ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.11
Committed: Tue Jul 16 12:32:05 2013 UTC (10 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.10: +43 -21 lines
Log Message:
Incorporate suggestions

File Contents

# Content
1 /*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.concurrent.atomic.AtomicLong;
29 import java.util.Spliterator;
30 import java.util.function.IntConsumer;
31 import java.util.function.LongConsumer;
32 import java.util.function.DoubleConsumer;
33 import java.util.stream.StreamSupport;
34 import java.util.stream.IntStream;
35 import java.util.stream.LongStream;
36 import java.util.stream.DoubleStream;
37
38 /**
39 * A generator of uniform pseudorandom values applicable for use in
40 * (among other contexts) isolated parallel computations that may
41 * generate subtasks. Class SplittableRandom supports methods for
42 * producing pseudorandom numbers of type {@code int}, {@code long},
43 * and {@code double} with similar usages as for class
44 * {@link java.util.Random} but differs in the following ways:
45 *
46 * <ul>
47 *
48 * <li>Series of generated values pass the DieHarder suite testing
49 * independence and uniformity properties of random number generators.
50 * (Most recently validated with <a
51 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
52 * 3.31.1</a>.) These tests validate only the methods for certain
53 * types and ranges, but similar properties are expected to hold, at
54 * least approximately, for others as well. The <em>period</em>
55 * (length of any series of generated values before it repeats) is at
56 * least 2<sup>64</sup>. </li>
57 *
58 * <li> Method {@link #split} constructs and returns a new
59 * SplittableRandom instance that shares no mutable state with the
60 * current instance. However, with very high probability, the
61 * values collectively generated by the two objects have the same
62 * statistical properties as if the same quantity of values were
63 * generated by a single thread using a single {@code
64 * SplittableRandom} object. </li>
65 *
66 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
67 * They are designed to be split, not shared, across threads. For
68 * example, a {@link java.util.concurrent.ForkJoinTask
69 * fork/join-style} computation using random numbers might include a
70 * construction of the form {@code new
71 * Subtask(aSplittableRandom.split()).fork()}.
72 *
73 * <li>This class provides additional methods for generating random
74 * streams, that employ the above techniques when used in {@code
75 * stream.parallel()} mode.</li>
76 *
77 * </ul>
78 *
79 * @author Guy Steele
80 * @author Doug Lea
81 * @since 1.8
82 */
83 public class SplittableRandom {
84
85 /*
86 * File organization: First the non-public methods that constitute
87 * the main algorithm, then the main public methods, followed by
88 * some custom spliterator classes needed for stream methods.
89 *
90 * Credits: Primary algorithm and code by Guy Steele. Stream
91 * support methods by Doug Lea. Documentation jointly produced
92 * with additional help from Brian Goetz.
93 */
94
95 /*
96 * Implementation Overview.
97 *
98 * This algorithm was inspired by the "DotMix" algorithm by
99 * Leiserson, Schardl, and Sukha "Deterministic Parallel
100 * Random-Number Generation for Dynamic-Multithreading Platforms",
101 * PPoPP 2012, but improves and extends it in several ways.
102 *
103 * The primary update step (see method nextSeed()) is simply to
104 * add a constant ("gamma") to the current seed, modulo a prime
105 * ("George"). However, the nextLong and nextInt methods do not
106 * return this value, but instead the results of bit-mixing
107 * transformations that produce more uniformly distributed
108 * sequences.
109 *
110 * "George" is the otherwise nameless (because it cannot be
111 * represented) prime number 2^64+13. Using a prime number larger
112 * than can fit in a long ensures that all possible long values
113 * can occur, plus 13 others that just get skipped over when they
114 * are encountered; see method addGammaModGeorge. For this to
115 * work, initial gamma values must be at least 13.
116 *
117 * The value of gamma differs for each instance across a series of
118 * splits, and is generated using a slightly stripped-down variant
119 * of the same algorithm, but operating across calls to split(),
120 * not calls to nextSeed(): Each instance carries the state of
121 * this generator as nextSplit, and uses mix64(nextSplit) as its
122 * own gamma value. Computations of gammas themselves use a fixed
123 * constant as the second argument to the addGammaModGeorge
124 * function, GAMMA_GAMMA, a "genuinely random" number from a
125 * radioactive decay reading (obtained from
126 * http://www.fourmilab.ch/hotbits/) meeting the above range
127 * constraint. Using a fixed constant maintains the invariant that
128 * the value of gamma is the same for every instance that is at
129 * the same split-distance from their common root. (Note: there is
130 * nothing especially magic about obtaining this constant from a
131 * "truly random" physical source rather than just choosing one
132 * arbitrarily; using "hotbits" was merely an aesthetically pleasing
133 * choice. In either case, good statistical behavior of the
134 * algorithm should be, and was, verified by using the DieHarder
135 * test suite.)
136 *
137 * The mix64 bit-mixing function called by nextLong and other
138 * methods computes the same value as the "64-bit finalizer"
139 * function in Austin Appleby's MurmurHash3 algorithm. See
140 * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
141 * comments: "The constants for the finalizers were generated by a
142 * simple simulated-annealing algorithm, and both avalanche all
143 * bits of 'h' to within 0.25% bias." It also appears to work to
144 * use instead any of the variants proposed by David Stafford at
145 * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
146 * but these variants have not yet been tested as thoroughly
147 * in the context of the implementation of SplittableRandom.
148 *
149 * The mix32 function used for nextInt just consists of two of the
150 * five lines of mix64; avalanche testing shows that the 64-bit result
151 * has its top 32 bits avalanched well, though not the bottom 32 bits.
152 * DieHarder tests show that it is adequate for generating one
153 * random int from the 64-bit result of nextSeed.
154 *
155 * Support for the default (no-argument) constructor relies on an
156 * AtomicLong (defaultSeedGenerator) to help perform the
157 * equivalent of a split of a statically constructed
158 * SplittableRandom. Unlike other cases, this split must be
159 * performed in a thread-safe manner. We use
160 * AtomicLong.compareAndSet as the (typically) most efficient
161 * mechanism. To bootstrap, we start off using a function of the
162 * current System time as seed, and update using another
163 * "genuinely random" constant DEFAULT_SEED_GAMMA. The default
164 * constructor uses GAMMA_GAMMA, not 0, for its splitSeed argument
165 * (addGammaModGeorge(0, GAMMA_GAMMA) == GAMMA_GAMMA) to reflect
166 * that each is split from this root generator, even though the
167 * root is not explicitly represented as a SplittableRandom. When
168 * establishing the initial seed, we use both
169 * System.currentTimeMillis and System.nanoTime(), to avoid
170 * regularities that may occur if using either alone.
171 */
172
173 /**
174 * The "genuinely random" value for producing new gamma values.
175 * The value is arbitrary, subject to the requirement that it be
176 * greater or equal to 13.
177 */
178 private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
179
180 /**
181 * The "genuinely random" seed update value for default constructors.
182 * The value is arbitrary, subject to the requirement that it be
183 * greater or equal to 13.
184 */
185 private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
186
187 /**
188 * The value 13 with 64bit sign bit set. Used in the signed
189 * comparison in addGammaModGeorge.
190 */
191 private static final long BOTTOM13 = 0x800000000000000DL;
192
193 /**
194 * The least non-zero value returned by nextDouble(). This value
195 * is scaled by a random value of 53 bits to produce a result.
196 */
197 private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
198
199 /**
200 * The next seed for default constructors.
201 */
202 private static final AtomicLong defaultSeedGenerator =
203 new AtomicLong(mix64(System.currentTimeMillis()) ^
204 mix64(System.nanoTime()));
205
206 /**
207 * The seed, updated only via method nextSeed.
208 */
209 private long seed;
210
211 /**
212 * The constant value added to seed (mod George) on each update.
213 */
214 private final long gamma;
215
216 /**
217 * The next seed to use for splits. Propagated using
218 * addGammaModGeorge across instances.
219 */
220 private final long nextSplit;
221
222 /**
223 * Adds the given gamma value, g, to the given seed value s, mod
224 * George (2^64+13). We regard s and g as unsigned values
225 * (ranging from 0 to 2^64-1). We add g to s either once or twice
226 * (mod George) as necessary to produce an (unsigned) result less
227 * than 2^64. We require that g must be at least 13. This
228 * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
229 * George < 2^64; thus we need only a conditional, not a loop,
230 * to be sure of getting a representable value.
231 *
232 * Because Java comparison operators are signed, we implement this
233 * by conceptually offsetting seed values downwards by 2^63, so
234 * 0..13 is represented as Long.MIN_VALUE..BOTTOM13.
235 *
236 * @param s a seed value, viewed as a signed long
237 * @param g a gamma value, 13 <= g (as unsigned)
238 */
239 private static long addGammaModGeorge(long s, long g) {
240 long p = s + g;
241 return (p >= s) ? p : ((p >= BOTTOM13) ? p : p + g) - 13L;
242 }
243
244 /**
245 * Returns a bit-mixed transformation of its argument.
246 * See above for explanation.
247 */
248 private static long mix64(long z) {
249 z ^= (z >>> 33);
250 z *= 0xff51afd7ed558ccdL;
251 z ^= (z >>> 33);
252 z *= 0xc4ceb9fe1a85ec53L;
253 z ^= (z >>> 33);
254 return z;
255 }
256
257 /**
258 * Returns a bit-mixed int transformation of its argument.
259 * See above for explanation.
260 */
261 private static int mix32(long z) {
262 z ^= (z >>> 33);
263 z *= 0xc4ceb9fe1a85ec53L;
264 return (int)(z >>> 32);
265 }
266
267 /**
268 * Internal constructor used by all other constructors and by
269 * method split. Establishes the initial seed for this instance,
270 * and uses the given splitSeed to establish gamma, as well as the
271 * nextSplit to use by this instance. The loop to skip ineligible
272 * gammas very rarely iterates, and does so at most 13 times.
273 */
274 private SplittableRandom(long seed, long splitSeed) {
275 this.seed = seed;
276 long s = splitSeed, g;
277 do { // ensure gamma >= 13, considered as an unsigned integer
278 s = addGammaModGeorge(s, GAMMA_GAMMA);
279 g = mix64(s);
280 } while (g >= 0L && g < 13L);
281 this.gamma = g;
282 this.nextSplit = s;
283 }
284
285 /**
286 * Updates in-place and returns seed.
287 * See above for explanation.
288 */
289 private long nextSeed() {
290 return seed = addGammaModGeorge(seed, gamma);
291 }
292
293 /**
294 * Atomically updates and returns next seed for default constructor.
295 */
296 private static long nextDefaultSeed() {
297 long oldSeed, newSeed;
298 do {
299 oldSeed = defaultSeedGenerator.get();
300 newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
301 } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
302 return mix64(newSeed);
303 }
304
305 /*
306 * Internal versions of nextX methods used by streams, as well as
307 * the public nextX(origin, bound) methods. These exist mainly to
308 * avoid the need for multiple versions of stream spliterators
309 * across the different exported forms of streams.
310 */
311
312 /**
313 * The form of nextLong used by LongStream Spliterators. If
314 * origin is greater than bound, acts as unbounded form of
315 * nextLong, else as bounded form.
316 *
317 * @param origin the least value, unless greater than bound
318 * @param bound the upper bound (exclusive), must not equal origin
319 * @return a pseudorandom value
320 */
321 final long internalNextLong(long origin, long bound) {
322 /*
323 * Four Cases:
324 *
325 * 1. If the arguments indicate unbounded form, act as
326 * nextLong().
327 *
328 * 2. If the range is an exact power of two, apply the
329 * associated bit mask.
330 *
331 * 3. If the range is positive, loop to avoid potential bias
332 * when the implicit nextLong() bound (2<sup>64</sup>) is not
333 * evenly divisible by the range. The loop rejects candidates
334 * computed from otherwise over-represented values. The
335 * expected number of iterations under an ideal generator
336 * varies from 1 to 2, depending on the bound. The loop itself
337 * takes an unlovable form. Because the first candidate is
338 * already available, we need a break-in-the-middle
339 * construction, which is concisely but cryptically performed
340 * within the while-condition of a body-less for loop.
341 *
342 * 4. Otherwise, the range cannot be represented as a positive
343 * long. The loop repeatedly generates unbounded longs until
344 * obtaining a candidate meeting constraints (with an expected
345 * number of iterations of less than two).
346 */
347
348 long r = mix64(nextSeed());
349 if (origin < bound) {
350 long n = bound - origin, m = n - 1;
351 if ((n & m) == 0L) // power of two
352 r = (r & m) + origin;
353 else if (n > 0L) { // reject over-represented candidates
354 for (long u = r >>> 1; // ensure nonnegative
355 u + m - (r = u % n) < 0L; // rejection check
356 u = mix64(nextSeed()) >>> 1) // retry
357 ;
358 r += origin;
359 }
360 else { // range not representable as long
361 while (r < origin || r >= bound)
362 r = mix64(nextSeed());
363 }
364 }
365 return r;
366 }
367
368 /**
369 * The form of nextInt used by IntStream Spliterators.
370 * Exactly the same as long version, except for types.
371 *
372 * @param origin the least value, unless greater than bound
373 * @param bound the upper bound (exclusive), must not equal origin
374 * @return a pseudorandom value
375 */
376 final int internalNextInt(int origin, int bound) {
377 int r = mix32(nextSeed());
378 if (origin < bound) {
379 int n = bound - origin, m = n - 1;
380 if ((n & m) == 0L)
381 r = (r & m) + origin;
382 else if (n > 0) {
383 for (int u = r >>> 1;
384 u + m - (r = u % n) < 0;
385 u = mix32(nextSeed()) >>> 1)
386 ;
387 r += origin;
388 }
389 else {
390 while (r < origin || r >= bound)
391 r = mix32(nextSeed());
392 }
393 }
394 return r;
395 }
396
397 /**
398 * The form of nextDouble used by DoubleStream Spliterators.
399 *
400 * @param origin the least value, unless greater than bound
401 * @param bound the upper bound (exclusive), must not equal origin
402 * @return a pseudorandom value
403 */
404 final double internalNextDouble(double origin, double bound) {
405 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
406 if (origin < bound) {
407 r = r * (bound - origin) + origin;
408 if (r >= bound) // correct for rounding
409 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
410 }
411 return r;
412 }
413
414 /* ---------------- public methods ---------------- */
415
416 /**
417 * Creates a new SplittableRandom instance using the specified
418 * initial seed. SplittableRandom instances created with the same
419 * seed in the same program generate identical sequences of values.
420 *
421 * @param seed the initial seed
422 */
423 public SplittableRandom(long seed) {
424 this(seed, 0);
425 }
426
427 /**
428 * Creates a new SplittableRandom instance that is likely to
429 * generate sequences of values that are statistically independent
430 * of those of any other instances in the current program; and
431 * may, and typically does, vary across program invocations.
432 */
433 public SplittableRandom() {
434 this(nextDefaultSeed(), GAMMA_GAMMA);
435 }
436
437 /**
438 * Constructs and returns a new SplittableRandom instance that
439 * shares no mutable state with this instance. However, with very
440 * high probability, the set of values collectively generated by
441 * the two objects has the same statistical properties as if the
442 * same quantity of values were generated by a single thread using
443 * a single SplittableRandom object. Either or both of the two
444 * objects may be further split using the {@code split()} method,
445 * and the same expected statistical properties apply to the
446 * entire set of generators constructed by such recursive
447 * splitting.
448 *
449 * @return the new SplittableRandom instance
450 */
451 public SplittableRandom split() {
452 return new SplittableRandom(nextSeed(), nextSplit);
453 }
454
455 /**
456 * Returns a pseudorandom {@code int} value.
457 *
458 * @return a pseudorandom {@code int} value
459 */
460 public int nextInt() {
461 return mix32(nextSeed());
462 }
463
464 /**
465 * Returns a pseudorandom {@code int} value between zero (inclusive)
466 * and the specified bound (exclusive).
467 *
468 * @param bound the bound on the random number to be returned. Must be
469 * positive.
470 * @return a pseudorandom {@code int} value between zero
471 * (inclusive) and the bound (exclusive)
472 * @throws IllegalArgumentException if the bound is less than zero
473 */
474 public int nextInt(int bound) {
475 if (bound <= 0)
476 throw new IllegalArgumentException("bound must be positive");
477 // Specialize internalNextInt for origin 0
478 int r = mix32(nextSeed());
479 int m = bound - 1;
480 if ((bound & m) == 0L) // power of two
481 r &= m;
482 else { // reject over-represented candidates
483 for (int u = r >>> 1;
484 u + m - (r = u % bound) < 0;
485 u = mix32(nextSeed()) >>> 1)
486 ;
487 }
488 return r;
489 }
490
491 /**
492 * Returns a pseudorandom {@code int} value between the specified
493 * origin (inclusive) and the specified bound (exclusive).
494 *
495 * @param origin the least value returned
496 * @param bound the upper bound (exclusive)
497 * @return a pseudorandom {@code int} value between the origin
498 * (inclusive) and the bound (exclusive)
499 * @throws IllegalArgumentException if {@code origin} is greater than
500 * or equal to {@code bound}
501 */
502 public int nextInt(int origin, int bound) {
503 if (origin >= bound)
504 throw new IllegalArgumentException("bound must be greater than origin");
505 return internalNextInt(origin, bound);
506 }
507
508 /**
509 * Returns a pseudorandom {@code long} value.
510 *
511 * @return a pseudorandom {@code long} value
512 */
513 public long nextLong() {
514 return mix64(nextSeed());
515 }
516
517 /**
518 * Returns a pseudorandom {@code long} value between zero (inclusive)
519 * and the specified bound (exclusive).
520 *
521 * @param bound the bound on the random number to be returned. Must be
522 * positive.
523 * @return a pseudorandom {@code long} value between zero
524 * (inclusive) and the bound (exclusive)
525 * @throws IllegalArgumentException if {@code bound} is less than zero
526 */
527 public long nextLong(long bound) {
528 if (bound <= 0)
529 throw new IllegalArgumentException("bound must be positive");
530 // Specialize internalNextLong for origin 0
531 long r = mix64(nextSeed());
532 long m = bound - 1;
533 if ((bound & m) == 0L) // power of two
534 r &= m;
535 else { // reject over-represented candidates
536 for (long u = r >>> 1;
537 u + m - (r = u % bound) < 0L;
538 u = mix64(nextSeed()) >>> 1)
539 ;
540 }
541 return r;
542 }
543
544 /**
545 * Returns a pseudorandom {@code long} value between the specified
546 * origin (inclusive) and the specified bound (exclusive).
547 *
548 * @param origin the least value returned
549 * @param bound the upper bound (exclusive)
550 * @return a pseudorandom {@code long} value between the origin
551 * (inclusive) and the bound (exclusive)
552 * @throws IllegalArgumentException if {@code origin} is greater than
553 * or equal to {@code bound}
554 */
555 public long nextLong(long origin, long bound) {
556 if (origin >= bound)
557 throw new IllegalArgumentException("bound must be greater than origin");
558 return internalNextLong(origin, bound);
559 }
560
561 /**
562 * Returns a pseudorandom {@code double} value between zero
563 * (inclusive) and one (exclusive).
564 *
565 * @return a pseudorandom {@code double} value between zero
566 * (inclusive) and one (exclusive)
567 */
568 public double nextDouble() {
569 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
570 }
571
572 /**
573 * Returns a pseudorandom {@code double} value between 0.0
574 * (inclusive) and the specified bound (exclusive).
575 *
576 * @param bound the bound on the random number to be returned. Must be
577 * positive.
578 * @return a pseudorandom {@code double} value between zero
579 * (inclusive) and the bound (exclusive)
580 * @throws IllegalArgumentException if {@code bound} is less than zero
581 */
582 public double nextDouble(double bound) {
583 if (!(bound > 0.0))
584 throw new IllegalArgumentException("bound must be positive");
585 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
586 return (result < bound) ? result : // correct for rounding
587 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
588 }
589
590 /**
591 * Returns a pseudorandom {@code double} value between the specified
592 * origin (inclusive) and bound (exclusive).
593 *
594 * @param origin the least value returned
595 * @param bound the upper bound
596 * @return a pseudorandom {@code double} value between the origin
597 * (inclusive) and the bound (exclusive)
598 * @throws IllegalArgumentException if {@code origin} is greater than
599 * or equal to {@code bound}
600 */
601 public double nextDouble(double origin, double bound) {
602 if (!(origin < bound))
603 throw new IllegalArgumentException("bound must be greater than origin");
604 return internalNextDouble(origin, bound);
605 }
606
607 /**
608 * Returns a pseudorandom {@code boolean} value.
609 *
610 * @return a pseudorandom {@code boolean} value
611 */
612 public boolean nextBoolean() {
613 return mix32(nextSeed()) < 0;
614 }
615
616 // stream methods, coded in a way intended to better isolate for
617 // maintenance purposes the small differences across forms.
618
619 /**
620 * Returns a stream producing the given {@code streamSize} number of
621 * pseudorandom {@code int} values.
622 *
623 * @param streamSize the number of values to generate
624 * @return a stream of pseudorandom {@code int} values
625 * @throws IllegalArgumentException if {@code streamSize} is
626 * less than zero
627 */
628 public IntStream ints(long streamSize) {
629 if (streamSize < 0L)
630 throw new IllegalArgumentException("negative Stream size");
631 return StreamSupport.intStream
632 (new RandomIntsSpliterator
633 (this, 0L, streamSize, Integer.MAX_VALUE, 0),
634 false);
635 }
636
637 /**
638 * Returns an effectively unlimited stream of pseudorandom {@code int}
639 * values.
640 *
641 * @implNote This method is implemented to be equivalent to {@code
642 * ints(Long.MAX_VALUE)}.
643 *
644 * @return a stream of pseudorandom {@code int} values
645 */
646 public IntStream ints() {
647 return StreamSupport.intStream
648 (new RandomIntsSpliterator
649 (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
650 false);
651 }
652
653 /**
654 * Returns a stream producing the given {@code streamSize} number of
655 * pseudorandom {@code int} values, each conforming to the given
656 * origin and bound.
657 *
658 * @param streamSize the number of values to generate
659 * @param randomNumberOrigin the origin of each random value
660 * @param randomNumberBound the bound of each random value
661 * @return a stream of pseudorandom {@code int} values,
662 * each with the given origin and bound
663 * @throws IllegalArgumentException if {@code streamSize} is
664 * less than zero, or {@code randomNumberOrigin}
665 * is greater than or equal to {@code randomNumberBound}
666 */
667 public IntStream ints(long streamSize, int randomNumberOrigin,
668 int randomNumberBound) {
669 if (streamSize < 0L)
670 throw new IllegalArgumentException("negative Stream size");
671 if (randomNumberOrigin >= randomNumberBound)
672 throw new IllegalArgumentException("bound must be greater than origin");
673 return StreamSupport.intStream
674 (new RandomIntsSpliterator
675 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
676 false);
677 }
678
679 /**
680 * Returns an effectively unlimited stream of pseudorandom {@code
681 * int} values, each conforming to the given origin and bound.
682 *
683 * @implNote This method is implemented to be equivalent to {@code
684 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
685 *
686 * @param randomNumberOrigin the origin of each random value
687 * @param randomNumberBound the bound of each random value
688 * @return a stream of pseudorandom {@code int} values,
689 * each with the given origin and bound
690 * @throws IllegalArgumentException if {@code randomNumberOrigin}
691 * is greater than or equal to {@code randomNumberBound}
692 */
693 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
694 if (randomNumberOrigin >= randomNumberBound)
695 throw new IllegalArgumentException("bound must be greater than origin");
696 return StreamSupport.intStream
697 (new RandomIntsSpliterator
698 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
699 false);
700 }
701
702 /**
703 * Returns a stream producing the given {@code streamSize} number of
704 * pseudorandom {@code long} values.
705 *
706 * @param streamSize the number of values to generate
707 * @return a stream of pseudorandom {@code long} values
708 * @throws IllegalArgumentException if {@code streamSize} is
709 * less than zero
710 */
711 public LongStream longs(long streamSize) {
712 if (streamSize < 0L)
713 throw new IllegalArgumentException("negative Stream size");
714 return StreamSupport.longStream
715 (new RandomLongsSpliterator
716 (this, 0L, streamSize, Long.MAX_VALUE, 0L),
717 false);
718 }
719
720 /**
721 * Returns an effectively unlimited stream of pseudorandom {@code long}
722 * values.
723 *
724 * @implNote This method is implemented to be equivalent to {@code
725 * longs(Long.MAX_VALUE)}.
726 *
727 * @return a stream of pseudorandom {@code long} values
728 */
729 public LongStream longs() {
730 return StreamSupport.longStream
731 (new RandomLongsSpliterator
732 (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
733 false);
734 }
735
736 /**
737 * Returns a stream producing the given {@code streamSize} number of
738 * pseudorandom {@code long} values, each conforming to the
739 * given origin and bound.
740 *
741 * @param streamSize the number of values to generate
742 * @param randomNumberOrigin the origin of each random value
743 * @param randomNumberBound the bound of each random value
744 * @return a stream of pseudorandom {@code long} values,
745 * each with the given origin and bound
746 * @throws IllegalArgumentException if {@code streamSize} is
747 * less than zero, or {@code randomNumberOrigin}
748 * is greater than or equal to {@code randomNumberBound}
749 */
750 public LongStream longs(long streamSize, long randomNumberOrigin,
751 long randomNumberBound) {
752 if (streamSize < 0L)
753 throw new IllegalArgumentException("negative Stream size");
754 if (randomNumberOrigin >= randomNumberBound)
755 throw new IllegalArgumentException("bound must be greater than origin");
756 return StreamSupport.longStream
757 (new RandomLongsSpliterator
758 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
759 false);
760 }
761
762 /**
763 * Returns an effectively unlimited stream of pseudorandom {@code
764 * long} values, each conforming to the given origin and bound.
765 *
766 * @implNote This method is implemented to be equivalent to {@code
767 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
768 *
769 * @param randomNumberOrigin the origin of each random value
770 * @param randomNumberBound the bound of each random value
771 * @return a stream of pseudorandom {@code long} values,
772 * each with the given origin and bound
773 * @throws IllegalArgumentException if {@code randomNumberOrigin}
774 * is greater than or equal to {@code randomNumberBound}
775 */
776 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
777 if (randomNumberOrigin >= randomNumberBound)
778 throw new IllegalArgumentException("bound must be greater than origin");
779 return StreamSupport.longStream
780 (new RandomLongsSpliterator
781 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
782 false);
783 }
784
785 /**
786 * Returns a stream producing the given {@code streamSize} number of
787 * pseudorandom {@code double} values, each between zero
788 * (inclusive) and one (exclusive).
789 *
790 * @param streamSize the number of values to generate
791 * @return a stream of {@code double} values
792 * @throws IllegalArgumentException if {@code streamSize} is
793 * less than zero
794 */
795 public DoubleStream doubles(long streamSize) {
796 if (streamSize < 0L)
797 throw new IllegalArgumentException("negative Stream size");
798 return StreamSupport.doubleStream
799 (new RandomDoublesSpliterator
800 (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
801 false);
802 }
803
804 /**
805 * Returns an effectively unlimited stream of pseudorandom {@code
806 * double} values, each between zero (inclusive) and one
807 * (exclusive).
808 *
809 * @implNote This method is implemented to be equivalent to {@code
810 * doubles(Long.MAX_VALUE)}.
811 *
812 * @return a stream of pseudorandom {@code double} values
813 */
814 public DoubleStream doubles() {
815 return StreamSupport.doubleStream
816 (new RandomDoublesSpliterator
817 (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
818 false);
819 }
820
821 /**
822 * Returns a stream producing the given {@code streamSize} number of
823 * pseudorandom {@code double} values, each conforming to the
824 * given origin and bound.
825 *
826 * @param streamSize the number of values to generate
827 * @param randomNumberOrigin the origin of each random value
828 * @param randomNumberBound the bound of each random value
829 * @return a stream of pseudorandom {@code double} values,
830 * each with the given origin and bound
831 * @throws IllegalArgumentException if {@code streamSize} is
832 * less than zero
833 * @throws IllegalArgumentException if {@code randomNumberOrigin}
834 * is greater than or equal to {@code randomNumberBound}
835 */
836 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
837 double randomNumberBound) {
838 if (streamSize < 0L)
839 throw new IllegalArgumentException("negative Stream size");
840 if (!(randomNumberOrigin < randomNumberBound))
841 throw new IllegalArgumentException("bound must be greater than origin");
842 return StreamSupport.doubleStream
843 (new RandomDoublesSpliterator
844 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
845 false);
846 }
847
848 /**
849 * Returns an effectively unlimited stream of pseudorandom {@code
850 * double} values, each conforming to the given origin and bound.
851 *
852 * @implNote This method is implemented to be equivalent to {@code
853 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
854 *
855 * @param randomNumberOrigin the origin of each random value
856 * @param randomNumberBound the bound of each random value
857 * @return a stream of pseudorandom {@code double} values,
858 * each with the given origin and bound
859 * @throws IllegalArgumentException if {@code randomNumberOrigin}
860 * is greater than or equal to {@code randomNumberBound}
861 */
862 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
863 if (!(randomNumberOrigin < randomNumberBound))
864 throw new IllegalArgumentException("bound must be greater than origin");
865 return StreamSupport.doubleStream
866 (new RandomDoublesSpliterator
867 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
868 false);
869 }
870
871 /**
872 * Spliterator for int streams. We multiplex the four int
873 * versions into one class by treating a bound less than origin as
874 * unbounded, and also by treating "infinite" as equivalent to
875 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
876 * approach. The long and double versions of this class are
877 * identical except for types.
878 */
879 static final class RandomIntsSpliterator implements Spliterator.OfInt {
880 final SplittableRandom rng;
881 long index;
882 final long fence;
883 final int origin;
884 final int bound;
885 RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
886 int origin, int bound) {
887 this.rng = rng; this.index = index; this.fence = fence;
888 this.origin = origin; this.bound = bound;
889 }
890
891 public RandomIntsSpliterator trySplit() {
892 long i = index, m = (i + fence) >>> 1;
893 return (m <= i) ? null :
894 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
895 }
896
897 public long estimateSize() {
898 return fence - index;
899 }
900
901 public int characteristics() {
902 return (Spliterator.SIZED | Spliterator.SUBSIZED |
903 Spliterator.NONNULL | Spliterator.IMMUTABLE);
904 }
905
906 public boolean tryAdvance(IntConsumer consumer) {
907 if (consumer == null) throw new NullPointerException();
908 long i = index, f = fence;
909 if (i < f) {
910 consumer.accept(rng.internalNextInt(origin, bound));
911 index = i + 1;
912 return true;
913 }
914 return false;
915 }
916
917 public void forEachRemaining(IntConsumer consumer) {
918 if (consumer == null) throw new NullPointerException();
919 long i = index, f = fence;
920 if (i < f) {
921 index = f;
922 int o = origin, b = bound;
923 do {
924 consumer.accept(rng.internalNextInt(o, b));
925 } while (++i < f);
926 }
927 }
928 }
929
930 /**
931 * Spliterator for long streams.
932 */
933 static final class RandomLongsSpliterator implements Spliterator.OfLong {
934 final SplittableRandom rng;
935 long index;
936 final long fence;
937 final long origin;
938 final long bound;
939 RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
940 long origin, long bound) {
941 this.rng = rng; this.index = index; this.fence = fence;
942 this.origin = origin; this.bound = bound;
943 }
944
945 public RandomLongsSpliterator trySplit() {
946 long i = index, m = (i + fence) >>> 1;
947 return (m <= i) ? null :
948 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
949 }
950
951 public long estimateSize() {
952 return fence - index;
953 }
954
955 public int characteristics() {
956 return (Spliterator.SIZED | Spliterator.SUBSIZED |
957 Spliterator.NONNULL | Spliterator.IMMUTABLE);
958 }
959
960 public boolean tryAdvance(LongConsumer consumer) {
961 if (consumer == null) throw new NullPointerException();
962 long i = index, f = fence;
963 if (i < f) {
964 consumer.accept(rng.internalNextLong(origin, bound));
965 index = i + 1;
966 return true;
967 }
968 return false;
969 }
970
971 public void forEachRemaining(LongConsumer consumer) {
972 if (consumer == null) throw new NullPointerException();
973 long i = index, f = fence;
974 if (i < f) {
975 index = f;
976 long o = origin, b = bound;
977 do {
978 consumer.accept(rng.internalNextLong(o, b));
979 } while (++i < f);
980 }
981 }
982
983 }
984
985 /**
986 * Spliterator for double streams.
987 */
988 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
989 final SplittableRandom rng;
990 long index;
991 final long fence;
992 final double origin;
993 final double bound;
994 RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
995 double origin, double bound) {
996 this.rng = rng; this.index = index; this.fence = fence;
997 this.origin = origin; this.bound = bound;
998 }
999
1000 public RandomDoublesSpliterator trySplit() {
1001 long i = index, m = (i + fence) >>> 1;
1002 return (m <= i) ? null :
1003 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
1004 }
1005
1006 public long estimateSize() {
1007 return fence - index;
1008 }
1009
1010 public int characteristics() {
1011 return (Spliterator.SIZED | Spliterator.SUBSIZED |
1012 Spliterator.NONNULL | Spliterator.IMMUTABLE);
1013 }
1014
1015 public boolean tryAdvance(DoubleConsumer consumer) {
1016 if (consumer == null) throw new NullPointerException();
1017 long i = index, f = fence;
1018 if (i < f) {
1019 consumer.accept(rng.internalNextDouble(origin, bound));
1020 index = i + 1;
1021 return true;
1022 }
1023 return false;
1024 }
1025
1026 public void forEachRemaining(DoubleConsumer consumer) {
1027 if (consumer == null) throw new NullPointerException();
1028 long i = index, f = fence;
1029 if (i < f) {
1030 index = f;
1031 double o = origin, b = bound;
1032 do {
1033 consumer.accept(rng.internalNextDouble(o, b));
1034 } while (++i < f);
1035 }
1036 }
1037 }
1038
1039 }