ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
(Generate patch)

Comparing jsr166/src/main/java/util/SplittableRandom.java (file contents):
Revision 1.10 by jsr166, Sun Jul 14 08:06:49 2013 UTC vs.
Revision 1.41 by jsr166, Sun Dec 2 23:06:16 2018 UTC

# Line 26 | Line 26
26   package java.util;
27  
28   import java.util.concurrent.atomic.AtomicLong;
29 < import java.util.Spliterator;
29 > import java.util.function.DoubleConsumer;
30   import java.util.function.IntConsumer;
31   import java.util.function.LongConsumer;
32 < import java.util.function.DoubleConsumer;
33 < import java.util.stream.StreamSupport;
32 > import java.util.stream.DoubleStream;
33   import java.util.stream.IntStream;
34   import java.util.stream.LongStream;
35 < import java.util.stream.DoubleStream;
35 > import java.util.stream.StreamSupport;
36  
37   /**
38   * A generator of uniform pseudorandom values applicable for use in
39   * (among other contexts) isolated parallel computations that may
40 < * generate subtasks. Class SplittableRandom supports methods for
40 > * generate subtasks. Class {@code SplittableRandom} supports methods for
41   * producing pseudorandom numbers of type {@code int}, {@code long},
42   * and {@code double} with similar usages as for class
43   * {@link java.util.Random} but differs in the following ways:
# Line 51 | Line 50 | import java.util.stream.DoubleStream;
50   * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51   * 3.31.1</a>.) These tests validate only the methods for certain
52   * types and ranges, but similar properties are expected to hold, at
53 < * least approximately, for others as well.  </li>
53 > * least approximately, for others as well. The <em>period</em>
54 > * (length of any series of generated values before it repeats) is at
55 > * least 2<sup>64</sup>.
56   *
57 < * <li> Method {@link #split} constructs and returns a new
57 > * <li>Method {@link #split} constructs and returns a new
58   * SplittableRandom instance that shares no mutable state with the
59   * current instance. However, with very high probability, the
60   * values collectively generated by the two objects have the same
61   * statistical properties as if the same quantity of values were
62   * generated by a single thread using a single {@code
63 < * SplittableRandom} object.  </li>
63 > * SplittableRandom} object.
64   *
65   * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66   * They are designed to be split, not shared, across threads. For
# Line 70 | Line 71 | import java.util.stream.DoubleStream;
71   *
72   * <li>This class provides additional methods for generating random
73   * streams, that employ the above techniques when used in {@code
74 < * stream.parallel()} mode.</li>
74 > * stream.parallel()} mode.
75   *
76   * </ul>
77   *
78 + * <p>Instances of {@code SplittableRandom} are not cryptographically
79 + * secure.  Consider instead using {@link java.security.SecureRandom}
80 + * in security-sensitive applications. Additionally,
81 + * default-constructed instances do not use a cryptographically random
82 + * seed unless the {@linkplain System#getProperty system property}
83 + * {@systemProperty java.util.secureRandomSeed} is set to {@code true}.
84 + *
85   * @author  Guy Steele
86   * @author  Doug Lea
87   * @since   1.8
88   */
89 < public class SplittableRandom {
82 <
83 <    /*
84 <     * File organization: First the non-public methods that constitute
85 <     * the main algorithm, then the main public methods, followed by
86 <     * some custom spliterator classes needed for stream methods.
87 <     *
88 <     * Credits: Primary algorithm and code by Guy Steele.  Stream
89 <     * support methods by Doug Lea.  Documentation jointly produced
90 <     * with additional help from Brian Goetz.
91 <     */
89 > public final class SplittableRandom {
90  
91      /*
92       * Implementation Overview.
# Line 96 | Line 94 | public class SplittableRandom {
94       * This algorithm was inspired by the "DotMix" algorithm by
95       * Leiserson, Schardl, and Sukha "Deterministic Parallel
96       * Random-Number Generation for Dynamic-Multithreading Platforms",
97 <     * PPoPP 2012, but improves and extends it in several ways.
97 >     * PPoPP 2012, as well as those in "Parallel random numbers: as
98 >     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
99 >     * differs mainly in simplifying and cheapening operations.
100 >     *
101 >     * The primary update step (method nextSeed()) is to add a
102 >     * constant ("gamma") to the current (64 bit) seed, forming a
103 >     * simple sequence.  The seed and the gamma values for any two
104 >     * SplittableRandom instances are highly likely to be different.
105 >     *
106 >     * Methods nextLong, nextInt, and derivatives do not return the
107 >     * sequence (seed) values, but instead a hash-like bit-mix of
108 >     * their bits, producing more independently distributed sequences.
109 >     * For nextLong, the mix64 function is based on David Stafford's
110 >     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111 >     * "Mix13" variant of the "64-bit finalizer" function in Austin
112 >     * Appleby's MurmurHash3 algorithm (see
113 >     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114 >     * function is based on Stafford's Mix04 mix function, but returns
115 >     * the upper 32 bits cast as int.
116 >     *
117 >     * The split operation uses the current generator to form the seed
118 >     * and gamma for another SplittableRandom.  To conservatively
119 >     * avoid potential correlations between seed and value generation,
120 >     * gamma selection (method mixGamma) uses different
121 >     * (Murmurhash3's) mix constants.  To avoid potential weaknesses
122 >     * in bit-mixing transformations, we restrict gammas to odd values
123 >     * with at least 24 0-1 or 1-0 bit transitions.  Rather than
124 >     * rejecting candidates with too few or too many bits set, method
125 >     * mixGamma flips some bits (which has the effect of mapping at
126 >     * most 4 to any given gamma value).  This reduces the effective
127 >     * set of 64bit odd gamma values by about 2%, and serves as an
128 >     * automated screening for sequence constant selection that is
129 >     * left as an empirical decision in some other hashing and crypto
130 >     * algorithms.
131 >     *
132 >     * The resulting generator thus transforms a sequence in which
133 >     * (typically) many bits change on each step, with an inexpensive
134 >     * mixer with good (but less than cryptographically secure)
135 >     * avalanching.
136 >     *
137 >     * The default (no-argument) constructor, in essence, invokes
138 >     * split() for a common "defaultGen" SplittableRandom.  Unlike
139 >     * other cases, this split must be performed in a thread-safe
140 >     * manner, so we use an AtomicLong to represent the seed rather
141 >     * than use an explicit SplittableRandom. To bootstrap the
142 >     * defaultGen, we start off using a seed based on current time
143 >     * unless the java.util.secureRandomSeed property is set. This
144 >     * serves as a slimmed-down (and insecure) variant of SecureRandom
145 >     * that also avoids stalls that may occur when using /dev/random.
146 >     *
147 >     * It is a relatively simple matter to apply the basic design here
148 >     * to use 128 bit seeds. However, emulating 128bit arithmetic and
149 >     * carrying around twice the state add more overhead than appears
150 >     * warranted for current usages.
151       *
152 <     * The primary update step (see method nextSeed()) is simply to
153 <     * add a constant ("gamma") to the current seed, modulo a prime
154 <     * ("George"). However, the nextLong and nextInt methods do not
104 <     * return this value, but instead the results of bit-mixing
105 <     * transformations that produce more uniformly distributed
106 <     * sequences.
107 <     *
108 <     * "George" is the otherwise nameless (because it cannot be
109 <     * represented) prime number 2^64+13. Using a prime number larger
110 <     * than can fit in a long ensures that all possible long values
111 <     * can occur, plus 13 others that just get skipped over when they
112 <     * are encountered; see method addGammaModGeorge. For this to
113 <     * work, initial gamma values must be at least 13.
114 <     *
115 <     * The value of gamma differs for each instance across a series of
116 <     * splits, and is generated using a slightly stripped-down variant
117 <     * of the same algorithm, but operating across calls to split(),
118 <     * not calls to nextSeed(): Each instance carries the state of
119 <     * this generator as nextSplit, and uses mix64(nextSplit) as its
120 <     * own gamma value. Computations of gammas themselves use a fixed
121 <     * constant as the second argument to the addGammaModGeorge
122 <     * function, GAMMA_GAMMA, a "genuinely random" number from a
123 <     * radioactive decay reading (obtained from
124 <     * http://www.fourmilab.ch/hotbits/) meeting the above range
125 <     * constraint. Using a fixed constant maintains the invariant that
126 <     * the value of gamma is the same for every instance that is at
127 <     * the same split-distance from their common root. (Note: there is
128 <     * nothing especially magic about obtaining this constant from a
129 <     * "truly random" physical source rather than just choosing one
130 <     * arbitrarily; using "hotbits" was merely an aesthetically pleasing
131 <     * choice.  In either case, good statistical behavior of the
132 <     * algorithm should be, and was, verified by using the DieHarder
133 <     * test suite.)
134 <     *
135 <     * The mix64 bit-mixing function called by nextLong and other
136 <     * methods computes the same value as the "64-bit finalizer"
137 <     * function in Austin Appleby's MurmurHash3 algorithm.  See
138 <     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
139 <     * comments: "The constants for the finalizers were generated by a
140 <     * simple simulated-annealing algorithm, and both avalanche all
141 <     * bits of 'h' to within 0.25% bias." It also appears to work to
142 <     * use instead any of the variants proposed by David Stafford at
143 <     * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
144 <     * but these variants have not yet been tested as thoroughly
145 <     * in the context of the implementation of SplittableRandom.
146 <     *
147 <     * The mix32 function used for nextInt just consists of two of the
148 <     * five lines of mix64; avalanche testing shows that the 64-bit result
149 <     * has its top 32 bits avalanched well, though not the bottom 32 bits.
150 <     * DieHarder tests show that it is adequate for generating one
151 <     * random int from the 64-bit result of nextSeed.
152 <     *
153 <     * Support for the default (no-argument) constructor relies on an
154 <     * AtomicLong (defaultSeedGenerator) to help perform the
155 <     * equivalent of a split of a statically constructed
156 <     * SplittableRandom. Unlike other cases, this split must be
157 <     * performed in a thread-safe manner. We use
158 <     * AtomicLong.compareAndSet as the (typically) most efficient
159 <     * mechanism. To bootstrap, we start off using System.nanotime(),
160 <     * and update using another "genuinely random" constant
161 <     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
162 <     * not 0, for its splitSeed argument (addGammaModGeorge(0,
163 <     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
164 <     * this root generator, even though the root is not explicitly
165 <     * represented as a SplittableRandom.
166 <     */
167 <
168 <    /**
169 <     * The "genuinely random" value for producing new gamma values.
170 <     * The value is arbitrary, subject to the requirement that it be
171 <     * greater or equal to 13.
172 <     */
173 <    private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
174 <
175 <    /**
176 <     * The "genuinely random" seed update value for default constructors.
177 <     * The value is arbitrary, subject to the requirement that it be
178 <     * greater or equal to 13.
152 >     * File organization: First the non-public methods that constitute
153 >     * the main algorithm, then the main public methods, followed by
154 >     * some custom spliterator classes needed for stream methods.
155       */
180    private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
156  
157      /**
158 <     * The least non-zero value returned by nextDouble(). This value
159 <     * is scaled by a random value of 53 bits to produce a result.
158 >     * The golden ratio scaled to 64bits, used as the initial gamma
159 >     * value for (unsplit) SplittableRandoms.
160       */
161 <    private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
161 >    private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162  
163      /**
164 <     * The next seed for default constructors.
164 >     * The least non-zero value returned by nextDouble(). This value
165 >     * is scaled by a random value of 53 bits to produce a result.
166       */
167 <    private static final AtomicLong defaultSeedGenerator =
192 <        new AtomicLong(System.nanoTime());
167 >    private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168  
169      /**
170 <     * The seed, updated only via method nextSeed.
170 >     * The seed. Updated only via method nextSeed.
171       */
172      private long seed;
173  
174      /**
175 <     * The constant value added to seed (mod George) on each update.
175 >     * The step value.
176       */
177      private final long gamma;
178  
179      /**
180 <     * The next seed to use for splits. Propagated using
206 <     * addGammaModGeorge across instances.
180 >     * Internal constructor used by all others except default constructor.
181       */
182 <    private final long nextSplit;
183 <
184 <    /**
211 <     * Adds the given gamma value, g, to the given seed value s, mod
212 <     * George (2^64+13). We regard s and g as unsigned values
213 <     * (ranging from 0 to 2^64-1). We add g to s either once or twice
214 <     * (mod George) as necessary to produce an (unsigned) result less
215 <     * than 2^64.  We require that g must be at least 13. This
216 <     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
217 <     * George < 2^64; thus we need only a conditional, not a loop,
218 <     * to be sure of getting a representable value.
219 <     *
220 <     * @param s a seed value
221 <     * @param g a gamma value, 13 <= g (as unsigned)
222 <     */
223 <    private static long addGammaModGeorge(long s, long g) {
224 <        long p = s + g;
225 <        if (Long.compareUnsigned(p, g) >= 0)
226 <            return p;
227 <        long q = p - 13L;
228 <        return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
182 >    private SplittableRandom(long seed, long gamma) {
183 >        this.seed = seed;
184 >        this.gamma = gamma;
185      }
186  
187      /**
188 <     * Returns a bit-mixed transformation of its argument.
233 <     * See above for explanation.
188 >     * Computes Stafford variant 13 of 64bit mix function.
189       */
190      private static long mix64(long z) {
191 <        z ^= (z >>> 33);
192 <        z *= 0xff51afd7ed558ccdL;
193 <        z ^= (z >>> 33);
239 <        z *= 0xc4ceb9fe1a85ec53L;
240 <        z ^= (z >>> 33);
241 <        return z;
191 >        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192 >        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193 >        return z ^ (z >>> 31);
194      }
195  
196      /**
197 <     * Returns a bit-mixed int transformation of its argument.
246 <     * See above for explanation.
197 >     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198       */
199      private static int mix32(long z) {
200 <        z ^= (z >>> 33);
201 <        z *= 0xc4ceb9fe1a85ec53L;
251 <        return (int)(z >>> 32);
200 >        z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201 >        return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202      }
203  
204      /**
205 <     * Internal constructor used by all other constructors and by
256 <     * method split. Establishes the initial seed for this instance,
257 <     * and uses the given splitSeed to establish gamma, as well as the
258 <     * nextSplit to use by this instance. The loop to skip ineligible
259 <     * gammas very rarely iterates, and does so at most 13 times.
205 >     * Returns the gamma value to use for a new split instance.
206       */
207 <    private SplittableRandom(long seed, long splitSeed) {
208 <        this.seed = seed;
209 <        long s = splitSeed, g;
210 <        do { // ensure gamma >= 13, considered as an unsigned integer
211 <            s = addGammaModGeorge(s, GAMMA_GAMMA);
212 <            g = mix64(s);
267 <        } while (Long.compareUnsigned(g, 13L) < 0);
268 <        this.gamma = g;
269 <        this.nextSplit = s;
207 >    private static long mixGamma(long z) {
208 >        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209 >        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210 >        z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
211 >        int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
212 >        return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213      }
214  
215      /**
216 <     * Updates in-place and returns seed.
274 <     * See above for explanation.
216 >     * Adds gamma to seed.
217       */
218      private long nextSeed() {
219 <        return seed = addGammaModGeorge(seed, gamma);
219 >        return seed += gamma;
220      }
221  
222 <    /**
223 <     * Atomically updates and returns next seed for default constructor.
224 <     */
225 <    private static long nextDefaultSeed() {
226 <        long oldSeed, newSeed;
227 <        do {
228 <            oldSeed = defaultSeedGenerator.get();
229 <            newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
230 <        } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
231 <        return mix64(newSeed);
222 >    // IllegalArgumentException messages
223 >    static final String BAD_BOUND = "bound must be positive";
224 >    static final String BAD_RANGE = "bound must be greater than origin";
225 >    static final String BAD_SIZE  = "size must be non-negative";
226 >
227 >    /**
228 >     * The seed generator for default constructors.
229 >     */
230 >    private static final AtomicLong defaultGen
231 >        = new AtomicLong(mix64(System.currentTimeMillis()) ^
232 >                         mix64(System.nanoTime()));
233 >
234 >    // at end of <clinit> to survive static initialization circularity
235 >    static {
236 >        if (java.security.AccessController.doPrivileged(
237 >            new java.security.PrivilegedAction<Boolean>() {
238 >                public Boolean run() {
239 >                    return Boolean.getBoolean("java.util.secureRandomSeed");
240 >                }})) {
241 >            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
242 >            long s = (long)seedBytes[0] & 0xffL;
243 >            for (int i = 1; i < 8; ++i)
244 >                s = (s << 8) | ((long)seedBytes[i] & 0xffL);
245 >            defaultGen.set(s);
246 >        }
247      }
248  
249      /*
# Line 364 | Line 321 | public class SplittableRandom {
321          int r = mix32(nextSeed());
322          if (origin < bound) {
323              int n = bound - origin, m = n - 1;
324 <            if ((n & m) == 0L)
324 >            if ((n & m) == 0)
325                  r = (r & m) + origin;
326              else if (n > 0) {
327                  for (int u = r >>> 1;
# Line 403 | Line 360 | public class SplittableRandom {
360      /**
361       * Creates a new SplittableRandom instance using the specified
362       * initial seed. SplittableRandom instances created with the same
363 <     * seed generate identical sequences of values.
363 >     * seed in the same program generate identical sequences of values.
364       *
365       * @param seed the initial seed
366       */
367      public SplittableRandom(long seed) {
368 <        this(seed, 0);
368 >        this(seed, GOLDEN_GAMMA);
369      }
370  
371      /**
# Line 417 | Line 374 | public class SplittableRandom {
374       * of those of any other instances in the current program; and
375       * may, and typically does, vary across program invocations.
376       */
377 <    public SplittableRandom() {
378 <        this(nextDefaultSeed(), GAMMA_GAMMA);
377 >    public SplittableRandom() { // emulate defaultGen.split()
378 >        long s = defaultGen.getAndAdd(GOLDEN_GAMMA << 1);
379 >        this.seed = mix64(s);
380 >        this.gamma = mixGamma(s + GOLDEN_GAMMA);
381      }
382  
383      /**
# Line 436 | Line 395 | public class SplittableRandom {
395       * @return the new SplittableRandom instance
396       */
397      public SplittableRandom split() {
398 <        return new SplittableRandom(nextSeed(), nextSplit);
398 >        return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
399 >    }
400 >
401 >    /**
402 >     * Fills a user-supplied byte array with generated pseudorandom bytes.
403 >     *
404 >     * @param  bytes the byte array to fill with pseudorandom bytes
405 >     * @throws NullPointerException if bytes is null
406 >     * @since  10
407 >     */
408 >    public void nextBytes(byte[] bytes) {
409 >        int i = 0;
410 >        int len = bytes.length;
411 >        for (int words = len >> 3; words--> 0; ) {
412 >            long rnd = nextLong();
413 >            for (int n = 8; n--> 0; rnd >>>= Byte.SIZE)
414 >                bytes[i++] = (byte)rnd;
415 >        }
416 >        if (i < len)
417 >            for (long rnd = nextLong(); i < len; rnd >>>= Byte.SIZE)
418 >                bytes[i++] = (byte)rnd;
419      }
420  
421      /**
# Line 452 | Line 431 | public class SplittableRandom {
431       * Returns a pseudorandom {@code int} value between zero (inclusive)
432       * and the specified bound (exclusive).
433       *
434 <     * @param bound the bound on the random number to be returned.  Must be
456 <     *        positive.
434 >     * @param bound the upper bound (exclusive).  Must be positive.
435       * @return a pseudorandom {@code int} value between zero
436       *         (inclusive) and the bound (exclusive)
437 <     * @throws IllegalArgumentException if the bound is less than zero
437 >     * @throws IllegalArgumentException if {@code bound} is not positive
438       */
439      public int nextInt(int bound) {
440          if (bound <= 0)
441 <            throw new IllegalArgumentException("bound must be positive");
441 >            throw new IllegalArgumentException(BAD_BOUND);
442          // Specialize internalNextInt for origin 0
443          int r = mix32(nextSeed());
444          int m = bound - 1;
445 <        if ((bound & m) == 0L) // power of two
445 >        if ((bound & m) == 0) // power of two
446              r &= m;
447          else { // reject over-represented candidates
448              for (int u = r >>> 1;
# Line 488 | Line 466 | public class SplittableRandom {
466       */
467      public int nextInt(int origin, int bound) {
468          if (origin >= bound)
469 <            throw new IllegalArgumentException("bound must be greater than origin");
469 >            throw new IllegalArgumentException(BAD_RANGE);
470          return internalNextInt(origin, bound);
471      }
472  
# Line 505 | Line 483 | public class SplittableRandom {
483       * Returns a pseudorandom {@code long} value between zero (inclusive)
484       * and the specified bound (exclusive).
485       *
486 <     * @param bound the bound on the random number to be returned.  Must be
509 <     *        positive.
486 >     * @param bound the upper bound (exclusive).  Must be positive.
487       * @return a pseudorandom {@code long} value between zero
488       *         (inclusive) and the bound (exclusive)
489 <     * @throws IllegalArgumentException if {@code bound} is less than zero
489 >     * @throws IllegalArgumentException if {@code bound} is not positive
490       */
491      public long nextLong(long bound) {
492          if (bound <= 0)
493 <            throw new IllegalArgumentException("bound must be positive");
493 >            throw new IllegalArgumentException(BAD_BOUND);
494          // Specialize internalNextLong for origin 0
495          long r = mix64(nextSeed());
496          long m = bound - 1;
# Line 541 | Line 518 | public class SplittableRandom {
518       */
519      public long nextLong(long origin, long bound) {
520          if (origin >= bound)
521 <            throw new IllegalArgumentException("bound must be greater than origin");
521 >            throw new IllegalArgumentException(BAD_RANGE);
522          return internalNextLong(origin, bound);
523      }
524  
# Line 550 | Line 527 | public class SplittableRandom {
527       * (inclusive) and one (exclusive).
528       *
529       * @return a pseudorandom {@code double} value between zero
530 <     * (inclusive) and one (exclusive)
530 >     *         (inclusive) and one (exclusive)
531       */
532      public double nextDouble() {
533 <        return (nextLong() >>> 11) * DOUBLE_UNIT;
533 >        return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
534      }
535  
536      /**
537       * Returns a pseudorandom {@code double} value between 0.0
538       * (inclusive) and the specified bound (exclusive).
539       *
540 <     * @param bound the bound on the random number to be returned.  Must be
564 <     *        positive.
540 >     * @param bound the upper bound (exclusive).  Must be positive.
541       * @return a pseudorandom {@code double} value between zero
542       *         (inclusive) and the bound (exclusive)
543 <     * @throws IllegalArgumentException if {@code bound} is less than zero
543 >     * @throws IllegalArgumentException if {@code bound} is not positive
544       */
545      public double nextDouble(double bound) {
546          if (!(bound > 0.0))
547 <            throw new IllegalArgumentException("bound must be positive");
548 <        double result = nextDouble() * bound;
547 >            throw new IllegalArgumentException(BAD_BOUND);
548 >        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
549          return (result < bound) ?  result : // correct for rounding
550              Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
551      }
# Line 579 | Line 555 | public class SplittableRandom {
555       * origin (inclusive) and bound (exclusive).
556       *
557       * @param origin the least value returned
558 <     * @param bound the upper bound
558 >     * @param bound the upper bound (exclusive)
559       * @return a pseudorandom {@code double} value between the origin
560       *         (inclusive) and the bound (exclusive)
561       * @throws IllegalArgumentException if {@code origin} is greater than
# Line 587 | Line 563 | public class SplittableRandom {
563       */
564      public double nextDouble(double origin, double bound) {
565          if (!(origin < bound))
566 <            throw new IllegalArgumentException("bound must be greater than origin");
566 >            throw new IllegalArgumentException(BAD_RANGE);
567          return internalNextDouble(origin, bound);
568      }
569  
570 +    /**
571 +     * Returns a pseudorandom {@code boolean} value.
572 +     *
573 +     * @return a pseudorandom {@code boolean} value
574 +     */
575 +    public boolean nextBoolean() {
576 +        return mix32(nextSeed()) < 0;
577 +    }
578 +
579      // stream methods, coded in a way intended to better isolate for
580      // maintenance purposes the small differences across forms.
581  
582      /**
583 <     * Returns a stream producing the given {@code streamSize} number of
584 <     * pseudorandom {@code int} values.
583 >     * Returns a stream producing the given {@code streamSize} number
584 >     * of pseudorandom {@code int} values from this generator and/or
585 >     * one split from it.
586       *
587       * @param streamSize the number of values to generate
588       * @return a stream of pseudorandom {@code int} values
# Line 605 | Line 591 | public class SplittableRandom {
591       */
592      public IntStream ints(long streamSize) {
593          if (streamSize < 0L)
594 <            throw new IllegalArgumentException("negative Stream size");
594 >            throw new IllegalArgumentException(BAD_SIZE);
595          return StreamSupport.intStream
596              (new RandomIntsSpliterator
597               (this, 0L, streamSize, Integer.MAX_VALUE, 0),
# Line 614 | Line 600 | public class SplittableRandom {
600  
601      /**
602       * Returns an effectively unlimited stream of pseudorandom {@code int}
603 <     * values.
603 >     * values from this generator and/or one split from it.
604       *
605       * @implNote This method is implemented to be equivalent to {@code
606       * ints(Long.MAX_VALUE)}.
# Line 629 | Line 615 | public class SplittableRandom {
615      }
616  
617      /**
618 <     * Returns a stream producing the given {@code streamSize} number of
619 <     * pseudorandom {@code int} values, each conforming to the given
620 <     * origin and bound.
618 >     * Returns a stream producing the given {@code streamSize} number
619 >     * of pseudorandom {@code int} values from this generator and/or one split
620 >     * from it; each value conforms to the given origin (inclusive) and bound
621 >     * (exclusive).
622       *
623       * @param streamSize the number of values to generate
624 <     * @param randomNumberOrigin the origin of each random value
625 <     * @param randomNumberBound the bound of each random value
624 >     * @param randomNumberOrigin the origin (inclusive) of each random value
625 >     * @param randomNumberBound the bound (exclusive) of each random value
626       * @return a stream of pseudorandom {@code int} values,
627 <     *         each with the given origin and bound
627 >     *         each with the given origin (inclusive) and bound (exclusive)
628       * @throws IllegalArgumentException if {@code streamSize} is
629       *         less than zero, or {@code randomNumberOrigin}
630       *         is greater than or equal to {@code randomNumberBound}
# Line 645 | Line 632 | public class SplittableRandom {
632      public IntStream ints(long streamSize, int randomNumberOrigin,
633                            int randomNumberBound) {
634          if (streamSize < 0L)
635 <            throw new IllegalArgumentException("negative Stream size");
635 >            throw new IllegalArgumentException(BAD_SIZE);
636          if (randomNumberOrigin >= randomNumberBound)
637 <            throw new IllegalArgumentException("bound must be greater than origin");
637 >            throw new IllegalArgumentException(BAD_RANGE);
638          return StreamSupport.intStream
639              (new RandomIntsSpliterator
640               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 656 | Line 643 | public class SplittableRandom {
643  
644      /**
645       * Returns an effectively unlimited stream of pseudorandom {@code
646 <     * int} values, each conforming to the given origin and bound.
646 >     * int} values from this generator and/or one split from it; each value
647 >     * conforms to the given origin (inclusive) and bound (exclusive).
648       *
649       * @implNote This method is implemented to be equivalent to {@code
650       * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
651       *
652 <     * @param randomNumberOrigin the origin of each random value
653 <     * @param randomNumberBound the bound of each random value
652 >     * @param randomNumberOrigin the origin (inclusive) of each random value
653 >     * @param randomNumberBound the bound (exclusive) of each random value
654       * @return a stream of pseudorandom {@code int} values,
655 <     *         each with the given origin and bound
655 >     *         each with the given origin (inclusive) and bound (exclusive)
656       * @throws IllegalArgumentException if {@code randomNumberOrigin}
657       *         is greater than or equal to {@code randomNumberBound}
658       */
659      public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
660          if (randomNumberOrigin >= randomNumberBound)
661 <            throw new IllegalArgumentException("bound must be greater than origin");
661 >            throw new IllegalArgumentException(BAD_RANGE);
662          return StreamSupport.intStream
663              (new RandomIntsSpliterator
664               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 678 | Line 666 | public class SplittableRandom {
666      }
667  
668      /**
669 <     * Returns a stream producing the given {@code streamSize} number of
670 <     * pseudorandom {@code long} values.
669 >     * Returns a stream producing the given {@code streamSize} number
670 >     * of pseudorandom {@code long} values from this generator and/or
671 >     * one split from it.
672       *
673       * @param streamSize the number of values to generate
674       * @return a stream of pseudorandom {@code long} values
# Line 688 | Line 677 | public class SplittableRandom {
677       */
678      public LongStream longs(long streamSize) {
679          if (streamSize < 0L)
680 <            throw new IllegalArgumentException("negative Stream size");
680 >            throw new IllegalArgumentException(BAD_SIZE);
681          return StreamSupport.longStream
682              (new RandomLongsSpliterator
683               (this, 0L, streamSize, Long.MAX_VALUE, 0L),
# Line 696 | Line 685 | public class SplittableRandom {
685      }
686  
687      /**
688 <     * Returns an effectively unlimited stream of pseudorandom {@code long}
689 <     * values.
688 >     * Returns an effectively unlimited stream of pseudorandom {@code
689 >     * long} values from this generator and/or one split from it.
690       *
691       * @implNote This method is implemented to be equivalent to {@code
692       * longs(Long.MAX_VALUE)}.
# Line 713 | Line 702 | public class SplittableRandom {
702  
703      /**
704       * Returns a stream producing the given {@code streamSize} number of
705 <     * pseudorandom {@code long} values, each conforming to the
706 <     * given origin and bound.
705 >     * pseudorandom {@code long} values from this generator and/or one split
706 >     * from it; each value conforms to the given origin (inclusive) and bound
707 >     * (exclusive).
708       *
709       * @param streamSize the number of values to generate
710 <     * @param randomNumberOrigin the origin of each random value
711 <     * @param randomNumberBound the bound of each random value
710 >     * @param randomNumberOrigin the origin (inclusive) of each random value
711 >     * @param randomNumberBound the bound (exclusive) of each random value
712       * @return a stream of pseudorandom {@code long} values,
713 <     *         each with the given origin and bound
713 >     *         each with the given origin (inclusive) and bound (exclusive)
714       * @throws IllegalArgumentException if {@code streamSize} is
715       *         less than zero, or {@code randomNumberOrigin}
716       *         is greater than or equal to {@code randomNumberBound}
# Line 728 | Line 718 | public class SplittableRandom {
718      public LongStream longs(long streamSize, long randomNumberOrigin,
719                              long randomNumberBound) {
720          if (streamSize < 0L)
721 <            throw new IllegalArgumentException("negative Stream size");
721 >            throw new IllegalArgumentException(BAD_SIZE);
722          if (randomNumberOrigin >= randomNumberBound)
723 <            throw new IllegalArgumentException("bound must be greater than origin");
723 >            throw new IllegalArgumentException(BAD_RANGE);
724          return StreamSupport.longStream
725              (new RandomLongsSpliterator
726               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 739 | Line 729 | public class SplittableRandom {
729  
730      /**
731       * Returns an effectively unlimited stream of pseudorandom {@code
732 <     * long} values, each conforming to the given origin and bound.
732 >     * long} values from this generator and/or one split from it; each value
733 >     * conforms to the given origin (inclusive) and bound (exclusive).
734       *
735       * @implNote This method is implemented to be equivalent to {@code
736       * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
737       *
738 <     * @param randomNumberOrigin the origin of each random value
739 <     * @param randomNumberBound the bound of each random value
738 >     * @param randomNumberOrigin the origin (inclusive) of each random value
739 >     * @param randomNumberBound the bound (exclusive) of each random value
740       * @return a stream of pseudorandom {@code long} values,
741 <     *         each with the given origin and bound
741 >     *         each with the given origin (inclusive) and bound (exclusive)
742       * @throws IllegalArgumentException if {@code randomNumberOrigin}
743       *         is greater than or equal to {@code randomNumberBound}
744       */
745      public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
746          if (randomNumberOrigin >= randomNumberBound)
747 <            throw new IllegalArgumentException("bound must be greater than origin");
747 >            throw new IllegalArgumentException(BAD_RANGE);
748          return StreamSupport.longStream
749              (new RandomLongsSpliterator
750               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 762 | Line 753 | public class SplittableRandom {
753  
754      /**
755       * Returns a stream producing the given {@code streamSize} number of
756 <     * pseudorandom {@code double} values, each between zero
757 <     * (inclusive) and one (exclusive).
756 >     * pseudorandom {@code double} values from this generator and/or one split
757 >     * from it; each value is between zero (inclusive) and one (exclusive).
758       *
759       * @param streamSize the number of values to generate
760       * @return a stream of {@code double} values
# Line 772 | Line 763 | public class SplittableRandom {
763       */
764      public DoubleStream doubles(long streamSize) {
765          if (streamSize < 0L)
766 <            throw new IllegalArgumentException("negative Stream size");
766 >            throw new IllegalArgumentException(BAD_SIZE);
767          return StreamSupport.doubleStream
768              (new RandomDoublesSpliterator
769               (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
# Line 781 | Line 772 | public class SplittableRandom {
772  
773      /**
774       * Returns an effectively unlimited stream of pseudorandom {@code
775 <     * double} values, each between zero (inclusive) and one
776 <     * (exclusive).
775 >     * double} values from this generator and/or one split from it; each value
776 >     * is between zero (inclusive) and one (exclusive).
777       *
778       * @implNote This method is implemented to be equivalent to {@code
779       * doubles(Long.MAX_VALUE)}.
# Line 798 | Line 789 | public class SplittableRandom {
789  
790      /**
791       * Returns a stream producing the given {@code streamSize} number of
792 <     * pseudorandom {@code double} values, each conforming to the
793 <     * given origin and bound.
792 >     * pseudorandom {@code double} values from this generator and/or one split
793 >     * from it; each value conforms to the given origin (inclusive) and bound
794 >     * (exclusive).
795       *
796       * @param streamSize the number of values to generate
797 <     * @param randomNumberOrigin the origin of each random value
798 <     * @param randomNumberBound the bound of each random value
797 >     * @param randomNumberOrigin the origin (inclusive) of each random value
798 >     * @param randomNumberBound the bound (exclusive) of each random value
799       * @return a stream of pseudorandom {@code double} values,
800 <     * each with the given origin and bound
800 >     *         each with the given origin (inclusive) and bound (exclusive)
801       * @throws IllegalArgumentException if {@code streamSize} is
802 <     * less than zero
811 <     * @throws IllegalArgumentException if {@code randomNumberOrigin}
802 >     *         less than zero, or {@code randomNumberOrigin}
803       *         is greater than or equal to {@code randomNumberBound}
804       */
805      public DoubleStream doubles(long streamSize, double randomNumberOrigin,
806                                  double randomNumberBound) {
807          if (streamSize < 0L)
808 <            throw new IllegalArgumentException("negative Stream size");
808 >            throw new IllegalArgumentException(BAD_SIZE);
809          if (!(randomNumberOrigin < randomNumberBound))
810 <            throw new IllegalArgumentException("bound must be greater than origin");
810 >            throw new IllegalArgumentException(BAD_RANGE);
811          return StreamSupport.doubleStream
812              (new RandomDoublesSpliterator
813               (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
# Line 825 | Line 816 | public class SplittableRandom {
816  
817      /**
818       * Returns an effectively unlimited stream of pseudorandom {@code
819 <     * double} values, each conforming to the given origin and bound.
819 >     * double} values from this generator and/or one split from it; each value
820 >     * conforms to the given origin (inclusive) and bound (exclusive).
821       *
822       * @implNote This method is implemented to be equivalent to {@code
823       * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
824       *
825 <     * @param randomNumberOrigin the origin of each random value
826 <     * @param randomNumberBound the bound of each random value
825 >     * @param randomNumberOrigin the origin (inclusive) of each random value
826 >     * @param randomNumberBound the bound (exclusive) of each random value
827       * @return a stream of pseudorandom {@code double} values,
828 <     * each with the given origin and bound
828 >     *         each with the given origin (inclusive) and bound (exclusive)
829       * @throws IllegalArgumentException if {@code randomNumberOrigin}
830       *         is greater than or equal to {@code randomNumberBound}
831       */
832      public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
833          if (!(randomNumberOrigin < randomNumberBound))
834 <            throw new IllegalArgumentException("bound must be greater than origin");
834 >            throw new IllegalArgumentException(BAD_RANGE);
835          return StreamSupport.doubleStream
836              (new RandomDoublesSpliterator
837               (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
# Line 854 | Line 846 | public class SplittableRandom {
846       * approach. The long and double versions of this class are
847       * identical except for types.
848       */
849 <    static class RandomIntsSpliterator implements Spliterator.OfInt {
849 >    private static final class RandomIntsSpliterator
850 >            implements Spliterator.OfInt {
851          final SplittableRandom rng;
852          long index;
853          final long fence;
# Line 897 | Line 890 | public class SplittableRandom {
890              long i = index, f = fence;
891              if (i < f) {
892                  index = f;
893 +                SplittableRandom r = rng;
894                  int o = origin, b = bound;
895                  do {
896 <                    consumer.accept(rng.internalNextInt(o, b));
896 >                    consumer.accept(r.internalNextInt(o, b));
897                  } while (++i < f);
898              }
899          }
# Line 908 | Line 902 | public class SplittableRandom {
902      /**
903       * Spliterator for long streams.
904       */
905 <    static class RandomLongsSpliterator implements Spliterator.OfLong {
905 >    private static final class RandomLongsSpliterator
906 >            implements Spliterator.OfLong {
907          final SplittableRandom rng;
908          long index;
909          final long fence;
# Line 951 | Line 946 | public class SplittableRandom {
946              long i = index, f = fence;
947              if (i < f) {
948                  index = f;
949 +                SplittableRandom r = rng;
950                  long o = origin, b = bound;
951                  do {
952 <                    consumer.accept(rng.internalNextLong(o, b));
952 >                    consumer.accept(r.internalNextLong(o, b));
953                  } while (++i < f);
954              }
955          }
# Line 963 | Line 959 | public class SplittableRandom {
959      /**
960       * Spliterator for double streams.
961       */
962 <    static class RandomDoublesSpliterator implements Spliterator.OfDouble {
962 >    private static final class RandomDoublesSpliterator
963 >            implements Spliterator.OfDouble {
964          final SplittableRandom rng;
965          long index;
966          final long fence;
# Line 1006 | Line 1003 | public class SplittableRandom {
1003              long i = index, f = fence;
1004              if (i < f) {
1005                  index = f;
1006 +                SplittableRandom r = rng;
1007                  double o = origin, b = bound;
1008                  do {
1009 <                    consumer.accept(rng.internalNextDouble(o, b));
1009 >                    consumer.accept(r.internalNextDouble(o, b));
1010                  } while (++i < f);
1011              }
1012          }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines