * SplittableRandom} object.  </li>
63 > * SplittableRandom} object.
64   *
65   * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66   * They are designed to be split, not shared, across threads. For
# Line 69 | Line 71 | import java.util.stream.DoubleStream;
71   *
72   * <li>This class provides additional methods for generating random
73   * streams, that employ the above techniques when used in {@code
74 < * stream.parallel()} mode.</li>
74 > * stream.parallel()} mode.
75   *
76   * </ul>
77   *
78 + * <p>Instances of {@code SplittableRandom} are not cryptographically
79 + * secure.  Consider instead using {@link java.security.SecureRandom}
80 + * in security-sensitive applications. Additionally,
81 + * default-constructed instances do not use a cryptographically random
82 + * seed unless the {@linkplain System#getProperty system property}
83 + * {@code java.util.secureRandomSeed} is set to {@code true}.
84 + *
85   * @author  Guy Steele
86   * @author  Doug Lea
87   * @since   1.8
88   */
89 < public class SplittableRandom {
81 <
82 <    /*
83 <     * File organization: First the non-public methods that constitute
84 <     * the main algorithm, then the main public methods, followed by
85 <     * some custom spliterator classes needed for stream methods.
86 <     *
87 <     * Credits: Primary algorithm and code by Guy Steele.  Stream
88 <     * support methods by Doug Lea.  Documentation jointly produced
89 <     * with additional help from Brian Goetz.
90 <     */
89 > public final class SplittableRandom {
90  
91      /*
92       * Implementation Overview.
# Line 95 | Line 94 | public class SplittableRandom {
94       * This algorithm was inspired by the "DotMix" algorithm by
95       * Leiserson, Schardl, and Sukha "Deterministic Parallel
96       * Random-Number Generation for Dynamic-Multithreading Platforms",
97 <     * PPoPP 2012, but improves and extends it in several ways.
97 >     * PPoPP 2012, as well as those in "Parallel random numbers: as
98 >     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
99 >     * differs mainly in simplifying and cheapening operations.
100 >     *
101 >     * The primary update step (method nextSeed()) is to add a
102 >     * constant ("gamma") to the current (64 bit) seed, forming a
103 >     * simple sequence.  The seed and the gamma values for any two
104 >     * SplittableRandom instances are highly likely to be different.
105 >     *
106 >     * Methods nextLong, nextInt, and derivatives do not return the
107 >     * sequence (seed) values, but instead a hash-like bit-mix of
108 >     * their bits, producing more independently distributed sequences.
109 >     * For nextLong, the mix64 function is based on David Stafford's
110 >     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111 >     * "Mix13" variant of the "64-bit finalizer" function in Austin
112 >     * Appleby's MurmurHash3 algorithm (see
113 >     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114 >     * function is based on Stafford's Mix04 mix function, but returns
115 >     * the upper 32 bits cast as int.
116 >     *
117 >     * The split operation uses the current generator to form the seed
118 >     * and gamma for another SplittableRandom.  To conservatively
119 >     * avoid potential correlations between seed and value generation,
120 >     * gamma selection (method mixGamma) uses different
121 >     * (Murmurhash3's) mix constants.  To avoid potential weaknesses
122 >     * in bit-mixing transformations, we restrict gammas to odd values
123 >     * with at least 24 0-1 or 1-0 bit transitions.  Rather than
124 >     * rejecting candidates with too few or too many bits set, method
125 >     * mixGamma flips some bits (which has the effect of mapping at
126 >     * most 4 to any given gamma value).  This reduces the effective
127 >     * set of 64bit odd gamma values by about 2%, and serves as an
128 >     * automated screening for sequence constant selection that is
129 >     * left as an empirical decision in some other hashing and crypto
130 >     * algorithms.
131 >     *
132 >     * The resulting generator thus transforms a sequence in which
133 >     * (typically) many bits change on each step, with an inexpensive
134 >     * mixer with good (but less than cryptographically secure)
135 >     * avalanching.
136 >     *
137 >     * The default (no-argument) constructor, in essence, invokes
138 >     * split() for a common "defaultGen" SplittableRandom.  Unlike
139 >     * other cases, this split must be performed in a thread-safe
140 >     * manner, so we use an AtomicLong to represent the seed rather
141 >     * than use an explicit SplittableRandom. To bootstrap the
142 >     * defaultGen, we start off using a seed based on current time
143 >     * unless the java.util.secureRandomSeed property is set. This
144 >     * serves as a slimmed-down (and insecure) variant of SecureRandom
145 >     * that also avoids stalls that may occur when using /dev/random.
146 >     *
147 >     * It is a relatively simple matter to apply the basic design here
148 >     * to use 128 bit seeds. However, emulating 128bit arithmetic and
149 >     * carrying around twice the state add more overhead than appears
150 >     * warranted for current usages.
151       *
152 <     * The primary update step is simply to add a constant ("gamma")
153 <     * to the current seed, modulo a prime ("George"). However, the
154 <     * nextLong and nextInt methods do not return this value, but
155 <     * instead the results of bit-mixing transformations that produce
104 <     * more uniformly distributed sequences.
105 <     *
106 <     * "George" is the otherwise nameless (because it cannot be
107 <     * represented) prime number 2^64+13. Using a prime number larger
108 <     * than can fit in a long ensures that all possible long values
109 <     * can occur, plus 13 others that just get skipped over when they
110 <     * are encountered; see method addGammaModGeorge. For this to
111 <     * work, initial gamma values must be at least 13.
112 <     *
113 <     * The value of gamma differs for each instance across a series of
114 <     * splits, and is generated using a slightly stripped-down variant
115 <     * of the same algorithm, but operating across calls to split(),
116 <     * not calls to nextSeed(): Each instance carries the state of
117 <     * this generator as nextSplit, and uses mix64(nextSplit) as its
118 <     * own gamma value. Computations of gammas themselves use a fixed
119 <     * constant as the second argument to the addGammaModGeorge
120 <     * function, GAMMA_GAMMA, a "genuinely random" number from a
121 <     * radioactive decay reading (obtained from
122 <     * http://www.fourmilab.ch/hotbits/) meeting the above range
123 <     * constraint. Using a fixed constant maintains the invariant that
124 <     * the value of gamma is the same for every instance that is at
125 <     * the same split-distance from their common root. (Note: there is
126 <     * nothing especially magic about obtaining this constant from a
127 <     * "truly random" physical source rather than just choosing one
128 <     * arbitrarily; using "hotbits" was merely an aesthetically pleasing
129 <     * choice.  In either case, good statistical behavior of the
130 <     * algorithm should be, and was, verified by using the DieHarder
131 <     * test suite.)
132 <     *
133 <     * The mix64 bit-mixing function called by nextLong and other
134 <     * methods computes the same value as the "64-bit finalizer"
135 <     * function in Austin Appleby's MurmurHash3 algorithm.  See
136 <     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
137 <     * comments: "The constants for the finalizers were generated by a
138 <     * simple simulated-annealing algorithm, and both avalanche all
139 <     * bits of 'h' to within 0.25% bias." It also appears to work to
140 <     * use instead any of the variants proposed by David Stafford at
141 <     * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
142 <     * but these variants have not yet been tested as thoroughly
143 <     * in the context of the implementation of SplittableRandom.
144 <     *
145 <     * The mix32 function used for nextInt just consists of two of the
146 <     * five lines of mix64; avalanche testing shows that the 64-bit result
147 <     * has its top 32 bits avalanched well, though not the bottom 32 bits.
148 <     * DieHarder tests show that it is adequate for generating one
149 <     * random int from the 64-bit result of nextSeed.
150 <     *
151 <     * Support for the default (no-argument) constructor relies on an
152 <     * AtomicLong (defaultSeedGenerator) to help perform the
153 <     * equivalent of a split of a statically constructed
154 <     * SplittableRandom. Unlike other cases, this split must be
155 <     * performed in a thread-safe manner. We use
156 <     * AtomicLong.compareAndSet as the (typically) most efficient
157 <     * mechanism. To bootstrap, we start off using System.nanotime(),
158 <     * and update using another "genuinely random" constant
159 <     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
160 <     * not 0, for its splitSeed argument (addGammaModGeorge(0,
161 <     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
162 <     * this root generator, even though the root is not explicitly
163 <     * represented as a SplittableRandom.
164 <     */
165 <
166 <    /**
167 <     * The "genuinely random" value for producing new gamma values.
168 <     * The value is arbitrary, subject to the requirement that it be
169 <     * greater or equal to 13.
170 <     */
171 <    private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
172 <
173 <    /**
174 <     * The "genuinely random" seed update value for default constructors.
175 <     * The value is arbitrary, subject to the requirement that it be
176 <     * greater or equal to 13.
177 <     */
178 <    private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
152 >     * File organization: First the non-public methods that constitute
153 >     * the main algorithm, then the main public methods, followed by
154 >     * some custom spliterator classes needed for stream methods.
155 >     */
156  
157      /**
158 <     * The next seed for default constructors.
158 >     * The golden ratio scaled to 64bits, used as the initial gamma
159 >     * value for (unsplit) SplittableRandoms.
160       */
161 <    private static final AtomicLong defaultSeedGenerator =
184 <        new AtomicLong(System.nanoTime());
161 >    private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162  
163      /**
164 <     * The seed, updated only via method nextSeed.
164 >     * The least non-zero value returned by nextDouble(). This value
165 >     * is scaled by a random value of 53 bits to produce a result.
166       */
167 <    private long seed;
167 >    private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168  
169      /**
170 <     * The constant value added to seed (mod George) on each update.
170 >     * The seed. Updated only via method nextSeed.
171       */
172 <    private final long gamma;
172 >    private long seed;
173  
174      /**
175 <     * The next seed to use for splits. Propagated using
198 <     * addGammaModGeorge across instances.
175 >     * The step value.
176       */
177 <    private final long nextSplit;
177 >    private final long gamma;
178  
179      /**
180 <     * Internal constructor used by all other constructors and by
204 <     * method split. Establishes the initial seed for this instance,
205 <     * and uses the given splitSeed to establish gamma, as well as the
206 <     * nextSplit to use by this instance.
180 >     * Internal constructor used by all others except default constructor.
181       */
182 <    private SplittableRandom(long seed, long splitSeed) {
182 >    private SplittableRandom(long seed, long gamma) {
183          this.seed = seed;
184 <        long s = splitSeed, g;
211 <        do { // ensure gamma >= 13, considered as an unsigned integer
212 <            s = addGammaModGeorge(s, GAMMA_GAMMA);
213 <            g = mix64(s);
214 <        } while (Long.compareUnsigned(g, 13L) < 0);
215 <        this.gamma = g;
216 <        this.nextSplit = s;
184 >        this.gamma = gamma;
185      }
186  
187      /**
188 <     * Adds the given gamma value, g, to the given seed value s, mod
189 <     * George (2^64+13). We regard s and g as unsigned values
190 <     * (ranging from 0 to 2^64-1). We add g to s either once or twice
191 <     * (mod George) as necessary to produce an (unsigned) result less
192 <     * than 2^64.  We require that g must be at least 13. This
193 <     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
226 <     * George < 2^64; thus we need only a conditional, not a loop,
227 <     * to be sure of getting a representable value.
228 <     *
229 <     * @param s a seed value
230 <     * @param g a gamma value, 13 <= g (as unsigned)
231 <     */
232 <    private static long addGammaModGeorge(long s, long g) {
233 <        long p = s + g;
234 <        if (Long.compareUnsigned(p, g) >= 0)
235 <            return p;
236 <        long q = p - 13L;
237 <        return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
188 >     * Computes Stafford variant 13 of 64bit mix function.
189 >     */
190 >    private static long mix64(long z) {
191 >        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192 >        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193 >        return z ^ (z >>> 31);
194      }
195  
196      /**
197 <     * Updates in-place and returns seed.
242 <     * See above for explanation.
197 >     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198       */
199 <    private long nextSeed() {
200 <        return seed = addGammaModGeorge(seed, gamma);
199 >    private static int mix32(long z) {
200 >        z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201 >        return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202      }
203  
204      /**
205 <     * Returns a bit-mixed transformation of its argument.
250 <     * See above for explanation.
205 >     * Returns the gamma value to use for a new split instance.
206       */
207 <    private static long mix64(long z) {
208 <        z ^= (z >>> 33);
209 <        z *= 0xff51afd7ed558ccdL;
210 <        z ^= (z >>> 33);
211 <        z *= 0xc4ceb9fe1a85ec53L;
212 <        z ^= (z >>> 33);
258 <        return z;
207 >    private static long mixGamma(long z) {
208 >        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209 >        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210 >        z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
211 >        int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
212 >        return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213      }
214  
215      /**
216 <     * Returns a bit-mixed int transformation of its argument.
263 <     * See above for explanation.
216 >     * Adds gamma to seed.
217       */
218 <    private static int mix32(long z) {
219 <        z ^= (z >>> 33);
267 <        z *= 0xc4ceb9fe1a85ec53L;
268 <        return (int)(z >>> 32);
218 >    private long nextSeed() {
219 >        return seed += gamma;
220      }
221  
222 <    /**
223 <     * Atomically updates and returns next seed for default constructor
224 <     */
225 <    private static long nextDefaultSeed() {
226 <        long oldSeed, newSeed;
227 <        do {
228 <            oldSeed = defaultSeedGenerator.get();
229 <            newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
230 <        } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
231 <        return mix64(newSeed);
222 >    // IllegalArgumentException messages
223 >    static final String BAD_BOUND = "bound must be positive";
224 >    static final String BAD_RANGE = "bound must be greater than origin";
225 >    static final String BAD_SIZE  = "size must be non-negative";
226 >
227 >    /**
228 >     * The seed generator for default constructors.
229 >     */
230 >    private static final AtomicLong defaultGen
231 >        = new AtomicLong(mix64(System.currentTimeMillis()) ^
232 >                         mix64(System.nanoTime()));
233 >
234 >    // at end of <clinit> to survive static initialization circularity
235 >    static {
236 >        if (java.security.AccessController.doPrivileged(
237 >            new java.security.PrivilegedAction<Boolean>() {
238 >                public Boolean run() {
239 >                    return Boolean.getBoolean("java.util.secureRandomSeed");
240 >                }})) {
241 >            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
242 >            long s = (long)seedBytes[0] & 0xffL;
243 >            for (int i = 1; i < 8; ++i)
244 >                s = (s << 8) | ((long)seedBytes[i] & 0xffL);
245 >            defaultGen.set(s);
246 >        }
247      }
248  
249      /*
# Line 311 | Line 277 | public class SplittableRandom {
277           * evenly divisible by the range. The loop rejects candidates
278           * computed from otherwise over-represented values.  The
279           * expected number of iterations under an ideal generator
280 <         * varies from 1 to 2, depending on the bound.
280 >         * varies from 1 to 2, depending on the bound. The loop itself
281 >         * takes an unlovable form. Because the first candidate is
282 >         * already available, we need a break-in-the-middle
283 >         * construction, which is concisely but cryptically performed
284 >         * within the while-condition of a body-less for loop.
285           *
286           * 4. Otherwise, the range cannot be represented as a positive
287 <         * long.  Repeatedly generate unbounded longs until obtaining
288 <         * a candidate meeting constraints (with an expected number of
289 <         * iterations of less than two).
287 >         * long.  The loop repeatedly generates unbounded longs until
288 >         * obtaining a candidate meeting constraints (with an expected
289 >         * number of iterations of less than two).
290           */
291  
292          long r = mix64(nextSeed());
293          if (origin < bound) {
294              long n = bound - origin, m = n - 1;
295 <            if ((n & m) == 0L) // power of two
295 >            if ((n & m) == 0L)  // power of two
296                  r = (r & m) + origin;
297 <            else if (n > 0) { // reject over-represented candidates
297 >            else if (n > 0L) {  // reject over-represented candidates
298                  for (long u = r >>> 1;            // ensure nonnegative
299 <                     u + m - (r = u % n) < 0L;    // reject
299 >                     u + m - (r = u % n) < 0L;    // rejection check
300                       u = mix64(nextSeed()) >>> 1) // retry
301                      ;
302                  r += origin;
303              }
304 <            else {             // range not representable as long
304 >            else {              // range not representable as long
305                  while (r < origin || r >= bound)
306                      r = mix64(nextSeed());
307              }
# Line 351 | Line 321 | public class SplittableRandom {
321          int r = mix32(nextSeed());
322          if (origin < bound) {
323              int n = bound - origin, m = n - 1;
324 <            if ((n & m) == 0L)
324 >            if ((n & m) == 0)
325                  r = (r & m) + origin;
326              else if (n > 0) {
327                  for (int u = r >>> 1;
328 <                     u + m - (r = u % n) < 0L;
328 >                     u + m - (r = u % n) < 0;
329                       u = mix32(nextSeed()) >>> 1)
330                      ;
331                  r += origin;
# Line 376 | Line 346 | public class SplittableRandom {
346       * @return a pseudorandom value
347       */
348      final double internalNextDouble(double origin, double bound) {
349 <        long bits = (1023L << 52) | (nextLong() >>> 12);
380 <        double r = Double.longBitsToDouble(bits) - 1.0;
349 >        double r = (nextLong() >>> 11) * DOUBLE_UNIT;
350          if (origin < bound) {
351              r = r * (bound - origin) + origin;
352 <            if (r == bound) // correct for rounding
352 >            if (r >= bound) // correct for rounding
353                  r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
354          }
355          return r;
# Line 389 | Line 358 | public class SplittableRandom {
358      /* ---------------- public methods ---------------- */
359  
360      /**
361 <     * Creates a new SplittableRandom instance using the given initial
362 <     * seed. Two SplittableRandom instances created with the same seed
363 <     * generate identical sequences of values.
361 >     * Creates a new SplittableRandom instance using the specified
362 >     * initial seed. SplittableRandom instances created with the same
363 >     * seed in the same program generate identical sequences of values.
364       *
365       * @param seed the initial seed
366       */
367      public SplittableRandom(long seed) {
368 <        this(seed, 0);
368 >        this(seed, GOLDEN_GAMMA);
369      }
370  
371      /**
# Line 405 | Line 374 | public class SplittableRandom {
374       * of those of any other instances in the current program; and
375       * may, and typically does, vary across program invocations.
376       */
377 <    public SplittableRandom() {
378 <        this(nextDefaultSeed(), GAMMA_GAMMA);
377 >    public SplittableRandom() { // emulate defaultGen.split()
378 >        long s = defaultGen.getAndAdd(GOLDEN_GAMMA << 1);
379 >        this.seed = mix64(s);
380 >        this.gamma = mixGamma(s + GOLDEN_GAMMA);
381      }
382  
383      /**
# Line 424 | Line 395 | public class SplittableRandom {
395       * @return the new SplittableRandom instance
396       */
397      public SplittableRandom split() {
398 <        return new SplittableRandom(nextSeed(), nextSplit);
398 >        return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
399      }
400  
401      /**
402       * Returns a pseudorandom {@code int} value.
403       *
404 <     * @return a pseudorandom value
404 >     * @return a pseudorandom {@code int} value
405       */
406      public int nextInt() {
407          return mix32(nextSeed());
408      }
409  
410      /**
411 <     * Returns a pseudorandom {@code int} value between 0 (inclusive)
411 >     * Returns a pseudorandom {@code int} value between zero (inclusive)
412       * and the specified bound (exclusive).
413       *
414 <     * @param bound the bound on the random number to be returned.  Must be
415 <     *        positive.
416 <     * @return a pseudorandom {@code int} value between {@code 0}
417 <     *         (inclusive) and the bound (exclusive).
447 <     * @exception IllegalArgumentException if the bound is not positive
414 >     * @param bound the upper bound (exclusive).  Must be positive.
415 >     * @return a pseudorandom {@code int} value between zero
416 >     *         (inclusive) and the bound (exclusive)
417 >     * @throws IllegalArgumentException if {@code bound} is not positive
418       */
419      public int nextInt(int bound) {
420          if (bound <= 0)
421 <            throw new IllegalArgumentException("bound must be positive");
421 >            throw new IllegalArgumentException(BAD_BOUND);
422          // Specialize internalNextInt for origin 0
423          int r = mix32(nextSeed());
424          int m = bound - 1;
425 <        if ((bound & m) == 0L) // power of two
425 >        if ((bound & m) == 0) // power of two
426              r &= m;
427          else { // reject over-represented candidates
428              for (int u = r >>> 1;
429 <                 u + m - (r = u % bound) < 0L;
429 >                 u + m - (r = u % bound) < 0;
430                   u = mix32(nextSeed()) >>> 1)
431                  ;
432          }
# Line 470 | Line 440 | public class SplittableRandom {
440       * @param origin the least value returned
441       * @param bound the upper bound (exclusive)
442       * @return a pseudorandom {@code int} value between the origin
443 <     *         (inclusive) and the bound (exclusive).
444 <     * @exception IllegalArgumentException if {@code origin} is greater than
443 >     *         (inclusive) and the bound (exclusive)
444 >     * @throws IllegalArgumentException if {@code origin} is greater than
445       *         or equal to {@code bound}
446       */
447      public int nextInt(int origin, int bound) {
448          if (origin >= bound)
449 <            throw new IllegalArgumentException("bound must be greater than origin");
449 >            throw new IllegalArgumentException(BAD_RANGE);
450          return internalNextInt(origin, bound);
451      }
452  
453      /**
454       * Returns a pseudorandom {@code long} value.
455       *
456 <     * @return a pseudorandom value
456 >     * @return a pseudorandom {@code long} value
457       */
458      public long nextLong() {
459          return mix64(nextSeed());
460      }
461  
462      /**
463 <     * Returns a pseudorandom {@code long} value between 0 (inclusive)
463 >     * Returns a pseudorandom {@code long} value between zero (inclusive)
464       * and the specified bound (exclusive).
465       *
466 <     * @param bound the bound on the random number to be returned.  Must be
467 <     *        positive.
468 <     * @return a pseudorandom {@code long} value between {@code 0}
469 <     *         (inclusive) and the bound (exclusive).
500 <     * @exception IllegalArgumentException if the bound is not positive
466 >     * @param bound the upper bound (exclusive).  Must be positive.
467 >     * @return a pseudorandom {@code long} value between zero
468 >     *         (inclusive) and the bound (exclusive)
469 >     * @throws IllegalArgumentException if {@code bound} is not positive
470       */
471      public long nextLong(long bound) {
472          if (bound <= 0)
473 <            throw new IllegalArgumentException("bound must be positive");
473 >            throw new IllegalArgumentException(BAD_BOUND);
474          // Specialize internalNextLong for origin 0
475          long r = mix64(nextSeed());
476          long m = bound - 1;
# Line 523 | Line 492 | public class SplittableRandom {
492       * @param origin the least value returned
493       * @param bound the upper bound (exclusive)
494       * @return a pseudorandom {@code long} value between the origin
495 <     *         (inclusive) and the bound (exclusive).
496 <     * @exception IllegalArgumentException if {@code origin} is greater than
495 >     *         (inclusive) and the bound (exclusive)
496 >     * @throws IllegalArgumentException if {@code origin} is greater than
497       *         or equal to {@code bound}
498       */
499      public long nextLong(long origin, long bound) {
500          if (origin >= bound)
501 <            throw new IllegalArgumentException("bound must be greater than origin");
501 >            throw new IllegalArgumentException(BAD_RANGE);
502          return internalNextLong(origin, bound);
503      }
504  
505      /**
506 <     * Returns a pseudorandom {@code double} value between {@code 0.0}
507 <     * (inclusive) and {@code 1.0} (exclusive).
506 >     * Returns a pseudorandom {@code double} value between zero
507 >     * (inclusive) and one (exclusive).
508       *
509 <     * @return a pseudorandom value between {@code 0.0}
510 <     * (inclusive) and {@code 1.0} (exclusive)
509 >     * @return a pseudorandom {@code double} value between zero
510 >     *         (inclusive) and one (exclusive)
511       */
512      public double nextDouble() {
513 <        long bits = (1023L << 52) | (nextLong() >>> 12);
545 <        return Double.longBitsToDouble(bits) - 1.0;
513 >        return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
514      }
515  
516      /**
517       * Returns a pseudorandom {@code double} value between 0.0
518       * (inclusive) and the specified bound (exclusive).
519       *
520 <     * @param bound the bound on the random number to be returned.  Must be
521 <     *        positive.
522 <     * @return a pseudorandom {@code double} value between {@code 0.0}
555 <     *         (inclusive) and the bound (exclusive).
520 >     * @param bound the upper bound (exclusive).  Must be positive.
521 >     * @return a pseudorandom {@code double} value between zero
522 >     *         (inclusive) and the bound (exclusive)
523       * @throws IllegalArgumentException if {@code bound} is not positive
524       */
525      public double nextDouble(double bound) {
526 <        if (bound <= 0.0)
527 <            throw new IllegalArgumentException("bound must be positive");
528 <        double result = nextDouble() * bound;
526 >        if (!(bound > 0.0))
527 >            throw new IllegalArgumentException(BAD_BOUND);
528 >        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
529          return (result < bound) ?  result : // correct for rounding
530              Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
531      }
532  
533      /**
534 <     * Returns a pseudorandom {@code double} value between the given
534 >     * Returns a pseudorandom {@code double} value between the specified
535       * origin (inclusive) and bound (exclusive).
536       *
537       * @param origin the least value returned
538 <     * @param bound the upper bound
538 >     * @param bound the upper bound (exclusive)
539       * @return a pseudorandom {@code double} value between the origin
540 <     *         (inclusive) and the bound (exclusive).
540 >     *         (inclusive) and the bound (exclusive)
541       * @throws IllegalArgumentException if {@code origin} is greater than
542       *         or equal to {@code bound}
543       */
544      public double nextDouble(double origin, double bound) {
545 <        if (origin >= bound)
546 <            throw new IllegalArgumentException("bound must be greater than origin");
545 >        if (!(origin < bound))
546 >            throw new IllegalArgumentException(BAD_RANGE);
547          return internalNextDouble(origin, bound);
548      }
549  
550 +    /**
551 +     * Returns a pseudorandom {@code boolean} value.
552 +     *
553 +     * @return a pseudorandom {@code boolean} value
554 +     */
555 +    public boolean nextBoolean() {
556 +        return mix32(nextSeed()) < 0;
557 +    }
558 +
559      // stream methods, coded in a way intended to better isolate for
560      // maintenance purposes the small differences across forms.
561  
562      /**
563 <     * Returns a stream with the given {@code streamSize} number of
564 <     * pseudorandom {@code int} values.
563 >     * Returns a stream producing the given {@code streamSize} number
564 >     * of pseudorandom {@code int} values from this generator and/or
565 >     * one split from it.
566       *
567       * @param streamSize the number of values to generate
568       * @return a stream of pseudorandom {@code int} values
569       * @throws IllegalArgumentException if {@code streamSize} is
570 <     * less than zero
570 >     *         less than zero
571       */
572      public IntStream ints(long streamSize) {
573          if (streamSize < 0L)
574 <            throw new IllegalArgumentException("negative Stream size");
574 >            throw new IllegalArgumentException(BAD_SIZE);
575          return StreamSupport.intStream
576              (new RandomIntsSpliterator
577               (this, 0L, streamSize, Integer.MAX_VALUE, 0),
# Line 603 | Line 580 | public class SplittableRandom {
580  
581      /**
582       * Returns an effectively unlimited stream of pseudorandom {@code int}
583 <     * values
583 >     * values from this generator and/or one split from it.
584       *
585       * @implNote This method is implemented to be equivalent to {@code
586       * ints(Long.MAX_VALUE)}.
# Line 618 | Line 595 | public class SplittableRandom {
595      }
596  
597      /**
598 <     * Returns a stream with the given {@code streamSize} number of
599 <     * pseudorandom {@code int} values, each conforming to the given
600 <     * origin and bound.
598 >     * Returns a stream producing the given {@code streamSize} number
599 >     * of pseudorandom {@code int} values from this generator and/or one split
600 >     * from it; each value conforms to the given origin (inclusive) and bound
601 >     * (exclusive).
602       *
603       * @param streamSize the number of values to generate
604 <     * @param randomNumberOrigin the origin of each random value
605 <     * @param randomNumberBound the bound of each random value
604 >     * @param randomNumberOrigin the origin (inclusive) of each random value
605 >     * @param randomNumberBound the bound (exclusive) of each random value
606       * @return a stream of pseudorandom {@code int} values,
607 <     * each with the given origin and bound.
607 >     *         each with the given origin (inclusive) and bound (exclusive)
608       * @throws IllegalArgumentException if {@code streamSize} is
609 <     * less than zero.
632 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
609 >     *         less than zero, or {@code randomNumberOrigin}
610       *         is greater than or equal to {@code randomNumberBound}
611       */
612      public IntStream ints(long streamSize, int randomNumberOrigin,
613                            int randomNumberBound) {
614          if (streamSize < 0L)
615 <            throw new IllegalArgumentException("negative Stream size");
615 >            throw new IllegalArgumentException(BAD_SIZE);
616          if (randomNumberOrigin >= randomNumberBound)
617 <            throw new IllegalArgumentException("bound must be greater than origin");
617 >            throw new IllegalArgumentException(BAD_RANGE);
618          return StreamSupport.intStream
619              (new RandomIntsSpliterator
620               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 646 | Line 623 | public class SplittableRandom {
623  
624      /**
625       * Returns an effectively unlimited stream of pseudorandom {@code
626 <     * int} values, each conforming to the given origin and bound.
626 >     * int} values from this generator and/or one split from it; each value
627 >     * conforms to the given origin (inclusive) and bound (exclusive).
628       *
629       * @implNote This method is implemented to be equivalent to {@code
630       * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
631       *
632 <     * @param randomNumberOrigin the origin of each random value
633 <     * @param randomNumberBound the bound of each random value
632 >     * @param randomNumberOrigin the origin (inclusive) of each random value
633 >     * @param randomNumberBound the bound (exclusive) of each random value
634       * @return a stream of pseudorandom {@code int} values,
635 <     * each with the given origin and bound.
635 >     *         each with the given origin (inclusive) and bound (exclusive)
636       * @throws IllegalArgumentException if {@code randomNumberOrigin}
637       *         is greater than or equal to {@code randomNumberBound}
638       */
639      public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
640          if (randomNumberOrigin >= randomNumberBound)
641 <            throw new IllegalArgumentException("bound must be greater than origin");
641 >            throw new IllegalArgumentException(BAD_RANGE);
642          return StreamSupport.intStream
643              (new RandomIntsSpliterator
644               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 668 | Line 646 | public class SplittableRandom {
646      }
647  
648      /**
649 <     * Returns a stream with the given {@code streamSize} number of
650 <     * pseudorandom {@code long} values.
649 >     * Returns a stream producing the given {@code streamSize} number
650 >     * of pseudorandom {@code long} values from this generator and/or
651 >     * one split from it.
652       *
653       * @param streamSize the number of values to generate
654 <     * @return a stream of {@code long} values
654 >     * @return a stream of pseudorandom {@code long} values
655       * @throws IllegalArgumentException if {@code streamSize} is
656 <     * less than zero
656 >     *         less than zero
657       */
658      public LongStream longs(long streamSize) {
659          if (streamSize < 0L)
660 <            throw new IllegalArgumentException("negative Stream size");
660 >            throw new IllegalArgumentException(BAD_SIZE);
661          return StreamSupport.longStream
662              (new RandomLongsSpliterator
663               (this, 0L, streamSize, Long.MAX_VALUE, 0L),
# Line 686 | Line 665 | public class SplittableRandom {
665      }
666  
667      /**
668 <     * Returns an effectively unlimited stream of pseudorandom {@code long}
669 <     * values.
668 >     * Returns an effectively unlimited stream of pseudorandom {@code
669 >     * long} values from this generator and/or one split from it.
670       *
671       * @implNote This method is implemented to be equivalent to {@code
672       * longs(Long.MAX_VALUE)}.
# Line 702 | Line 681 | public class SplittableRandom {
681      }
682  
683      /**
684 <     * Returns a stream with the given {@code streamSize} number of
685 <     * pseudorandom {@code long} values, each conforming to the
686 <     * given origin and bound.
684 >     * Returns a stream producing the given {@code streamSize} number of
685 >     * pseudorandom {@code long} values from this generator and/or one split
686 >     * from it; each value conforms to the given origin (inclusive) and bound
687 >     * (exclusive).
688       *
689       * @param streamSize the number of values to generate
690 <     * @param randomNumberOrigin the origin of each random value
691 <     * @param randomNumberBound the bound of each random value
690 >     * @param randomNumberOrigin the origin (inclusive) of each random value
691 >     * @param randomNumberBound the bound (exclusive) of each random value
692       * @return a stream of pseudorandom {@code long} values,
693 <     * each with the given origin and bound.
693 >     *         each with the given origin (inclusive) and bound (exclusive)
694       * @throws IllegalArgumentException if {@code streamSize} is
695 <     * less than zero.
716 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
695 >     *         less than zero, or {@code randomNumberOrigin}
696       *         is greater than or equal to {@code randomNumberBound}
697       */
698      public LongStream longs(long streamSize, long randomNumberOrigin,
699                              long randomNumberBound) {
700          if (streamSize < 0L)
701 <            throw new IllegalArgumentException("negative Stream size");
701 >            throw new IllegalArgumentException(BAD_SIZE);
702          if (randomNumberOrigin >= randomNumberBound)
703 <            throw new IllegalArgumentException("bound must be greater than origin");
703 >            throw new IllegalArgumentException(BAD_RANGE);
704          return StreamSupport.longStream
705              (new RandomLongsSpliterator
706               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 730 | Line 709 | public class SplittableRandom {
709  
710      /**
711       * Returns an effectively unlimited stream of pseudorandom {@code
712 <     * long} values, each conforming to the given origin and bound.
712 >     * long} values from this generator and/or one split from it; each value
713 >     * conforms to the given origin (inclusive) and bound (exclusive).
714       *
715       * @implNote This method is implemented to be equivalent to {@code
716       * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
717       *
718 <     * @param randomNumberOrigin the origin of each random value
719 <     * @param randomNumberBound the bound of each random value
718 >     * @param randomNumberOrigin the origin (inclusive) of each random value
719 >     * @param randomNumberBound the bound (exclusive) of each random value
720       * @return a stream of pseudorandom {@code long} values,
721 <     * each with the given origin and bound.
721 >     *         each with the given origin (inclusive) and bound (exclusive)
722       * @throws IllegalArgumentException if {@code randomNumberOrigin}
723       *         is greater than or equal to {@code randomNumberBound}
724       */
725      public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
726          if (randomNumberOrigin >= randomNumberBound)
727 <            throw new IllegalArgumentException("bound must be greater than origin");
727 >            throw new IllegalArgumentException(BAD_RANGE);
728          return StreamSupport.longStream
729              (new RandomLongsSpliterator
730               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 752 | Line 732 | public class SplittableRandom {
732      }
733  
734      /**
735 <     * Returns a stream with the given {@code streamSize} number of
736 <     * pseudorandom {@code double} values, each between {@code 0.0}
737 <     * (inclusive) and {@code 1.0} (exclusive).
735 >     * Returns a stream producing the given {@code streamSize} number of
736 >     * pseudorandom {@code double} values from this generator and/or one split
737 >     * from it; each value is between zero (inclusive) and one (exclusive).
738       *
739       * @param streamSize the number of values to generate
740       * @return a stream of {@code double} values
741       * @throws IllegalArgumentException if {@code streamSize} is
742 <     * less than zero
742 >     *         less than zero
743       */
744      public DoubleStream doubles(long streamSize) {
745          if (streamSize < 0L)
746 <            throw new IllegalArgumentException("negative Stream size");
746 >            throw new IllegalArgumentException(BAD_SIZE);
747          return StreamSupport.doubleStream
748              (new RandomDoublesSpliterator
749               (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
# Line 772 | Line 752 | public class SplittableRandom {
752  
753      /**
754       * Returns an effectively unlimited stream of pseudorandom {@code
755 <     * double} values, each between {@code 0.0} (inclusive) and {@code
756 <     * 1.0} (exclusive).
755 >     * double} values from this generator and/or one split from it; each value
756 >     * is between zero (inclusive) and one (exclusive).
757       *
758       * @implNote This method is implemented to be equivalent to {@code
759       * doubles(Long.MAX_VALUE)}.
# Line 788 | Line 768 | public class SplittableRandom {
768      }
769  
770      /**
771 <     * Returns a stream with the given {@code streamSize} number of
772 <     * pseudorandom {@code double} values, each conforming to the
773 <     * given origin and bound.
771 >     * Returns a stream producing the given {@code streamSize} number of
772 >     * pseudorandom {@code double} values from this generator and/or one split
773 >     * from it; each value conforms to the given origin (inclusive) and bound
774 >     * (exclusive).
775       *
776       * @param streamSize the number of values to generate
777 <     * @param randomNumberOrigin the origin of each random value
778 <     * @param randomNumberBound the bound of each random value
777 >     * @param randomNumberOrigin the origin (inclusive) of each random value
778 >     * @param randomNumberBound the bound (exclusive) of each random value
779       * @return a stream of pseudorandom {@code double} values,
780 <     * each with the given origin and bound.
780 >     *         each with the given origin (inclusive) and bound (exclusive)
781       * @throws IllegalArgumentException if {@code streamSize} is
782 <     * less than zero.
802 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
782 >     *         less than zero, or {@code randomNumberOrigin}
783       *         is greater than or equal to {@code randomNumberBound}
784       */
785      public DoubleStream doubles(long streamSize, double randomNumberOrigin,
786                                  double randomNumberBound) {
787          if (streamSize < 0L)
788 <            throw new IllegalArgumentException("negative Stream size");
789 <        if (randomNumberOrigin >= randomNumberBound)
790 <            throw new IllegalArgumentException("bound must be greater than origin");
788 >            throw new IllegalArgumentException(BAD_SIZE);
789 >        if (!(randomNumberOrigin < randomNumberBound))
790 >            throw new IllegalArgumentException(BAD_RANGE);
791          return StreamSupport.doubleStream
792              (new RandomDoublesSpliterator
793               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 816 | Line 796 | public class SplittableRandom {
796  
797      /**
798       * Returns an effectively unlimited stream of pseudorandom {@code
799 <     * double} values, each conforming to the given origin and bound.
799 >     * double} values from this generator and/or one split from it; each value
800 >     * conforms to the given origin (inclusive) and bound (exclusive).
801       *
802       * @implNote This method is implemented to be equivalent to {@code
803       * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
804       *
805 <     * @param randomNumberOrigin the origin of each random value
806 <     * @param randomNumberBound the bound of each random value
805 >     * @param randomNumberOrigin the origin (inclusive) of each random value
806 >     * @param randomNumberBound the bound (exclusive) of each random value
807       * @return a stream of pseudorandom {@code double} values,
808 <     * each with the given origin and bound.
808 >     *         each with the given origin (inclusive) and bound (exclusive)
809       * @throws IllegalArgumentException if {@code randomNumberOrigin}
810       *         is greater than or equal to {@code randomNumberBound}
811       */
812      public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
813 <        if (randomNumberOrigin >= randomNumberBound)
814 <            throw new IllegalArgumentException("bound must be greater than origin");
813 >        if (!(randomNumberOrigin < randomNumberBound))
814 >            throw new IllegalArgumentException(BAD_RANGE);
815          return StreamSupport.doubleStream
816              (new RandomDoublesSpliterator
817               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 839 | Line 820 | public class SplittableRandom {
820  
821      /**
822       * Spliterator for int streams.  We multiplex the four int
823 <     * versions into one class by treating and bound < origin as
823 >     * versions into one class by treating a bound less than origin as
824       * unbounded, and also by treating "infinite" as equivalent to
825       * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
826       * approach. The long and double versions of this class are
827       * identical except for types.
828       */
829 <    static class RandomIntsSpliterator implements Spliterator.OfInt {
829 >    private static final class RandomIntsSpliterator
830 >            implements Spliterator.OfInt {
831          final SplittableRandom rng;
832          long index;
833          final long fence;
# Line 869 | Line 851 | public class SplittableRandom {
851  
852          public int characteristics() {
853              return (Spliterator.SIZED | Spliterator.SUBSIZED |
854 <                    Spliterator.ORDERED | Spliterator.NONNULL |
873 <                    Spliterator.IMMUTABLE);
854 >                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
855          }
856  
857          public boolean tryAdvance(IntConsumer consumer) {
# Line 889 | Line 870 | public class SplittableRandom {
870              long i = index, f = fence;
871              if (i < f) {
872                  index = f;
873 +                SplittableRandom r = rng;
874                  int o = origin, b = bound;
875                  do {
876 <                    consumer.accept(rng.internalNextInt(o, b));
876 >                    consumer.accept(r.internalNextInt(o, b));
877                  } while (++i < f);
878              }
879          }
# Line 900 | Line 882 | public class SplittableRandom {
882      /**
883       * Spliterator for long streams.
884       */
885 <    static class RandomLongsSpliterator implements Spliterator.OfLong {
885 >    private static final class RandomLongsSpliterator
886 >            implements Spliterator.OfLong {
887          final SplittableRandom rng;
888          long index;
889          final long fence;
# Line 924 | Line 907 | public class SplittableRandom {
907  
908          public int characteristics() {
909              return (Spliterator.SIZED | Spliterator.SUBSIZED |
910 <                    Spliterator.ORDERED | Spliterator.NONNULL |
928 <                    Spliterator.IMMUTABLE);
910 >                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
911          }
912  
913          public boolean tryAdvance(LongConsumer consumer) {
# Line 944 | Line 926 | public class SplittableRandom {
926              long i = index, f = fence;
927              if (i < f) {
928                  index = f;
929 +                SplittableRandom r = rng;
930                  long o = origin, b = bound;
931                  do {
932 <                    consumer.accept(rng.internalNextLong(o, b));
932 >                    consumer.accept(r.internalNextLong(o, b));
933                  } while (++i < f);
934              }
935          }
# Line 956 | Line 939 | public class SplittableRandom {
939      /**
940       * Spliterator for double streams.
941       */
942 <    static class RandomDoublesSpliterator implements Spliterator.OfDouble {
942 >    private static final class RandomDoublesSpliterator
943 >            implements Spliterator.OfDouble {
944          final SplittableRandom rng;
945          long index;
946          final long fence;
# Line 980 | Line 964 | public class SplittableRandom {
964  
965          public int characteristics() {
966              return (Spliterator.SIZED | Spliterator.SUBSIZED |
967 <                    Spliterator.ORDERED | Spliterator.NONNULL |
984 <                    Spliterator.IMMUTABLE);
967 >                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
968          }
969  
970          public boolean tryAdvance(DoubleConsumer consumer) {
# Line 1000 | Line 983 | public class SplittableRandom {
983              long i = index, f = fence;
984              if (i < f) {
985                  index = f;
986 +                SplittableRandom r = rng;
987                  double o = origin, b = bound;
988                  do {
989 <                    consumer.accept(rng.internalNextDouble(o, b));
989 >                    consumer.accept(r.internalNextDouble(o, b));
990                  } while (++i < f);
991              }
992          }
993      }
994  
995   }
1012

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines