ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.13
Committed: Thu Jul 25 13:19:09 2013 UTC (10 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.12: +54 -32 lines
Log Message:
Use 57bit gamma

File Contents

# Content
1 /*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.security.SecureRandom;
29 import java.util.concurrent.atomic.AtomicLong;
30 import java.util.Spliterator;
31 import java.util.function.IntConsumer;
32 import java.util.function.LongConsumer;
33 import java.util.function.DoubleConsumer;
34 import java.util.stream.StreamSupport;
35 import java.util.stream.IntStream;
36 import java.util.stream.LongStream;
37 import java.util.stream.DoubleStream;
38
39 /**
40 * A generator of uniform pseudorandom values applicable for use in
41 * (among other contexts) isolated parallel computations that may
42 * generate subtasks. Class SplittableRandom supports methods for
43 * producing pseudorandom numbers of type {@code int}, {@code long},
44 * and {@code double} with similar usages as for class
45 * {@link java.util.Random} but differs in the following ways:
46 *
47 * <ul>
48 *
49 * <li>Series of generated values pass the DieHarder suite testing
50 * independence and uniformity properties of random number generators.
51 * (Most recently validated with <a
52 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
53 * 3.31.1</a>.) These tests validate only the methods for certain
54 * types and ranges, but similar properties are expected to hold, at
55 * least approximately, for others as well. The <em>period</em>
56 * (length of any series of generated values before it repeats) is at
57 * least 2<sup>64</sup>. </li>
58 *
59 * <li> Method {@link #split} constructs and returns a new
60 * SplittableRandom instance that shares no mutable state with the
61 * current instance. However, with very high probability, the
62 * values collectively generated by the two objects have the same
63 * statistical properties as if the same quantity of values were
64 * generated by a single thread using a single {@code
65 * SplittableRandom} object. </li>
66 *
67 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
68 * They are designed to be split, not shared, across threads. For
69 * example, a {@link java.util.concurrent.ForkJoinTask
70 * fork/join-style} computation using random numbers might include a
71 * construction of the form {@code new
72 * Subtask(aSplittableRandom.split()).fork()}.
73 *
74 * <li>This class provides additional methods for generating random
75 * streams, that employ the above techniques when used in {@code
76 * stream.parallel()} mode.</li>
77 *
78 * </ul>
79 *
80 * @author Guy Steele
81 * @author Doug Lea
82 * @since 1.8
83 */
84 public class SplittableRandom {
85
86 /*
87 * File organization: First the non-public methods that constitute
88 * the main algorithm, then the main public methods, followed by
89 * some custom spliterator classes needed for stream methods.
90 *
91 * Credits: Primary algorithm and code by Guy Steele. Stream
92 * support methods by Doug Lea. Documentation jointly produced
93 * with additional help from Brian Goetz.
94 */
95
96 /*
97 * Implementation Overview.
98 *
99 * This algorithm was inspired by the "DotMix" algorithm by
100 * Leiserson, Schardl, and Sukha "Deterministic Parallel
101 * Random-Number Generation for Dynamic-Multithreading Platforms",
102 * PPoPP 2012, but improves and extends it in several ways.
103 *
104 * The primary update step (see method nextSeed()) is simply to
105 * add a constant ("gamma") to the current seed, modulo a prime
106 * ("George"). However, the nextLong and nextInt methods do not
107 * return this value, but instead the results of bit-mixing
108 * transformations that produce more uniformly distributed
109 * sequences.
110 *
111 * "George" is the otherwise nameless (because it cannot be
112 * represented) prime number 2^64+13. Using a prime number larger
113 * than can fit in a long ensures that all possible long values
114 * can occur, plus 13 others that just get skipped over when they
115 * are encountered; see method addGammaModGeorge. For this to
116 * work, initial gamma values must be at least 13.
117 *
118 * The mix64 bit-mixing function called by nextLong and other
119 * methods computes the same value as the "64-bit finalizer"
120 * function in Austin Appleby's MurmurHash3 algorithm. See
121 * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
122 * comments: "The constants for the finalizers were generated by a
123 * simple simulated-annealing algorithm, and both avalanche all
124 * bits of 'h' to within 0.25% bias."
125 *
126 * The value of gamma differs for each instance across a series of
127 * splits, and is generated using an independent variant of the
128 * same algorithm, but operating across calls to split(), not
129 * calls to nextSeed(): Each instance carries the state of this
130 * generator as nextSplit. Gammas are treated as 57bit values,
131 * advancing by adding GAMMA_GAMMA mod GAMMA_PRIME, and bit-mixed
132 * with a 57-bit version of mix, using the "Mix01" multiplicative
133 * constants for MurmurHash3 described by David Stafford
134 * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html).
135 * The value of GAMMA_GAMMA is arbitrary (except must be at least
136 * 13 and less than GAMMA_PRIME), but because it serves as the
137 * base of split sequences, should be subject to validation of
138 * consequent random number quality metrics.
139 *
140 * The mix32 function used for nextInt just consists of two of the
141 * five lines of mix64; avalanche testing shows that the 64-bit
142 * result has its top 32 bits avalanched well, though not the
143 * bottom 32 bits. DieHarder tests show that it is adequate for
144 * generating one random int from the 64-bit result of nextSeed.
145 *
146 * Support for the default (no-argument) constructor relies on an
147 * AtomicLong (defaultSeedGenerator) to help perform the
148 * equivalent of a split of a statically constructed
149 * SplittableRandom. Unlike other cases, this split must be
150 * performed in a thread-safe manner. We use
151 * AtomicLong.compareAndSet as the (typically) most efficient
152 * mechanism. To bootstrap, we start off using a SecureRandom
153 * initial default seed, and update using a fixed
154 * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
155 * not 0, for its splitSeed argument (addGammaModGeorge(0,
156 * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
157 * this root generator, even though the root is not explicitly
158 * represented as a SplittableRandom.
159 */
160
161 /**
162 * The prime modulus for gamma values.
163 */
164 private static final long GAMMA_PRIME = (1L << 57) - 13L;
165
166 /**
167 * The value for producing new gamma values. Must be greater or
168 * equal to 13 and less than GAMMA_PRIME. Otherwise, the value is
169 * arbitrary subject to validation of the resulting statistical
170 * quality of splits.
171 */
172 private static final long GAMMA_GAMMA = 0x00aae38294f712aabL;
173
174 /**
175 * The seed update value for default constructors. Must be
176 * greater or equal to 13. Otherwise, the value is arbitrary
177 * subject to quality checks.
178 */
179 private static final long DEFAULT_SEED_GAMMA = 0x9e3779b97f4a7c15L;
180
181 /**
182 * The value 13 with 64bit sign bit set. Used in the signed
183 * comparison in addGammaModGeorge.
184 */
185 private static final long BOTTOM13 = 0x800000000000000DL;
186
187 /**
188 * The least non-zero value returned by nextDouble(). This value
189 * is scaled by a random value of 53 bits to produce a result.
190 */
191 private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
192
193 /**
194 * The next seed for default constructors.
195 */
196 private static final AtomicLong defaultSeedGenerator =
197 new AtomicLong(getInitialDefaultSeed());
198
199 /**
200 * The seed, updated only via method nextSeed.
201 */
202 private long seed;
203
204 /**
205 * The constant value added to seed (mod George) on each update.
206 */
207 private final long gamma;
208
209 /**
210 * The next seed to use for splits. Propagated using
211 * addGammaModGeorge across instances.
212 */
213 private final long nextSplit;
214
215 /**
216 * Adds the given gamma value, g, to the given seed value s, mod
217 * George (2^64+13). We regard s and g as unsigned values
218 * (ranging from 0 to 2^64-1). We add g to s either once or twice
219 * (mod George) as necessary to produce an (unsigned) result less
220 * than 2^64. We require that g must be at least 13. This
221 * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
222 * George < 2^64; thus we need only a conditional, not a loop,
223 * to be sure of getting a representable value.
224 *
225 * Because Java comparison operators are signed, we implement this
226 * by conceptually offsetting seed values downwards by 2^63, so
227 * 0..13 is represented as Long.MIN_VALUE..BOTTOM13.
228 *
229 * @param s a seed value, viewed as a signed long
230 * @param g a gamma value, 13 <= g (as unsigned)
231 */
232 private static long addGammaModGeorge(long s, long g) {
233 long p = s + g;
234 return (p >= s) ? p : ((p >= BOTTOM13) ? p : p + g) - 13L;
235 }
236
237 /**
238 * Returns a bit-mixed transformation of its argument.
239 * See above for explanation.
240 */
241 private static long mix64(long z) {
242 z ^= (z >>> 33);
243 z *= 0xff51afd7ed558ccdL;
244 z ^= (z >>> 33);
245 z *= 0xc4ceb9fe1a85ec53L;
246 z ^= (z >>> 33);
247 return z;
248 }
249
250 /**
251 * Returns a bit-mixed int transformation of its argument.
252 * See above for explanation.
253 */
254 private static int mix32(long z) {
255 z ^= (z >>> 33);
256 z *= 0xc4ceb9fe1a85ec53L;
257 return (int)(z >>> 32);
258 }
259
260 /**
261 * Returns a 57-bit mixed transformation of its argument. See
262 * above for explanation.
263 */
264 private static long mix57(long z) {
265 z ^= (z >>> 33);
266 z *= 0x7fb5d329728ea185L;
267 z &= 0x01FFFFFFFFFFFFFFL;
268 z ^= (z >>> 33);
269 z *= 0x81dadef4bc2dd44dL;
270 z &= 0x01FFFFFFFFFFFFFFL;
271 z ^= (z >>> 33);
272 return z;
273 }
274
275 /**
276 * Internal constructor used by all other constructors and by
277 * method split. Establishes the initial seed for this instance,
278 * and uses the given splitSeed to establish gamma, as well as the
279 * nextSplit to use by this instance. The loop to skip ineligible
280 * gammas very rarely iterates, and does so at most 13 times.
281 */
282 private SplittableRandom(long seed, long splitSeed) {
283 this.seed = seed;
284 long s = splitSeed, g;
285 do { // ensure gamma >= 13, considered as an unsigned integer
286 s += GAMMA_GAMMA;
287 if (s >= GAMMA_PRIME)
288 s -= GAMMA_PRIME;
289 g = mix57(s);
290 } while (g < 13L);
291 this.gamma = g;
292 this.nextSplit = s;
293 }
294
295 /**
296 * Updates in-place and returns seed.
297 * See above for explanation.
298 */
299 private long nextSeed() {
300 return seed = addGammaModGeorge(seed, gamma);
301 }
302
303 /**
304 * Atomically updates and returns next seed for default constructor.
305 */
306 private static long nextDefaultSeed() {
307 long oldSeed, newSeed;
308 do {
309 oldSeed = defaultSeedGenerator.get();
310 newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
311 } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
312 return mix64(newSeed);
313 }
314
315 /**
316 * Returns an initial default seed.
317 */
318 private static long getInitialDefaultSeed() {
319 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
320 long s = (long)(seedBytes[0]) & 0xffL;
321 for (int i = 1; i < 8; ++i)
322 s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
323 return s;
324 }
325
326 /*
327 * Internal versions of nextX methods used by streams, as well as
328 * the public nextX(origin, bound) methods. These exist mainly to
329 * avoid the need for multiple versions of stream spliterators
330 * across the different exported forms of streams.
331 */
332
333 /**
334 * The form of nextLong used by LongStream Spliterators. If
335 * origin is greater than bound, acts as unbounded form of
336 * nextLong, else as bounded form.
337 *
338 * @param origin the least value, unless greater than bound
339 * @param bound the upper bound (exclusive), must not equal origin
340 * @return a pseudorandom value
341 */
342 final long internalNextLong(long origin, long bound) {
343 /*
344 * Four Cases:
345 *
346 * 1. If the arguments indicate unbounded form, act as
347 * nextLong().
348 *
349 * 2. If the range is an exact power of two, apply the
350 * associated bit mask.
351 *
352 * 3. If the range is positive, loop to avoid potential bias
353 * when the implicit nextLong() bound (2<sup>64</sup>) is not
354 * evenly divisible by the range. The loop rejects candidates
355 * computed from otherwise over-represented values. The
356 * expected number of iterations under an ideal generator
357 * varies from 1 to 2, depending on the bound. The loop itself
358 * takes an unlovable form. Because the first candidate is
359 * already available, we need a break-in-the-middle
360 * construction, which is concisely but cryptically performed
361 * within the while-condition of a body-less for loop.
362 *
363 * 4. Otherwise, the range cannot be represented as a positive
364 * long. The loop repeatedly generates unbounded longs until
365 * obtaining a candidate meeting constraints (with an expected
366 * number of iterations of less than two).
367 */
368
369 long r = mix64(nextSeed());
370 if (origin < bound) {
371 long n = bound - origin, m = n - 1;
372 if ((n & m) == 0L) // power of two
373 r = (r & m) + origin;
374 else if (n > 0L) { // reject over-represented candidates
375 for (long u = r >>> 1; // ensure nonnegative
376 u + m - (r = u % n) < 0L; // rejection check
377 u = mix64(nextSeed()) >>> 1) // retry
378 ;
379 r += origin;
380 }
381 else { // range not representable as long
382 while (r < origin || r >= bound)
383 r = mix64(nextSeed());
384 }
385 }
386 return r;
387 }
388
389 /**
390 * The form of nextInt used by IntStream Spliterators.
391 * Exactly the same as long version, except for types.
392 *
393 * @param origin the least value, unless greater than bound
394 * @param bound the upper bound (exclusive), must not equal origin
395 * @return a pseudorandom value
396 */
397 final int internalNextInt(int origin, int bound) {
398 int r = mix32(nextSeed());
399 if (origin < bound) {
400 int n = bound - origin, m = n - 1;
401 if ((n & m) == 0)
402 r = (r & m) + origin;
403 else if (n > 0) {
404 for (int u = r >>> 1;
405 u + m - (r = u % n) < 0;
406 u = mix32(nextSeed()) >>> 1)
407 ;
408 r += origin;
409 }
410 else {
411 while (r < origin || r >= bound)
412 r = mix32(nextSeed());
413 }
414 }
415 return r;
416 }
417
418 /**
419 * The form of nextDouble used by DoubleStream Spliterators.
420 *
421 * @param origin the least value, unless greater than bound
422 * @param bound the upper bound (exclusive), must not equal origin
423 * @return a pseudorandom value
424 */
425 final double internalNextDouble(double origin, double bound) {
426 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
427 if (origin < bound) {
428 r = r * (bound - origin) + origin;
429 if (r >= bound) // correct for rounding
430 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
431 }
432 return r;
433 }
434
435 /* ---------------- public methods ---------------- */
436
437 /**
438 * Creates a new SplittableRandom instance using the specified
439 * initial seed. SplittableRandom instances created with the same
440 * seed in the same program generate identical sequences of values.
441 *
442 * @param seed the initial seed
443 */
444 public SplittableRandom(long seed) {
445 this(seed, 0L);
446 }
447
448 /**
449 * Creates a new SplittableRandom instance that is likely to
450 * generate sequences of values that are statistically independent
451 * of those of any other instances in the current program; and
452 * may, and typically does, vary across program invocations.
453 */
454 public SplittableRandom() {
455 this(nextDefaultSeed(), GAMMA_GAMMA);
456 }
457
458 /**
459 * Constructs and returns a new SplittableRandom instance that
460 * shares no mutable state with this instance. However, with very
461 * high probability, the set of values collectively generated by
462 * the two objects has the same statistical properties as if the
463 * same quantity of values were generated by a single thread using
464 * a single SplittableRandom object. Either or both of the two
465 * objects may be further split using the {@code split()} method,
466 * and the same expected statistical properties apply to the
467 * entire set of generators constructed by such recursive
468 * splitting.
469 *
470 * @return the new SplittableRandom instance
471 */
472 public SplittableRandom split() {
473 return new SplittableRandom(nextSeed(), nextSplit);
474 }
475
476 /**
477 * Returns a pseudorandom {@code int} value.
478 *
479 * @return a pseudorandom {@code int} value
480 */
481 public int nextInt() {
482 return mix32(nextSeed());
483 }
484
485 /**
486 * Returns a pseudorandom {@code int} value between zero (inclusive)
487 * and the specified bound (exclusive).
488 *
489 * @param bound the bound on the random number to be returned. Must be
490 * positive.
491 * @return a pseudorandom {@code int} value between zero
492 * (inclusive) and the bound (exclusive)
493 * @throws IllegalArgumentException if the bound is less than zero
494 */
495 public int nextInt(int bound) {
496 if (bound <= 0)
497 throw new IllegalArgumentException("bound must be positive");
498 // Specialize internalNextInt for origin 0
499 int r = mix32(nextSeed());
500 int m = bound - 1;
501 if ((bound & m) == 0) // power of two
502 r &= m;
503 else { // reject over-represented candidates
504 for (int u = r >>> 1;
505 u + m - (r = u % bound) < 0;
506 u = mix32(nextSeed()) >>> 1)
507 ;
508 }
509 return r;
510 }
511
512 /**
513 * Returns a pseudorandom {@code int} value between the specified
514 * origin (inclusive) and the specified bound (exclusive).
515 *
516 * @param origin the least value returned
517 * @param bound the upper bound (exclusive)
518 * @return a pseudorandom {@code int} value between the origin
519 * (inclusive) and the bound (exclusive)
520 * @throws IllegalArgumentException if {@code origin} is greater than
521 * or equal to {@code bound}
522 */
523 public int nextInt(int origin, int bound) {
524 if (origin >= bound)
525 throw new IllegalArgumentException("bound must be greater than origin");
526 return internalNextInt(origin, bound);
527 }
528
529 /**
530 * Returns a pseudorandom {@code long} value.
531 *
532 * @return a pseudorandom {@code long} value
533 */
534 public long nextLong() {
535 return mix64(nextSeed());
536 }
537
538 /**
539 * Returns a pseudorandom {@code long} value between zero (inclusive)
540 * and the specified bound (exclusive).
541 *
542 * @param bound the bound on the random number to be returned. Must be
543 * positive.
544 * @return a pseudorandom {@code long} value between zero
545 * (inclusive) and the bound (exclusive)
546 * @throws IllegalArgumentException if {@code bound} is less than zero
547 */
548 public long nextLong(long bound) {
549 if (bound <= 0)
550 throw new IllegalArgumentException("bound must be positive");
551 // Specialize internalNextLong for origin 0
552 long r = mix64(nextSeed());
553 long m = bound - 1;
554 if ((bound & m) == 0L) // power of two
555 r &= m;
556 else { // reject over-represented candidates
557 for (long u = r >>> 1;
558 u + m - (r = u % bound) < 0L;
559 u = mix64(nextSeed()) >>> 1)
560 ;
561 }
562 return r;
563 }
564
565 /**
566 * Returns a pseudorandom {@code long} value between the specified
567 * origin (inclusive) and the specified bound (exclusive).
568 *
569 * @param origin the least value returned
570 * @param bound the upper bound (exclusive)
571 * @return a pseudorandom {@code long} value between the origin
572 * (inclusive) and the bound (exclusive)
573 * @throws IllegalArgumentException if {@code origin} is greater than
574 * or equal to {@code bound}
575 */
576 public long nextLong(long origin, long bound) {
577 if (origin >= bound)
578 throw new IllegalArgumentException("bound must be greater than origin");
579 return internalNextLong(origin, bound);
580 }
581
582 /**
583 * Returns a pseudorandom {@code double} value between zero
584 * (inclusive) and one (exclusive).
585 *
586 * @return a pseudorandom {@code double} value between zero
587 * (inclusive) and one (exclusive)
588 */
589 public double nextDouble() {
590 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
591 }
592
593 /**
594 * Returns a pseudorandom {@code double} value between 0.0
595 * (inclusive) and the specified bound (exclusive).
596 *
597 * @param bound the bound on the random number to be returned. Must be
598 * positive.
599 * @return a pseudorandom {@code double} value between zero
600 * (inclusive) and the bound (exclusive)
601 * @throws IllegalArgumentException if {@code bound} is less than zero
602 */
603 public double nextDouble(double bound) {
604 if (!(bound > 0.0))
605 throw new IllegalArgumentException("bound must be positive");
606 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
607 return (result < bound) ? result : // correct for rounding
608 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
609 }
610
611 /**
612 * Returns a pseudorandom {@code double} value between the specified
613 * origin (inclusive) and bound (exclusive).
614 *
615 * @param origin the least value returned
616 * @param bound the upper bound
617 * @return a pseudorandom {@code double} value between the origin
618 * (inclusive) and the bound (exclusive)
619 * @throws IllegalArgumentException if {@code origin} is greater than
620 * or equal to {@code bound}
621 */
622 public double nextDouble(double origin, double bound) {
623 if (!(origin < bound))
624 throw new IllegalArgumentException("bound must be greater than origin");
625 return internalNextDouble(origin, bound);
626 }
627
628 /**
629 * Returns a pseudorandom {@code boolean} value.
630 *
631 * @return a pseudorandom {@code boolean} value
632 */
633 public boolean nextBoolean() {
634 return mix32(nextSeed()) < 0;
635 }
636
637 // stream methods, coded in a way intended to better isolate for
638 // maintenance purposes the small differences across forms.
639
640 /**
641 * Returns a stream producing the given {@code streamSize} number of
642 * pseudorandom {@code int} values.
643 *
644 * @param streamSize the number of values to generate
645 * @return a stream of pseudorandom {@code int} values
646 * @throws IllegalArgumentException if {@code streamSize} is
647 * less than zero
648 */
649 public IntStream ints(long streamSize) {
650 if (streamSize < 0L)
651 throw new IllegalArgumentException("negative Stream size");
652 return StreamSupport.intStream
653 (new RandomIntsSpliterator
654 (this, 0L, streamSize, Integer.MAX_VALUE, 0),
655 false);
656 }
657
658 /**
659 * Returns an effectively unlimited stream of pseudorandom {@code int}
660 * values.
661 *
662 * @implNote This method is implemented to be equivalent to {@code
663 * ints(Long.MAX_VALUE)}.
664 *
665 * @return a stream of pseudorandom {@code int} values
666 */
667 public IntStream ints() {
668 return StreamSupport.intStream
669 (new RandomIntsSpliterator
670 (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
671 false);
672 }
673
674 /**
675 * Returns a stream producing the given {@code streamSize} number of
676 * pseudorandom {@code int} values, each conforming to the given
677 * origin and bound.
678 *
679 * @param streamSize the number of values to generate
680 * @param randomNumberOrigin the origin of each random value
681 * @param randomNumberBound the bound of each random value
682 * @return a stream of pseudorandom {@code int} values,
683 * each with the given origin and bound
684 * @throws IllegalArgumentException if {@code streamSize} is
685 * less than zero, or {@code randomNumberOrigin}
686 * is greater than or equal to {@code randomNumberBound}
687 */
688 public IntStream ints(long streamSize, int randomNumberOrigin,
689 int randomNumberBound) {
690 if (streamSize < 0L)
691 throw new IllegalArgumentException("negative Stream size");
692 if (randomNumberOrigin >= randomNumberBound)
693 throw new IllegalArgumentException("bound must be greater than origin");
694 return StreamSupport.intStream
695 (new RandomIntsSpliterator
696 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
697 false);
698 }
699
700 /**
701 * Returns an effectively unlimited stream of pseudorandom {@code
702 * int} values, each conforming to the given origin and bound.
703 *
704 * @implNote This method is implemented to be equivalent to {@code
705 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
706 *
707 * @param randomNumberOrigin the origin of each random value
708 * @param randomNumberBound the bound of each random value
709 * @return a stream of pseudorandom {@code int} values,
710 * each with the given origin and bound
711 * @throws IllegalArgumentException if {@code randomNumberOrigin}
712 * is greater than or equal to {@code randomNumberBound}
713 */
714 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
715 if (randomNumberOrigin >= randomNumberBound)
716 throw new IllegalArgumentException("bound must be greater than origin");
717 return StreamSupport.intStream
718 (new RandomIntsSpliterator
719 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
720 false);
721 }
722
723 /**
724 * Returns a stream producing the given {@code streamSize} number of
725 * pseudorandom {@code long} values.
726 *
727 * @param streamSize the number of values to generate
728 * @return a stream of pseudorandom {@code long} values
729 * @throws IllegalArgumentException if {@code streamSize} is
730 * less than zero
731 */
732 public LongStream longs(long streamSize) {
733 if (streamSize < 0L)
734 throw new IllegalArgumentException("negative Stream size");
735 return StreamSupport.longStream
736 (new RandomLongsSpliterator
737 (this, 0L, streamSize, Long.MAX_VALUE, 0L),
738 false);
739 }
740
741 /**
742 * Returns an effectively unlimited stream of pseudorandom {@code long}
743 * values.
744 *
745 * @implNote This method is implemented to be equivalent to {@code
746 * longs(Long.MAX_VALUE)}.
747 *
748 * @return a stream of pseudorandom {@code long} values
749 */
750 public LongStream longs() {
751 return StreamSupport.longStream
752 (new RandomLongsSpliterator
753 (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
754 false);
755 }
756
757 /**
758 * Returns a stream producing the given {@code streamSize} number of
759 * pseudorandom {@code long} values, each conforming to the
760 * given origin and bound.
761 *
762 * @param streamSize the number of values to generate
763 * @param randomNumberOrigin the origin of each random value
764 * @param randomNumberBound the bound of each random value
765 * @return a stream of pseudorandom {@code long} values,
766 * each with the given origin and bound
767 * @throws IllegalArgumentException if {@code streamSize} is
768 * less than zero, or {@code randomNumberOrigin}
769 * is greater than or equal to {@code randomNumberBound}
770 */
771 public LongStream longs(long streamSize, long randomNumberOrigin,
772 long randomNumberBound) {
773 if (streamSize < 0L)
774 throw new IllegalArgumentException("negative Stream size");
775 if (randomNumberOrigin >= randomNumberBound)
776 throw new IllegalArgumentException("bound must be greater than origin");
777 return StreamSupport.longStream
778 (new RandomLongsSpliterator
779 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
780 false);
781 }
782
783 /**
784 * Returns an effectively unlimited stream of pseudorandom {@code
785 * long} values, each conforming to the given origin and bound.
786 *
787 * @implNote This method is implemented to be equivalent to {@code
788 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
789 *
790 * @param randomNumberOrigin the origin of each random value
791 * @param randomNumberBound the bound of each random value
792 * @return a stream of pseudorandom {@code long} values,
793 * each with the given origin and bound
794 * @throws IllegalArgumentException if {@code randomNumberOrigin}
795 * is greater than or equal to {@code randomNumberBound}
796 */
797 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
798 if (randomNumberOrigin >= randomNumberBound)
799 throw new IllegalArgumentException("bound must be greater than origin");
800 return StreamSupport.longStream
801 (new RandomLongsSpliterator
802 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
803 false);
804 }
805
806 /**
807 * Returns a stream producing the given {@code streamSize} number of
808 * pseudorandom {@code double} values, each between zero
809 * (inclusive) and one (exclusive).
810 *
811 * @param streamSize the number of values to generate
812 * @return a stream of {@code double} values
813 * @throws IllegalArgumentException if {@code streamSize} is
814 * less than zero
815 */
816 public DoubleStream doubles(long streamSize) {
817 if (streamSize < 0L)
818 throw new IllegalArgumentException("negative Stream size");
819 return StreamSupport.doubleStream
820 (new RandomDoublesSpliterator
821 (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
822 false);
823 }
824
825 /**
826 * Returns an effectively unlimited stream of pseudorandom {@code
827 * double} values, each between zero (inclusive) and one
828 * (exclusive).
829 *
830 * @implNote This method is implemented to be equivalent to {@code
831 * doubles(Long.MAX_VALUE)}.
832 *
833 * @return a stream of pseudorandom {@code double} values
834 */
835 public DoubleStream doubles() {
836 return StreamSupport.doubleStream
837 (new RandomDoublesSpliterator
838 (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
839 false);
840 }
841
842 /**
843 * Returns a stream producing the given {@code streamSize} number of
844 * pseudorandom {@code double} values, each conforming to the
845 * given origin and bound.
846 *
847 * @param streamSize the number of values to generate
848 * @param randomNumberOrigin the origin of each random value
849 * @param randomNumberBound the bound of each random value
850 * @return a stream of pseudorandom {@code double} values,
851 * each with the given origin and bound
852 * @throws IllegalArgumentException if {@code streamSize} is
853 * less than zero
854 * @throws IllegalArgumentException if {@code randomNumberOrigin}
855 * is greater than or equal to {@code randomNumberBound}
856 */
857 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
858 double randomNumberBound) {
859 if (streamSize < 0L)
860 throw new IllegalArgumentException("negative Stream size");
861 if (!(randomNumberOrigin < randomNumberBound))
862 throw new IllegalArgumentException("bound must be greater than origin");
863 return StreamSupport.doubleStream
864 (new RandomDoublesSpliterator
865 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
866 false);
867 }
868
869 /**
870 * Returns an effectively unlimited stream of pseudorandom {@code
871 * double} values, each conforming to the given origin and bound.
872 *
873 * @implNote This method is implemented to be equivalent to {@code
874 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
875 *
876 * @param randomNumberOrigin the origin of each random value
877 * @param randomNumberBound the bound of each random value
878 * @return a stream of pseudorandom {@code double} values,
879 * each with the given origin and bound
880 * @throws IllegalArgumentException if {@code randomNumberOrigin}
881 * is greater than or equal to {@code randomNumberBound}
882 */
883 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
884 if (!(randomNumberOrigin < randomNumberBound))
885 throw new IllegalArgumentException("bound must be greater than origin");
886 return StreamSupport.doubleStream
887 (new RandomDoublesSpliterator
888 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
889 false);
890 }
891
892 /**
893 * Spliterator for int streams. We multiplex the four int
894 * versions into one class by treating a bound less than origin as
895 * unbounded, and also by treating "infinite" as equivalent to
896 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
897 * approach. The long and double versions of this class are
898 * identical except for types.
899 */
900 static final class RandomIntsSpliterator implements Spliterator.OfInt {
901 final SplittableRandom rng;
902 long index;
903 final long fence;
904 final int origin;
905 final int bound;
906 RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
907 int origin, int bound) {
908 this.rng = rng; this.index = index; this.fence = fence;
909 this.origin = origin; this.bound = bound;
910 }
911
912 public RandomIntsSpliterator trySplit() {
913 long i = index, m = (i + fence) >>> 1;
914 return (m <= i) ? null :
915 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
916 }
917
918 public long estimateSize() {
919 return fence - index;
920 }
921
922 public int characteristics() {
923 return (Spliterator.SIZED | Spliterator.SUBSIZED |
924 Spliterator.NONNULL | Spliterator.IMMUTABLE);
925 }
926
927 public boolean tryAdvance(IntConsumer consumer) {
928 if (consumer == null) throw new NullPointerException();
929 long i = index, f = fence;
930 if (i < f) {
931 consumer.accept(rng.internalNextInt(origin, bound));
932 index = i + 1;
933 return true;
934 }
935 return false;
936 }
937
938 public void forEachRemaining(IntConsumer consumer) {
939 if (consumer == null) throw new NullPointerException();
940 long i = index, f = fence;
941 if (i < f) {
942 index = f;
943 int o = origin, b = bound;
944 do {
945 consumer.accept(rng.internalNextInt(o, b));
946 } while (++i < f);
947 }
948 }
949 }
950
951 /**
952 * Spliterator for long streams.
953 */
954 static final class RandomLongsSpliterator implements Spliterator.OfLong {
955 final SplittableRandom rng;
956 long index;
957 final long fence;
958 final long origin;
959 final long bound;
960 RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
961 long origin, long bound) {
962 this.rng = rng; this.index = index; this.fence = fence;
963 this.origin = origin; this.bound = bound;
964 }
965
966 public RandomLongsSpliterator trySplit() {
967 long i = index, m = (i + fence) >>> 1;
968 return (m <= i) ? null :
969 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
970 }
971
972 public long estimateSize() {
973 return fence - index;
974 }
975
976 public int characteristics() {
977 return (Spliterator.SIZED | Spliterator.SUBSIZED |
978 Spliterator.NONNULL | Spliterator.IMMUTABLE);
979 }
980
981 public boolean tryAdvance(LongConsumer consumer) {
982 if (consumer == null) throw new NullPointerException();
983 long i = index, f = fence;
984 if (i < f) {
985 consumer.accept(rng.internalNextLong(origin, bound));
986 index = i + 1;
987 return true;
988 }
989 return false;
990 }
991
992 public void forEachRemaining(LongConsumer consumer) {
993 if (consumer == null) throw new NullPointerException();
994 long i = index, f = fence;
995 if (i < f) {
996 index = f;
997 long o = origin, b = bound;
998 do {
999 consumer.accept(rng.internalNextLong(o, b));
1000 } while (++i < f);
1001 }
1002 }
1003
1004 }
1005
1006 /**
1007 * Spliterator for double streams.
1008 */
1009 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
1010 final SplittableRandom rng;
1011 long index;
1012 final long fence;
1013 final double origin;
1014 final double bound;
1015 RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
1016 double origin, double bound) {
1017 this.rng = rng; this.index = index; this.fence = fence;
1018 this.origin = origin; this.bound = bound;
1019 }
1020
1021 public RandomDoublesSpliterator trySplit() {
1022 long i = index, m = (i + fence) >>> 1;
1023 return (m <= i) ? null :
1024 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
1025 }
1026
1027 public long estimateSize() {
1028 return fence - index;
1029 }
1030
1031 public int characteristics() {
1032 return (Spliterator.SIZED | Spliterator.SUBSIZED |
1033 Spliterator.NONNULL | Spliterator.IMMUTABLE);
1034 }
1035
1036 public boolean tryAdvance(DoubleConsumer consumer) {
1037 if (consumer == null) throw new NullPointerException();
1038 long i = index, f = fence;
1039 if (i < f) {
1040 consumer.accept(rng.internalNextDouble(origin, bound));
1041 index = i + 1;
1042 return true;
1043 }
1044 return false;
1045 }
1046
1047 public void forEachRemaining(DoubleConsumer consumer) {
1048 if (consumer == null) throw new NullPointerException();
1049 long i = index, f = fence;
1050 if (i < f) {
1051 index = f;
1052 double o = origin, b = bound;
1053 do {
1054 consumer.accept(rng.internalNextDouble(o, b));
1055 } while (++i < f);
1056 }
1057 }
1058 }
1059
1060 }