ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
(Generate patch)

Comparing jsr166/src/main/java/util/SplittableRandom.java (file contents):
Revision 1.1 by dl, Wed Jul 10 15:40:19 2013 UTC vs.
Revision 1.40 by jsr166, Tue Oct 3 22:27:04 2017 UTC

# Line 26 | Line 26
26   package java.util;
27  
28   import java.util.concurrent.atomic.AtomicLong;
29 < import java.util.Spliterator;
29 > import java.util.function.DoubleConsumer;
30   import java.util.function.IntConsumer;
31   import java.util.function.LongConsumer;
32 < import java.util.function.DoubleConsumer;
33 < import java.util.stream.StreamSupport;
32 > import java.util.stream.DoubleStream;
33   import java.util.stream.IntStream;
34   import java.util.stream.LongStream;
35 < import java.util.stream.DoubleStream;
37 <
35 > import java.util.stream.StreamSupport;
36  
37   /**
38   * A generator of uniform pseudorandom values applicable for use in
39   * (among other contexts) isolated parallel computations that may
40 < * generate subtasks. Class SplittableRandom supports methods for
41 < * producing pseudorandom nunmbers of type {@code int}, {@code long},
40 > * generate subtasks. Class {@code SplittableRandom} supports methods for
41 > * producing pseudorandom numbers of type {@code int}, {@code long},
42   * and {@code double} with similar usages as for class
43 < * {@link java.util.Random} but differs in the following ways: <ul>
43 > * {@link java.util.Random} but differs in the following ways:
44 > *
45 > * <ul>
46   *
47   * <li>Series of generated values pass the DieHarder suite testing
48   * independence and uniformity properties of random number generators.
# Line 50 | Line 50 | import java.util.stream.DoubleStream;
50   * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51   * 3.31.1</a>.) These tests validate only the methods for certain
52   * types and ranges, but similar properties are expected to hold, at
53 < * least approximately, for others as well.  </li>
53 > * least approximately, for others as well. The <em>period</em>
54 > * (length of any series of generated values before it repeats) is at
55 > * least 2<sup>64</sup>.
56   *
57 < * <li> Method {@link #split} constructs and returns a new
57 > * <li>Method {@link #split} constructs and returns a new
58   * SplittableRandom instance that shares no mutable state with the
59 < * current instance. However, with very high probability, the set of
60 < * values collectively generated by the two objects has the same
59 > * current instance. However, with very high probability, the
60 > * values collectively generated by the two objects have the same
61   * statistical properties as if the same quantity of values were
62   * generated by a single thread using a single {@code
63 < * SplittableRandom} object.  </li>
63 > * SplittableRandom} object.
64   *
65   * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66   * They are designed to be split, not shared, across threads. For
# Line 69 | Line 71 | import java.util.stream.DoubleStream;
71   *
72   * <li>This class provides additional methods for generating random
73   * streams, that employ the above techniques when used in {@code
74 < * stream.parallel()} mode.</li>
74 > * stream.parallel()} mode.
75   *
76   * </ul>
77   *
78 + * <p>Instances of {@code SplittableRandom} are not cryptographically
79 + * secure.  Consider instead using {@link java.security.SecureRandom}
80 + * in security-sensitive applications. Additionally,
81 + * default-constructed instances do not use a cryptographically random
82 + * seed unless the {@linkplain System#getProperty system property}
83 + * {@code java.util.secureRandomSeed} is set to {@code true}.
84 + *
85   * @author  Guy Steele
86 + * @author  Doug Lea
87   * @since   1.8
88   */
89 < public class SplittableRandom {
80 <
81 <    /*
82 <     * File organization: First the non-public methods that constitute
83 <     * the main algorithm, then the main public methods, followed by
84 <     * some custom spliterator classes needed for stream methods.
85 <     *
86 <     * Credits: Primary algorithm and code by Guy Steele.  Stream
87 <     * support methods by Doug Lea.  Documentation jointly produced
88 <     * with additional help from Brian Goetz.
89 <     */
89 > public final class SplittableRandom {
90  
91      /*
92       * Implementation Overview.
# Line 94 | Line 94 | public class SplittableRandom {
94       * This algorithm was inspired by the "DotMix" algorithm by
95       * Leiserson, Schardl, and Sukha "Deterministic Parallel
96       * Random-Number Generation for Dynamic-Multithreading Platforms",
97 <     * PPoPP 2012, but improves and extends it in several ways.
97 >     * PPoPP 2012, as well as those in "Parallel random numbers: as
98 >     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
99 >     * differs mainly in simplifying and cheapening operations.
100 >     *
101 >     * The primary update step (method nextSeed()) is to add a
102 >     * constant ("gamma") to the current (64 bit) seed, forming a
103 >     * simple sequence.  The seed and the gamma values for any two
104 >     * SplittableRandom instances are highly likely to be different.
105 >     *
106 >     * Methods nextLong, nextInt, and derivatives do not return the
107 >     * sequence (seed) values, but instead a hash-like bit-mix of
108 >     * their bits, producing more independently distributed sequences.
109 >     * For nextLong, the mix64 function is based on David Stafford's
110 >     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111 >     * "Mix13" variant of the "64-bit finalizer" function in Austin
112 >     * Appleby's MurmurHash3 algorithm (see
113 >     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114 >     * function is based on Stafford's Mix04 mix function, but returns
115 >     * the upper 32 bits cast as int.
116 >     *
117 >     * The split operation uses the current generator to form the seed
118 >     * and gamma for another SplittableRandom.  To conservatively
119 >     * avoid potential correlations between seed and value generation,
120 >     * gamma selection (method mixGamma) uses different
121 >     * (Murmurhash3's) mix constants.  To avoid potential weaknesses
122 >     * in bit-mixing transformations, we restrict gammas to odd values
123 >     * with at least 24 0-1 or 1-0 bit transitions.  Rather than
124 >     * rejecting candidates with too few or too many bits set, method
125 >     * mixGamma flips some bits (which has the effect of mapping at
126 >     * most 4 to any given gamma value).  This reduces the effective
127 >     * set of 64bit odd gamma values by about 2%, and serves as an
128 >     * automated screening for sequence constant selection that is
129 >     * left as an empirical decision in some other hashing and crypto
130 >     * algorithms.
131 >     *
132 >     * The resulting generator thus transforms a sequence in which
133 >     * (typically) many bits change on each step, with an inexpensive
134 >     * mixer with good (but less than cryptographically secure)
135 >     * avalanching.
136 >     *
137 >     * The default (no-argument) constructor, in essence, invokes
138 >     * split() for a common "defaultGen" SplittableRandom.  Unlike
139 >     * other cases, this split must be performed in a thread-safe
140 >     * manner, so we use an AtomicLong to represent the seed rather
141 >     * than use an explicit SplittableRandom. To bootstrap the
142 >     * defaultGen, we start off using a seed based on current time
143 >     * unless the java.util.secureRandomSeed property is set. This
144 >     * serves as a slimmed-down (and insecure) variant of SecureRandom
145 >     * that also avoids stalls that may occur when using /dev/random.
146 >     *
147 >     * It is a relatively simple matter to apply the basic design here
148 >     * to use 128 bit seeds. However, emulating 128bit arithmetic and
149 >     * carrying around twice the state add more overhead than appears
150 >     * warranted for current usages.
151       *
152 <     * The primary update step is simply to add a constant ("gamma")
153 <     * to the current seed, modulo a prime ("George"). However, the
154 <     * nextLong and nextInt methods do not return this value, but
155 <     * instead the results of bit-mixing transformations that produce
103 <     * more uniformly distributed sequences.
104 <     *
105 <     * "George" is the otherwise nameless (because it cannot be
106 <     * represented) prime number 2^64+13. Using a prime number larger
107 <     * than can fit in a long ensures that all possible long values
108 <     * can occur, plus 13 others that just get skipped over when they
109 <     * are encountered; see method addGammaModGeorge. For this to
110 <     * work, initial gamma values must be at least 13.
111 <     *
112 <     * The value of gamma differs for each instance across a series of
113 <     * splits, and is generated using a slightly stripped-down variant
114 <     * of the same algorithm, but operating across calls to split(),
115 <     * not calls to nextLong(): Each instance carries the state of
116 <     * this generator as nextSplit, and uses mix64(nextSplit) as its
117 <     * own gamma value. Computations of gammas themselves use a fixed
118 <     * constant as the second argument to the addGammaModGeorge
119 <     * function, GAMMA_GAMMA, a "genuinely random" number from a
120 <     * radioactive decay reading (obtained from
121 <     * http://www.fourmilab.ch/hotbits/) meeting the above range
122 <     * constraint. Using a fixed constant maintains the invariant that
123 <     * the value of gamma is the same for every instance that is at
124 <     * the same split-distance from their common root. (Note: there is
125 <     * nothing especially magic about obtaining this constant from a
126 <     * "truly random" physical source rather than just choosing one
127 <     * arbitrarily; using "hotbits" was merely an aesthetically pleasing
128 <     * choice.  In either case, good statistical behavior of the
129 <     * algorithm should be, and was, verified by using the DieHarder
130 <     * test suite.)
131 <     *
132 <     * The mix64 bit-mixing function called by nextLong and other
133 <     * methods computes the same value as the "64-bit finalizer"
134 <     * function in Austin Appleby's MurmurHash3 algorithm.  See
135 <     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
136 <     * comments: "The constants for the finalizers were generated by a
137 <     * simple simulated-annealing algorithm, and both avalanche all
138 <     * bits of 'h' to within 0.25% bias." It also appears to work to
139 <     * use instead any of the variants proposed by David Stafford at
140 <     * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
141 <     * but these variants have not yet been tested as thoroughly
142 <     * in the context of the implementation of SplittableRandom.
143 <     *
144 <     * The mix32 function used for nextInt just consists of two of the
145 <     * five lines of mix64; avalanche testing shows that the 64-bit result
146 <     * has its top 32 bits avalanched well, though not the bottom 32 bits.
147 <     * DieHarder tests show that it is adequate for generating one
148 <     * random int from the 64-bit result of nextSeed.
149 <     *
150 <     * Support for the default (no-argument) constructor relies on an
151 <     * AtomicLong (defaultSeedGenerator) to help perform the
152 <     * equivalent of a split of a statically constructed
153 <     * SplittableRandom. Unlike other cases, this split must be
154 <     * performed in a thread-safe manner. We use
155 <     * AtomicLong.compareAndSet as the (typically) most efficient
156 <     * mechanism. To bootstrap, we start off using System.nanotime(),
157 <     * and update using another "genuinely random" constant
158 <     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
159 <     * not 0, for its splitSeed argument (addGammaModGeorge(0,
160 <     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
161 <     * this root generator, even though the root is not explicitly
162 <     * represented as a SplittableRandom.
163 <     */
164 <
165 <    /**
166 <     * The "genuinely random" value for producing new gamma values.
167 <     * The value is arbitrary, subject to the requirement that it be
168 <     * greater or equal to 13.
169 <     */
170 <    private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
171 <
172 <    /**
173 <     * The "genuinely random" seed update value for default constructors.
174 <     * The value is arbitrary, subject to the requirement that it be
175 <     * greater or equal to 13.
176 <     */
177 <    private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
152 >     * File organization: First the non-public methods that constitute
153 >     * the main algorithm, then the main public methods, followed by
154 >     * some custom spliterator classes needed for stream methods.
155 >     */
156  
157      /**
158 <     * The next seed for default constructors.
158 >     * The golden ratio scaled to 64bits, used as the initial gamma
159 >     * value for (unsplit) SplittableRandoms.
160       */
161 <    private static final AtomicLong defaultSeedGenerator =
183 <        new AtomicLong(System.nanoTime());
161 >    private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162  
163      /**
164 <     * The seed, updated only via method nextSeed.
164 >     * The least non-zero value returned by nextDouble(). This value
165 >     * is scaled by a random value of 53 bits to produce a result.
166       */
167 <    private long seed;
167 >    private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168  
169      /**
170 <     * The constant value added to seed (mod George) on each update.
170 >     * The seed. Updated only via method nextSeed.
171       */
172 <    private final long gamma;
172 >    private long seed;
173  
174      /**
175 <     * The next seed to use for splits. Propagated using
197 <     * addGammaModGeorge across instances.
175 >     * The step value.
176       */
177 <    private final long nextSplit;
177 >    private final long gamma;
178  
179      /**
180 <     * Internal constructor used by all other constructors and by
203 <     * method split. Establishes the initial seed for this instance,
204 <     * and uses the given splitSeed to establish gamma, as well as the
205 <     * nextSplit to use by this instance.
180 >     * Internal constructor used by all others except default constructor.
181       */
182 <    private SplittableRandom(long seed, long splitSeed) {
182 >    private SplittableRandom(long seed, long gamma) {
183          this.seed = seed;
184 <        long s = splitSeed, g;
210 <        do { // ensure gamma >= 13, considered as an unsigned integer
211 <            s = addGammaModGeorge(s, GAMMA_GAMMA);
212 <            g = mix64(s);
213 <        } while (Long.compareUnsigned(g, 13L) < 0);
214 <        this.gamma = g;
215 <        this.nextSplit = s;
184 >        this.gamma = gamma;
185      }
186  
187      /**
188 <     * Adds the given gamma value, g, to the given seed value s, mod
189 <     * George (2^64+13). We regard s and g as unsigned values
190 <     * (ranging from 0 to 2^64-1). We add g to s either once or twice
191 <     * (mod George) as necessary to produce an (unsigned) result less
192 <     * than 2^64.  We require that g must be at least 13. This
193 <     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
225 <     * George < 2^64; thus we need only a conditional, not a loop,
226 <     * to be sure of getting a representable value.
227 <     *
228 <     * @param s a seed value
229 <     * @param g a gamma value, 13 <= g (as unsigned)
230 <     */
231 <    private static long addGammaModGeorge(long s, long g) {
232 <        long p = s + g;
233 <        if (Long.compareUnsigned(p, g) >= 0)
234 <            return p;
235 <        long q = p - 13L;
236 <        return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
188 >     * Computes Stafford variant 13 of 64bit mix function.
189 >     */
190 >    private static long mix64(long z) {
191 >        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192 >        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193 >        return z ^ (z >>> 31);
194      }
195  
196      /**
197 <     * Updates in-place and returns seed.
241 <     * See above for explanation.
197 >     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198       */
199 <    private long nextSeed() {
200 <        return seed = addGammaModGeorge(seed, gamma);
199 >    private static int mix32(long z) {
200 >        z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201 >        return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202      }
203  
204      /**
205 <     * Returns a bit-mixed transformation of its argument.
249 <     * See above for explanation.
205 >     * Returns the gamma value to use for a new split instance.
206       */
207 <    private static long mix64(long z) {
208 <        z ^= (z >>> 33);
209 <        z *= 0xff51afd7ed558ccdL;
210 <        z ^= (z >>> 33);
211 <        z *= 0xc4ceb9fe1a85ec53L;
212 <        z ^= (z >>> 33);
257 <        return z;
207 >    private static long mixGamma(long z) {
208 >        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209 >        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210 >        z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
211 >        int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
212 >        return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213      }
214  
215      /**
216 <     * Returns a bit-mixed int transformation of its argument.
262 <     * See above for explanation.
216 >     * Adds gamma to seed.
217       */
218 <    private static int mix32(long z) {
219 <        z ^= (z >>> 33);
266 <        z *= 0xc4ceb9fe1a85ec53L;
267 <        return (int)(z >>> 32);
218 >    private long nextSeed() {
219 >        return seed += gamma;
220      }
221  
222 <    /**
223 <     * Atomically updates and returns next seed for default constructor
224 <     */
225 <    private static long nextDefaultSeed() {
226 <        long oldSeed, newSeed;
227 <        do {
228 <            oldSeed = defaultSeedGenerator.get();
229 <            newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
230 <        } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
231 <        return mix64(newSeed);
222 >    // IllegalArgumentException messages
223 >    static final String BAD_BOUND = "bound must be positive";
224 >    static final String BAD_RANGE = "bound must be greater than origin";
225 >    static final String BAD_SIZE  = "size must be non-negative";
226 >
227 >    /**
228 >     * The seed generator for default constructors.
229 >     */
230 >    private static final AtomicLong defaultGen
231 >        = new AtomicLong(mix64(System.currentTimeMillis()) ^
232 >                         mix64(System.nanoTime()));
233 >
234 >    // at end of <clinit> to survive static initialization circularity
235 >    static {
236 >        if (java.security.AccessController.doPrivileged(
237 >            new java.security.PrivilegedAction<Boolean>() {
238 >                public Boolean run() {
239 >                    return Boolean.getBoolean("java.util.secureRandomSeed");
240 >                }})) {
241 >            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
242 >            long s = (long)seedBytes[0] & 0xffL;
243 >            for (int i = 1; i < 8; ++i)
244 >                s = (s << 8) | ((long)seedBytes[i] & 0xffL);
245 >            defaultGen.set(s);
246 >        }
247      }
248  
249      /*
# Line 310 | Line 277 | public class SplittableRandom {
277           * evenly divisible by the range. The loop rejects candidates
278           * computed from otherwise over-represented values.  The
279           * expected number of iterations under an ideal generator
280 <         * varies from 1 to 2, depending on the bound.
280 >         * varies from 1 to 2, depending on the bound. The loop itself
281 >         * takes an unlovable form. Because the first candidate is
282 >         * already available, we need a break-in-the-middle
283 >         * construction, which is concisely but cryptically performed
284 >         * within the while-condition of a body-less for loop.
285           *
286           * 4. Otherwise, the range cannot be represented as a positive
287 <         * long.  Repeatedly generate unbounded longs until obtaining
288 <         * a candidate meeting constraints (with an expected number of
289 <         * iterations of less than two).
287 >         * long.  The loop repeatedly generates unbounded longs until
288 >         * obtaining a candidate meeting constraints (with an expected
289 >         * number of iterations of less than two).
290           */
291  
292          long r = mix64(nextSeed());
293          if (origin < bound) {
294              long n = bound - origin, m = n - 1;
295 <            if ((n & m) == 0L) // power of two
295 >            if ((n & m) == 0L)  // power of two
296                  r = (r & m) + origin;
297 <            else if (n > 0) { // reject over-represented candidates
297 >            else if (n > 0L) {  // reject over-represented candidates
298                  for (long u = r >>> 1;            // ensure nonnegative
299 <                     u + m - (r = u % n) < 0L;    // reject
299 >                     u + m - (r = u % n) < 0L;    // rejection check
300                       u = mix64(nextSeed()) >>> 1) // retry
301                      ;
302                  r += origin;
303              }
304 <            else {             // range not representable as long
304 >            else {              // range not representable as long
305                  while (r < origin || r >= bound)
306                      r = mix64(nextSeed());
307              }
# Line 350 | Line 321 | public class SplittableRandom {
321          int r = mix32(nextSeed());
322          if (origin < bound) {
323              int n = bound - origin, m = n - 1;
324 <            if ((n & m) == 0L)
324 >            if ((n & m) == 0)
325                  r = (r & m) + origin;
326              else if (n > 0) {
327                  for (int u = r >>> 1;
328 <                     u + m - (r = u % n) < 0L;
328 >                     u + m - (r = u % n) < 0;
329                       u = mix32(nextSeed()) >>> 1)
330                      ;
331                  r += origin;
# Line 375 | Line 346 | public class SplittableRandom {
346       * @return a pseudorandom value
347       */
348      final double internalNextDouble(double origin, double bound) {
349 <        long bits = (1023L << 52) | (nextLong() >>> 12);
379 <        double r = Double.longBitsToDouble(bits) - 1.0;
349 >        double r = (nextLong() >>> 11) * DOUBLE_UNIT;
350          if (origin < bound) {
351              r = r * (bound - origin) + origin;
352 <            if (r == bound) // correct for rounding
352 >            if (r >= bound) // correct for rounding
353                  r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
354          }
355          return r;
# Line 388 | Line 358 | public class SplittableRandom {
358      /* ---------------- public methods ---------------- */
359  
360      /**
361 <     * Creates a new SplittableRandom instance using the given initial
362 <     * seed. Two SplittableRandom instances created with the same seed
363 <     * generate identical sequences of values.
361 >     * Creates a new SplittableRandom instance using the specified
362 >     * initial seed. SplittableRandom instances created with the same
363 >     * seed in the same program generate identical sequences of values.
364       *
365       * @param seed the initial seed
366       */
367      public SplittableRandom(long seed) {
368 <        this(seed, 0);
368 >        this(seed, GOLDEN_GAMMA);
369      }
370  
371      /**
# Line 404 | Line 374 | public class SplittableRandom {
374       * of those of any other instances in the current program; and
375       * may, and typically does, vary across program invocations.
376       */
377 <    public SplittableRandom() {
378 <        this(nextDefaultSeed(), GAMMA_GAMMA);
377 >    public SplittableRandom() { // emulate defaultGen.split()
378 >        long s = defaultGen.getAndAdd(GOLDEN_GAMMA << 1);
379 >        this.seed = mix64(s);
380 >        this.gamma = mixGamma(s + GOLDEN_GAMMA);
381      }
382  
383      /**
# Line 423 | Line 395 | public class SplittableRandom {
395       * @return the new SplittableRandom instance
396       */
397      public SplittableRandom split() {
398 <        return new SplittableRandom(nextSeed(), nextSplit);
398 >        return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
399 >    }
400 >
401 >    /**
402 >     * Fills a user-supplied byte array with generated pseudorandom bytes.
403 >     *
404 >     * @param  bytes the byte array to fill with pseudorandom bytes
405 >     * @throws NullPointerException if bytes is null
406 >     * @since  10
407 >     */
408 >    public void nextBytes(byte[] bytes) {
409 >        int i = 0;
410 >        int len = bytes.length;
411 >        for (int words = len >> 3; words--> 0; ) {
412 >            long rnd = nextLong();
413 >            for (int n = 8; n--> 0; rnd >>>= Byte.SIZE)
414 >                bytes[i++] = (byte)rnd;
415 >        }
416 >        if (i < len)
417 >            for (long rnd = nextLong(); i < len; rnd >>>= Byte.SIZE)
418 >                bytes[i++] = (byte)rnd;
419      }
420  
421      /**
422       * Returns a pseudorandom {@code int} value.
423       *
424 <     * @return a pseudorandom value
424 >     * @return a pseudorandom {@code int} value
425       */
426      public int nextInt() {
427          return mix32(nextSeed());
428      }
429  
430      /**
431 <     * Returns a pseudorandom {@code int} value between 0 (inclusive)
431 >     * Returns a pseudorandom {@code int} value between zero (inclusive)
432       * and the specified bound (exclusive).
433       *
434 <     * @param bound the bound on the random number to be returned.  Must be
435 <     *        positive.
436 <     * @return a pseudorandom {@code int} value between {@code 0}
437 <     *         (inclusive) and the bound (exclusive).
446 <     * @exception IllegalArgumentException if the bound is not positive
434 >     * @param bound the upper bound (exclusive).  Must be positive.
435 >     * @return a pseudorandom {@code int} value between zero
436 >     *         (inclusive) and the bound (exclusive)
437 >     * @throws IllegalArgumentException if {@code bound} is not positive
438       */
439      public int nextInt(int bound) {
440          if (bound <= 0)
441 <            throw new IllegalArgumentException("bound must be positive");
441 >            throw new IllegalArgumentException(BAD_BOUND);
442          // Specialize internalNextInt for origin 0
443          int r = mix32(nextSeed());
444          int m = bound - 1;
445 <        if ((bound & m) == 0L) // power of two
445 >        if ((bound & m) == 0) // power of two
446              r &= m;
447          else { // reject over-represented candidates
448              for (int u = r >>> 1;
449 <                 u + m - (r = u % bound) < 0L;
449 >                 u + m - (r = u % bound) < 0;
450                   u = mix32(nextSeed()) >>> 1)
451                  ;
452          }
# Line 469 | Line 460 | public class SplittableRandom {
460       * @param origin the least value returned
461       * @param bound the upper bound (exclusive)
462       * @return a pseudorandom {@code int} value between the origin
463 <     *         (inclusive) and the bound (exclusive).
464 <     * @exception IllegalArgumentException if {@code origin} is greater than
463 >     *         (inclusive) and the bound (exclusive)
464 >     * @throws IllegalArgumentException if {@code origin} is greater than
465       *         or equal to {@code bound}
466       */
467      public int nextInt(int origin, int bound) {
468          if (origin >= bound)
469 <            throw new IllegalArgumentException("bound must be greater than origin");
469 >            throw new IllegalArgumentException(BAD_RANGE);
470          return internalNextInt(origin, bound);
471      }
472  
473      /**
474       * Returns a pseudorandom {@code long} value.
475       *
476 <     * @return a pseudorandom value
476 >     * @return a pseudorandom {@code long} value
477       */
478      public long nextLong() {
479          return mix64(nextSeed());
480      }
481  
482      /**
483 <     * Returns a pseudorandom {@code long} value between 0 (inclusive)
483 >     * Returns a pseudorandom {@code long} value between zero (inclusive)
484       * and the specified bound (exclusive).
485       *
486 <     * @param bound the bound on the random number to be returned.  Must be
487 <     *        positive.
488 <     * @return a pseudorandom {@code long} value between {@code 0}
489 <     *         (inclusive) and the bound (exclusive).
499 <     * @exception IllegalArgumentException if the bound is not positive
486 >     * @param bound the upper bound (exclusive).  Must be positive.
487 >     * @return a pseudorandom {@code long} value between zero
488 >     *         (inclusive) and the bound (exclusive)
489 >     * @throws IllegalArgumentException if {@code bound} is not positive
490       */
491      public long nextLong(long bound) {
492          if (bound <= 0)
493 <            throw new IllegalArgumentException("bound must be positive");
493 >            throw new IllegalArgumentException(BAD_BOUND);
494          // Specialize internalNextLong for origin 0
495          long r = mix64(nextSeed());
496          long m = bound - 1;
# Line 522 | Line 512 | public class SplittableRandom {
512       * @param origin the least value returned
513       * @param bound the upper bound (exclusive)
514       * @return a pseudorandom {@code long} value between the origin
515 <     *         (inclusive) and the bound (exclusive).
516 <     * @exception IllegalArgumentException if {@code origin} is greater than
515 >     *         (inclusive) and the bound (exclusive)
516 >     * @throws IllegalArgumentException if {@code origin} is greater than
517       *         or equal to {@code bound}
518       */
519      public long nextLong(long origin, long bound) {
520          if (origin >= bound)
521 <            throw new IllegalArgumentException("bound must be greater than origin");
521 >            throw new IllegalArgumentException(BAD_RANGE);
522          return internalNextLong(origin, bound);
523      }
524  
525      /**
526 <     * Returns a pseudorandom {@code double} value between {@code 0.0}
527 <     * (inclusive) and {@code 1.0} (exclusive).
526 >     * Returns a pseudorandom {@code double} value between zero
527 >     * (inclusive) and one (exclusive).
528       *
529 <     * @return a pseudorandom value between {@code 0.0}
530 <     * (inclusive) and {@code 1.0} (exclusive)
529 >     * @return a pseudorandom {@code double} value between zero
530 >     *         (inclusive) and one (exclusive)
531       */
532      public double nextDouble() {
533 <        long bits = (1023L << 52) | (nextLong() >>> 12);
544 <        return Double.longBitsToDouble(bits) - 1.0;
533 >        return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
534      }
535  
536      /**
537       * Returns a pseudorandom {@code double} value between 0.0
538       * (inclusive) and the specified bound (exclusive).
539       *
540 <     * @param bound the bound on the random number to be returned.  Must be
541 <     *        positive.
542 <     * @return a pseudorandom {@code double} value between {@code 0.0}
554 <     *         (inclusive) and the bound (exclusive).
540 >     * @param bound the upper bound (exclusive).  Must be positive.
541 >     * @return a pseudorandom {@code double} value between zero
542 >     *         (inclusive) and the bound (exclusive)
543       * @throws IllegalArgumentException if {@code bound} is not positive
544       */
545      public double nextDouble(double bound) {
546 <        if (bound <= 0.0)
547 <            throw new IllegalArgumentException("bound must be positive");
548 <        double result = nextDouble() * bound;
546 >        if (!(bound > 0.0))
547 >            throw new IllegalArgumentException(BAD_BOUND);
548 >        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
549          return (result < bound) ?  result : // correct for rounding
550              Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
551      }
552  
553      /**
554 <     * Returns a pseudorandom {@code double} value between the given
554 >     * Returns a pseudorandom {@code double} value between the specified
555       * origin (inclusive) and bound (exclusive).
556       *
557       * @param origin the least value returned
558 <     * @param bound the upper bound
558 >     * @param bound the upper bound (exclusive)
559       * @return a pseudorandom {@code double} value between the origin
560 <     *         (inclusive) and the bound (exclusive).
560 >     *         (inclusive) and the bound (exclusive)
561       * @throws IllegalArgumentException if {@code origin} is greater than
562       *         or equal to {@code bound}
563       */
564      public double nextDouble(double origin, double bound) {
565 <        if (origin >= bound)
566 <            throw new IllegalArgumentException("bound must be greater than origin");
565 >        if (!(origin < bound))
566 >            throw new IllegalArgumentException(BAD_RANGE);
567          return internalNextDouble(origin, bound);
568      }
569  
570 +    /**
571 +     * Returns a pseudorandom {@code boolean} value.
572 +     *
573 +     * @return a pseudorandom {@code boolean} value
574 +     */
575 +    public boolean nextBoolean() {
576 +        return mix32(nextSeed()) < 0;
577 +    }
578 +
579      // stream methods, coded in a way intended to better isolate for
580      // maintenance purposes the small differences across forms.
581  
582      /**
583 <     * Returns a stream with the given {@code streamSize} number of
584 <     * pseudorandom {@code int} values.
583 >     * Returns a stream producing the given {@code streamSize} number
584 >     * of pseudorandom {@code int} values from this generator and/or
585 >     * one split from it.
586       *
587       * @param streamSize the number of values to generate
588       * @return a stream of pseudorandom {@code int} values
589       * @throws IllegalArgumentException if {@code streamSize} is
590 <     * less than zero
590 >     *         less than zero
591       */
592      public IntStream ints(long streamSize) {
593          if (streamSize < 0L)
594 <            throw new IllegalArgumentException("negative Stream size");
594 >            throw new IllegalArgumentException(BAD_SIZE);
595          return StreamSupport.intStream
596              (new RandomIntsSpliterator
597               (this, 0L, streamSize, Integer.MAX_VALUE, 0),
# Line 602 | Line 600 | public class SplittableRandom {
600  
601      /**
602       * Returns an effectively unlimited stream of pseudorandom {@code int}
603 <     * values
603 >     * values from this generator and/or one split from it.
604       *
605       * @implNote This method is implemented to be equivalent to {@code
606       * ints(Long.MAX_VALUE)}.
# Line 617 | Line 615 | public class SplittableRandom {
615      }
616  
617      /**
618 <     * Returns a stream with the given {@code streamSize} number of
619 <     * pseudorandom {@code int} values, each conforming to the given
620 <     * origin and bound.
618 >     * Returns a stream producing the given {@code streamSize} number
619 >     * of pseudorandom {@code int} values from this generator and/or one split
620 >     * from it; each value conforms to the given origin (inclusive) and bound
621 >     * (exclusive).
622       *
623       * @param streamSize the number of values to generate
624 <     * @param randomNumberOrigin the origin of each random value
625 <     * @param randomNumberBound the bound of each random value
624 >     * @param randomNumberOrigin the origin (inclusive) of each random value
625 >     * @param randomNumberBound the bound (exclusive) of each random value
626       * @return a stream of pseudorandom {@code int} values,
627 <     * each with the given origin and bound.
627 >     *         each with the given origin (inclusive) and bound (exclusive)
628       * @throws IllegalArgumentException if {@code streamSize} is
629 <     * less than zero.
631 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
629 >     *         less than zero, or {@code randomNumberOrigin}
630       *         is greater than or equal to {@code randomNumberBound}
631       */
632      public IntStream ints(long streamSize, int randomNumberOrigin,
633                            int randomNumberBound) {
634          if (streamSize < 0L)
635 <            throw new IllegalArgumentException("negative Stream size");
635 >            throw new IllegalArgumentException(BAD_SIZE);
636          if (randomNumberOrigin >= randomNumberBound)
637 <            throw new IllegalArgumentException("bound must be greater than origin");
637 >            throw new IllegalArgumentException(BAD_RANGE);
638          return StreamSupport.intStream
639              (new RandomIntsSpliterator
640               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 645 | Line 643 | public class SplittableRandom {
643  
644      /**
645       * Returns an effectively unlimited stream of pseudorandom {@code
646 <     * int} values, each conforming to the given origin and bound.
646 >     * int} values from this generator and/or one split from it; each value
647 >     * conforms to the given origin (inclusive) and bound (exclusive).
648       *
649       * @implNote This method is implemented to be equivalent to {@code
650       * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
651       *
652 <     * @param randomNumberOrigin the origin of each random value
653 <     * @param randomNumberBound the bound of each random value
652 >     * @param randomNumberOrigin the origin (inclusive) of each random value
653 >     * @param randomNumberBound the bound (exclusive) of each random value
654       * @return a stream of pseudorandom {@code int} values,
655 <     * each with the given origin and bound.
655 >     *         each with the given origin (inclusive) and bound (exclusive)
656       * @throws IllegalArgumentException if {@code randomNumberOrigin}
657       *         is greater than or equal to {@code randomNumberBound}
658       */
659      public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
660          if (randomNumberOrigin >= randomNumberBound)
661 <            throw new IllegalArgumentException("bound must be greater than origin");
661 >            throw new IllegalArgumentException(BAD_RANGE);
662          return StreamSupport.intStream
663              (new RandomIntsSpliterator
664               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 667 | Line 666 | public class SplittableRandom {
666      }
667  
668      /**
669 <     * Returns a stream with the given {@code streamSize} number of
670 <     * pseudorandom {@code long} values.
669 >     * Returns a stream producing the given {@code streamSize} number
670 >     * of pseudorandom {@code long} values from this generator and/or
671 >     * one split from it.
672       *
673       * @param streamSize the number of values to generate
674 <     * @return a stream of {@code long} values
674 >     * @return a stream of pseudorandom {@code long} values
675       * @throws IllegalArgumentException if {@code streamSize} is
676 <     * less than zero
676 >     *         less than zero
677       */
678      public LongStream longs(long streamSize) {
679          if (streamSize < 0L)
680 <            throw new IllegalArgumentException("negative Stream size");
680 >            throw new IllegalArgumentException(BAD_SIZE);
681          return StreamSupport.longStream
682              (new RandomLongsSpliterator
683               (this, 0L, streamSize, Long.MAX_VALUE, 0L),
# Line 685 | Line 685 | public class SplittableRandom {
685      }
686  
687      /**
688 <     * Returns an effectively unlimited stream of pseudorandom {@code long}
689 <     * values.
688 >     * Returns an effectively unlimited stream of pseudorandom {@code
689 >     * long} values from this generator and/or one split from it.
690       *
691       * @implNote This method is implemented to be equivalent to {@code
692       * longs(Long.MAX_VALUE)}.
# Line 701 | Line 701 | public class SplittableRandom {
701      }
702  
703      /**
704 <     * Returns a stream with the given {@code streamSize} number of
705 <     * pseudorandom {@code long} values, each conforming to the
706 <     * given origin and bound.
704 >     * Returns a stream producing the given {@code streamSize} number of
705 >     * pseudorandom {@code long} values from this generator and/or one split
706 >     * from it; each value conforms to the given origin (inclusive) and bound
707 >     * (exclusive).
708       *
709       * @param streamSize the number of values to generate
710 <     * @param randomNumberOrigin the origin of each random value
711 <     * @param randomNumberBound the bound of each random value
710 >     * @param randomNumberOrigin the origin (inclusive) of each random value
711 >     * @param randomNumberBound the bound (exclusive) of each random value
712       * @return a stream of pseudorandom {@code long} values,
713 <     * each with the given origin and bound.
713 >     *         each with the given origin (inclusive) and bound (exclusive)
714       * @throws IllegalArgumentException if {@code streamSize} is
715 <     * less than zero.
715 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
715 >     *         less than zero, or {@code randomNumberOrigin}
716       *         is greater than or equal to {@code randomNumberBound}
717       */
718      public LongStream longs(long streamSize, long randomNumberOrigin,
719                              long randomNumberBound) {
720          if (streamSize < 0L)
721 <            throw new IllegalArgumentException("negative Stream size");
721 >            throw new IllegalArgumentException(BAD_SIZE);
722          if (randomNumberOrigin >= randomNumberBound)
723 <            throw new IllegalArgumentException("bound must be greater than origin");
723 >            throw new IllegalArgumentException(BAD_RANGE);
724          return StreamSupport.longStream
725              (new RandomLongsSpliterator
726               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 729 | Line 729 | public class SplittableRandom {
729  
730      /**
731       * Returns an effectively unlimited stream of pseudorandom {@code
732 <     * long} values, each conforming to the given origin and bound.
732 >     * long} values from this generator and/or one split from it; each value
733 >     * conforms to the given origin (inclusive) and bound (exclusive).
734       *
735       * @implNote This method is implemented to be equivalent to {@code
736       * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
737       *
738 <     * @param randomNumberOrigin the origin of each random value
739 <     * @param randomNumberBound the bound of each random value
738 >     * @param randomNumberOrigin the origin (inclusive) of each random value
739 >     * @param randomNumberBound the bound (exclusive) of each random value
740       * @return a stream of pseudorandom {@code long} values,
741 <     * each with the given origin and bound.
741 >     *         each with the given origin (inclusive) and bound (exclusive)
742       * @throws IllegalArgumentException if {@code randomNumberOrigin}
743       *         is greater than or equal to {@code randomNumberBound}
744       */
745      public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
746          if (randomNumberOrigin >= randomNumberBound)
747 <            throw new IllegalArgumentException("bound must be greater than origin");
747 >            throw new IllegalArgumentException(BAD_RANGE);
748          return StreamSupport.longStream
749              (new RandomLongsSpliterator
750               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 751 | Line 752 | public class SplittableRandom {
752      }
753  
754      /**
755 <     * Returns a stream with the given {@code streamSize} number of
756 <     * pseudorandom {@code double} values.
755 >     * Returns a stream producing the given {@code streamSize} number of
756 >     * pseudorandom {@code double} values from this generator and/or one split
757 >     * from it; each value is between zero (inclusive) and one (exclusive).
758       *
759       * @param streamSize the number of values to generate
760       * @return a stream of {@code double} values
761       * @throws IllegalArgumentException if {@code streamSize} is
762 <     * less than zero
762 >     *         less than zero
763       */
764      public DoubleStream doubles(long streamSize) {
765          if (streamSize < 0L)
766 <            throw new IllegalArgumentException("negative Stream size");
766 >            throw new IllegalArgumentException(BAD_SIZE);
767          return StreamSupport.doubleStream
768              (new RandomDoublesSpliterator
769               (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
# Line 770 | Line 772 | public class SplittableRandom {
772  
773      /**
774       * Returns an effectively unlimited stream of pseudorandom {@code
775 <     * double} values.
775 >     * double} values from this generator and/or one split from it; each value
776 >     * is between zero (inclusive) and one (exclusive).
777       *
778       * @implNote This method is implemented to be equivalent to {@code
779       * doubles(Long.MAX_VALUE)}.
# Line 785 | Line 788 | public class SplittableRandom {
788      }
789  
790      /**
791 <     * Returns a stream with the given {@code streamSize} number of
792 <     * pseudorandom {@code double} values, each conforming to the
793 <     * given origin and bound.
791 >     * Returns a stream producing the given {@code streamSize} number of
792 >     * pseudorandom {@code double} values from this generator and/or one split
793 >     * from it; each value conforms to the given origin (inclusive) and bound
794 >     * (exclusive).
795       *
796       * @param streamSize the number of values to generate
797 <     * @param randomNumberOrigin the origin of each random value
798 <     * @param randomNumberBound the bound of each random value
797 >     * @param randomNumberOrigin the origin (inclusive) of each random value
798 >     * @param randomNumberBound the bound (exclusive) of each random value
799       * @return a stream of pseudorandom {@code double} values,
800 <     * each with the given origin and bound.
800 >     *         each with the given origin (inclusive) and bound (exclusive)
801       * @throws IllegalArgumentException if {@code streamSize} is
802 <     * less than zero.
799 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
802 >     *         less than zero, or {@code randomNumberOrigin}
803       *         is greater than or equal to {@code randomNumberBound}
804       */
805      public DoubleStream doubles(long streamSize, double randomNumberOrigin,
806                                  double randomNumberBound) {
807          if (streamSize < 0L)
808 <            throw new IllegalArgumentException("negative Stream size");
809 <        if (randomNumberOrigin >= randomNumberBound)
810 <            throw new IllegalArgumentException("bound must be greater than origin");
808 >            throw new IllegalArgumentException(BAD_SIZE);
809 >        if (!(randomNumberOrigin < randomNumberBound))
810 >            throw new IllegalArgumentException(BAD_RANGE);
811          return StreamSupport.doubleStream
812              (new RandomDoublesSpliterator
813               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 813 | Line 816 | public class SplittableRandom {
816  
817      /**
818       * Returns an effectively unlimited stream of pseudorandom {@code
819 <     * double} values, each conforming to the given origin and bound.
819 >     * double} values from this generator and/or one split from it; each value
820 >     * conforms to the given origin (inclusive) and bound (exclusive).
821       *
822       * @implNote This method is implemented to be equivalent to {@code
823       * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
824       *
825 <     * @param randomNumberOrigin the origin of each random value
826 <     * @param randomNumberBound the bound of each random value
825 >     * @param randomNumberOrigin the origin (inclusive) of each random value
826 >     * @param randomNumberBound the bound (exclusive) of each random value
827       * @return a stream of pseudorandom {@code double} values,
828 <     * each with the given origin and bound.
828 >     *         each with the given origin (inclusive) and bound (exclusive)
829       * @throws IllegalArgumentException if {@code randomNumberOrigin}
830       *         is greater than or equal to {@code randomNumberBound}
831       */
832      public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
833 <        if (randomNumberOrigin >= randomNumberBound)
834 <            throw new IllegalArgumentException("bound must be greater than origin");
833 >        if (!(randomNumberOrigin < randomNumberBound))
834 >            throw new IllegalArgumentException(BAD_RANGE);
835          return StreamSupport.doubleStream
836              (new RandomDoublesSpliterator
837               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 836 | Line 840 | public class SplittableRandom {
840  
841      /**
842       * Spliterator for int streams.  We multiplex the four int
843 <     * versions into one class by treating and bound < origin as
843 >     * versions into one class by treating a bound less than origin as
844       * unbounded, and also by treating "infinite" as equivalent to
845       * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
846       * approach. The long and double versions of this class are
847       * identical except for types.
848       */
849 <    static class RandomIntsSpliterator implements Spliterator.OfInt {
849 >    private static final class RandomIntsSpliterator
850 >            implements Spliterator.OfInt {
851          final SplittableRandom rng;
852          long index;
853          final long fence;
# Line 866 | Line 871 | public class SplittableRandom {
871  
872          public int characteristics() {
873              return (Spliterator.SIZED | Spliterator.SUBSIZED |
874 <                    Spliterator.ORDERED | Spliterator.NONNULL |
870 <                    Spliterator.IMMUTABLE);
874 >                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
875          }
876  
877          public boolean tryAdvance(IntConsumer consumer) {
# Line 886 | Line 890 | public class SplittableRandom {
890              long i = index, f = fence;
891              if (i < f) {
892                  index = f;
893 +                SplittableRandom r = rng;
894                  int o = origin, b = bound;
895                  do {
896 <                    consumer.accept(rng.internalNextInt(o, b));
896 >                    consumer.accept(r.internalNextInt(o, b));
897                  } while (++i < f);
898              }
899          }
# Line 897 | Line 902 | public class SplittableRandom {
902      /**
903       * Spliterator for long streams.
904       */
905 <    static class RandomLongsSpliterator implements Spliterator.OfLong {
905 >    private static final class RandomLongsSpliterator
906 >            implements Spliterator.OfLong {
907          final SplittableRandom rng;
908          long index;
909          final long fence;
# Line 921 | Line 927 | public class SplittableRandom {
927  
928          public int characteristics() {
929              return (Spliterator.SIZED | Spliterator.SUBSIZED |
930 <                    Spliterator.ORDERED | Spliterator.NONNULL |
925 <                    Spliterator.IMMUTABLE);
930 >                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
931          }
932  
933          public boolean tryAdvance(LongConsumer consumer) {
# Line 941 | Line 946 | public class SplittableRandom {
946              long i = index, f = fence;
947              if (i < f) {
948                  index = f;
949 +                SplittableRandom r = rng;
950                  long o = origin, b = bound;
951                  do {
952 <                    consumer.accept(rng.internalNextLong(o, b));
952 >                    consumer.accept(r.internalNextLong(o, b));
953                  } while (++i < f);
954              }
955          }
# Line 953 | Line 959 | public class SplittableRandom {
959      /**
960       * Spliterator for double streams.
961       */
962 <    static class RandomDoublesSpliterator implements Spliterator.OfDouble {
962 >    private static final class RandomDoublesSpliterator
963 >            implements Spliterator.OfDouble {
964          final SplittableRandom rng;
965          long index;
966          final long fence;
# Line 977 | Line 984 | public class SplittableRandom {
984  
985          public int characteristics() {
986              return (Spliterator.SIZED | Spliterator.SUBSIZED |
987 <                    Spliterator.ORDERED | Spliterator.NONNULL |
981 <                    Spliterator.IMMUTABLE);
987 >                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
988          }
989  
990          public boolean tryAdvance(DoubleConsumer consumer) {
# Line 997 | Line 1003 | public class SplittableRandom {
1003              long i = index, f = fence;
1004              if (i < f) {
1005                  index = f;
1006 +                SplittableRandom r = rng;
1007                  double o = origin, b = bound;
1008                  do {
1009 <                    consumer.accept(rng.internalNextDouble(o, b));
1009 >                    consumer.accept(r.internalNextDouble(o, b));
1010                  } while (++i < f);
1011              }
1012          }
1013      }
1014  
1015   }
1009

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines