ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.21
Committed: Thu Sep 19 23:19:43 2013 UTC (10 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.20: +93 -69 lines
Log Message:
minor improvements

File Contents

# Content
1 /*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.security.SecureRandom;
29 import java.net.NetworkInterface;
30 import java.util.Enumeration;
31 import java.util.concurrent.atomic.AtomicLong;
32 import java.util.function.IntConsumer;
33 import java.util.function.LongConsumer;
34 import java.util.function.DoubleConsumer;
35 import java.util.stream.StreamSupport;
36 import java.util.stream.IntStream;
37 import java.util.stream.LongStream;
38 import java.util.stream.DoubleStream;
39
40 /**
41 * A generator of uniform pseudorandom values applicable for use in
42 * (among other contexts) isolated parallel computations that may
43 * generate subtasks. Class {@code SplittableRandom} supports methods for
44 * producing pseudorandom numbers of type {@code int}, {@code long},
45 * and {@code double} with similar usages as for class
46 * {@link java.util.Random} but differs in the following ways:
47 *
48 * <ul>
49 *
50 * <li>Series of generated values pass the DieHarder suite testing
51 * independence and uniformity properties of random number generators.
52 * (Most recently validated with <a
53 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
54 * 3.31.1</a>.) These tests validate only the methods for certain
55 * types and ranges, but similar properties are expected to hold, at
56 * least approximately, for others as well. The <em>period</em>
57 * (length of any series of generated values before it repeats) is at
58 * least 2<sup>64</sup>. </li>
59 *
60 * <li> Method {@link #split} constructs and returns a new
61 * SplittableRandom instance that shares no mutable state with the
62 * current instance. However, with very high probability, the
63 * values collectively generated by the two objects have the same
64 * statistical properties as if the same quantity of values were
65 * generated by a single thread using a single {@code
66 * SplittableRandom} object. </li>
67 *
68 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
69 * They are designed to be split, not shared, across threads. For
70 * example, a {@link java.util.concurrent.ForkJoinTask
71 * fork/join-style} computation using random numbers might include a
72 * construction of the form {@code new
73 * Subtask(aSplittableRandom.split()).fork()}.
74 *
75 * <li>This class provides additional methods for generating random
76 * streams, that employ the above techniques when used in {@code
77 * stream.parallel()} mode.</li>
78 *
79 * </ul>
80 *
81 * <p>Instances of {@code SplittableRandom} are not cryptographically
82 * secure. Consider instead using {@link java.security.SecureRandom}
83 * in security-sensitive applications. Additionally,
84 * default-constructed instances do not use a cryptographically random
85 * seed unless the {@linkplain System#getProperty system property}
86 * {@code java.util.secureRandomSeed} is set to {@code true}.
87 *
88 * @author Guy Steele
89 * @author Doug Lea
90 * @since 1.8
91 */
92 public class SplittableRandom {
93
94 /*
95 * Implementation Overview.
96 *
97 * This algorithm was inspired by the "DotMix" algorithm by
98 * Leiserson, Schardl, and Sukha "Deterministic Parallel
99 * Random-Number Generation for Dynamic-Multithreading Platforms",
100 * PPoPP 2012, as well as those in "Parallel random numbers: as
101 * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
102 * differs mainly in simplifying and cheapening operations.
103 *
104 * The primary update step (method nextSeed()) is to add a
105 * constant ("gamma") to the current (64 bit) seed, forming a
106 * simple sequence. The seed and the gamma values for any two
107 * SplittableRandom instances are highly likely to be different.
108 *
109 * Methods nextLong, nextInt, and derivatives do not return the
110 * sequence (seed) values, but instead a hash-like bit-mix of
111 * their bits, producing more independently distributed sequences.
112 * For nextLong, the mix64 function is based on David Stafford's
113 * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
114 * "Mix13" variant of the "64-bit finalizer" function in Austin
115 * Appleby's MurmurHash3 algorithm See
116 * http://code.google.com/p/smhasher/wiki/MurmurHash3 . The mix32
117 * function is based on Stafford's Mix04 mix function, but returns
118 * the upper 32 bits cast as int.
119 *
120 * The split operation uses the current generator to form the seed
121 * and gamma for another SplittableRandom. To conservatively
122 * avoid potential correlations between seed and value generation,
123 * gamma selection (method mixGamma) uses different
124 * (Murmurhash3's) mix constants. To avoid potential weaknesses
125 * in bit-mixing transformations, we restrict gammas to odd values
126 * with at least 24 0-1 or 1-0 bit transitions. Rather than
127 * rejecting candidates with too few or too many bits set, method
128 * mixGamma flips some bits (which has the effect of mapping at
129 * most 4 to any given gamma value). This reduces the effective
130 * set of 64bit odd gamma values by about 2%, and serves as an
131 * automated screening for sequence constant selection that is
132 * left as an empirical decision in some other hashing and crypto
133 * algorithms.
134 *
135 * The resulting generator thus transforms a sequence in which
136 * (typically) many bits change on each step, with an inexpensive
137 * mixer with good (but less than cryptographically secure)
138 * avalanching.
139 *
140 * The default (no-argument) constructor, in essence, invokes
141 * split() for a common "defaultGen" SplittableRandom. Unlike
142 * other cases, this split must be performed in a thread-safe
143 * manner, so we use an AtomicLong to represent the seed rather
144 * than use an explicit SplittableRandom. To bootstrap the
145 * defaultGen, we start off using a seed based on current time and
146 * network interface address unless the java.util.secureRandomSeed
147 * property is set. This serves as a slimmed-down (and insecure)
148 * variant of SecureRandom that also avoids stalls that may occur
149 * when using /dev/random.
150 *
151 * It is a relatively simple matter to apply the basic design here
152 * to use 128 bit seeds. However, emulating 128bit arithmetic and
153 * carrying around twice the state add more overhead than appears
154 * warranted for current usages.
155 *
156 * File organization: First the non-public methods that constitute
157 * the main algorithm, then the main public methods, followed by
158 * some custom spliterator classes needed for stream methods.
159 */
160
161 /**
162 * The golden ratio scaled to 64bits, used as the initial gamma
163 * value for (unsplit) SplittableRandoms.
164 */
165 private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
166
167 /**
168 * The least non-zero value returned by nextDouble(). This value
169 * is scaled by a random value of 53 bits to produce a result.
170 */
171 private static final double DOUBLE_ULP = 1.0 / (1L << 53);
172
173 /**
174 * The seed. Updated only via method nextSeed.
175 */
176 private long seed;
177
178 /**
179 * The step value.
180 */
181 private final long gamma;
182
183 /**
184 * Internal constructor used by all others except default constructor.
185 */
186 private SplittableRandom(long seed, long gamma) {
187 this.seed = seed;
188 this.gamma = gamma;
189 }
190
191 /**
192 * Computes Stafford variant 13 of 64bit mix function.
193 */
194 private static long mix64(long z) {
195 z *= 0xbf58476d1ce4e5b9L;
196 z = (z ^ (z >>> 32)) * 0x94d049bb133111ebL;
197 return z ^ (z >>> 32);
198 }
199
200 private static long xmix64(long z) {
201 z *= 0xbf58476d1ce4e5b9L;
202 z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
203 return z ^ (z >>> 31);
204 }
205
206 /**
207 * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
208 */
209 private static int mix32(long z) {
210 z *= 0x62a9d9ed799705f5L;
211 return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
212 }
213
214 /**
215 * Returns the gamma value to use for a new split instance.
216 */
217 private static long mixGamma(long z) {
218 z *= 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
219 z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
220 z = (z ^ (z >>> 33)) | 1L; // force to be odd
221 int n = Long.bitCount(z ^ (z >>> 1)); // ensure enough transitions
222 return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
223 }
224
225 /**
226 * Adds gamma to seed.
227 */
228 private long nextSeed() {
229 return seed += gamma;
230 }
231
232 /**
233 * The seed generator for default constructors.
234 */
235 private static final AtomicLong defaultGen = new AtomicLong(initialSeed());
236
237 private static long initialSeed() {
238 String pp = java.security.AccessController.doPrivileged(
239 new sun.security.action.GetPropertyAction(
240 "java.util.secureRandomSeed"));
241 if (pp != null && pp.equalsIgnoreCase("true")) {
242 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
243 long s = (long)(seedBytes[0]) & 0xffL;
244 for (int i = 1; i < 8; ++i)
245 s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
246 return s;
247 }
248 long h = 0L;
249 try {
250 Enumeration<NetworkInterface> ifcs =
251 NetworkInterface.getNetworkInterfaces();
252 boolean retry = false; // retry once if getHardwareAddress is null
253 while (ifcs.hasMoreElements()) {
254 NetworkInterface ifc = ifcs.nextElement();
255 if (!ifc.isVirtual()) { // skip fake addresses
256 byte[] bs = ifc.getHardwareAddress();
257 if (bs != null) {
258 int n = bs.length;
259 int m = Math.min(n >>> 1, 4);
260 for (int i = 0; i < m; ++i)
261 h = (h << 16) ^ (bs[i] << 8) ^ bs[n-1-i];
262 if (m < 4)
263 h = (h << 8) ^ bs[n-1-m];
264 h = mix64(h);
265 break;
266 }
267 else if (!retry)
268 retry = true;
269 else
270 break;
271 }
272 }
273 } catch (Exception ignore) {
274 }
275 return (h ^ mix64(System.currentTimeMillis()) ^
276 mix64(System.nanoTime()));
277 }
278
279 // IllegalArgumentException messages
280 static final String BadBound = "bound must be positive";
281 static final String BadRange = "bound must be greater than origin";
282 static final String BadSize = "size must be non-negative";
283
284 /*
285 * Internal versions of nextX methods used by streams, as well as
286 * the public nextX(origin, bound) methods. These exist mainly to
287 * avoid the need for multiple versions of stream spliterators
288 * across the different exported forms of streams.
289 */
290
291 /**
292 * The form of nextLong used by LongStream Spliterators. If
293 * origin is greater than bound, acts as unbounded form of
294 * nextLong, else as bounded form.
295 *
296 * @param origin the least value, unless greater than bound
297 * @param bound the upper bound (exclusive), must not equal origin
298 * @return a pseudorandom value
299 */
300 final long internalNextLong(long origin, long bound) {
301 /*
302 * Four Cases:
303 *
304 * 1. If the arguments indicate unbounded form, act as
305 * nextLong().
306 *
307 * 2. If the range is an exact power of two, apply the
308 * associated bit mask.
309 *
310 * 3. If the range is positive, loop to avoid potential bias
311 * when the implicit nextLong() bound (2<sup>64</sup>) is not
312 * evenly divisible by the range. The loop rejects candidates
313 * computed from otherwise over-represented values. The
314 * expected number of iterations under an ideal generator
315 * varies from 1 to 2, depending on the bound. The loop itself
316 * takes an unlovable form. Because the first candidate is
317 * already available, we need a break-in-the-middle
318 * construction, which is concisely but cryptically performed
319 * within the while-condition of a body-less for loop.
320 *
321 * 4. Otherwise, the range cannot be represented as a positive
322 * long. The loop repeatedly generates unbounded longs until
323 * obtaining a candidate meeting constraints (with an expected
324 * number of iterations of less than two).
325 */
326
327 long r = mix64(nextSeed());
328 if (origin < bound) {
329 long n = bound - origin, m = n - 1;
330 if ((n & m) == 0L) // power of two
331 r = (r & m) + origin;
332 else if (n > 0L) { // reject over-represented candidates
333 for (long u = r >>> 1; // ensure nonnegative
334 u + m - (r = u % n) < 0L; // rejection check
335 u = mix64(nextSeed()) >>> 1) // retry
336 ;
337 r += origin;
338 }
339 else { // range not representable as long
340 while (r < origin || r >= bound)
341 r = mix64(nextSeed());
342 }
343 }
344 return r;
345 }
346
347 /**
348 * The form of nextInt used by IntStream Spliterators.
349 * Exactly the same as long version, except for types.
350 *
351 * @param origin the least value, unless greater than bound
352 * @param bound the upper bound (exclusive), must not equal origin
353 * @return a pseudorandom value
354 */
355 final int internalNextInt(int origin, int bound) {
356 int r = mix32(nextSeed());
357 if (origin < bound) {
358 int n = bound - origin, m = n - 1;
359 if ((n & m) == 0)
360 r = (r & m) + origin;
361 else if (n > 0) {
362 for (int u = r >>> 1;
363 u + m - (r = u % n) < 0;
364 u = mix32(nextSeed()) >>> 1)
365 ;
366 r += origin;
367 }
368 else {
369 while (r < origin || r >= bound)
370 r = mix32(nextSeed());
371 }
372 }
373 return r;
374 }
375
376 /**
377 * The form of nextDouble used by DoubleStream Spliterators.
378 *
379 * @param origin the least value, unless greater than bound
380 * @param bound the upper bound (exclusive), must not equal origin
381 * @return a pseudorandom value
382 */
383 final double internalNextDouble(double origin, double bound) {
384 double r = (nextLong() >>> 11) * DOUBLE_ULP;
385 if (origin < bound) {
386 r = r * (bound - origin) + origin;
387 if (r >= bound) // correct for rounding
388 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
389 }
390 return r;
391 }
392
393 /* ---------------- public methods ---------------- */
394
395 /**
396 * Creates a new SplittableRandom instance using the specified
397 * initial seed. SplittableRandom instances created with the same
398 * seed in the same program generate identical sequences of values.
399 *
400 * @param seed the initial seed
401 */
402 public SplittableRandom(long seed) {
403 this(seed, GOLDEN_GAMMA);
404 }
405
406 /**
407 * Creates a new SplittableRandom instance that is likely to
408 * generate sequences of values that are statistically independent
409 * of those of any other instances in the current program; and
410 * may, and typically does, vary across program invocations.
411 */
412 public SplittableRandom() { // emulate defaultGen.split()
413 long s = defaultGen.getAndAdd(2*GOLDEN_GAMMA);
414 this.seed = mix64(s);
415 this.gamma = mixGamma(s + GOLDEN_GAMMA);
416 }
417
418 /**
419 * Constructs and returns a new SplittableRandom instance that
420 * shares no mutable state with this instance. However, with very
421 * high probability, the set of values collectively generated by
422 * the two objects has the same statistical properties as if the
423 * same quantity of values were generated by a single thread using
424 * a single SplittableRandom object. Either or both of the two
425 * objects may be further split using the {@code split()} method,
426 * and the same expected statistical properties apply to the
427 * entire set of generators constructed by such recursive
428 * splitting.
429 *
430 * @return the new SplittableRandom instance
431 */
432 public SplittableRandom split() {
433 return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
434 }
435
436 /**
437 * Returns a pseudorandom {@code int} value.
438 *
439 * @return a pseudorandom {@code int} value
440 */
441 public int nextInt() {
442 return mix32(nextSeed());
443 }
444
445 /**
446 * Returns a pseudorandom {@code int} value between zero (inclusive)
447 * and the specified bound (exclusive).
448 *
449 * @param bound the upper bound (exclusive). Must be positive.
450 * @return a pseudorandom {@code int} value between zero
451 * (inclusive) and the bound (exclusive)
452 * @throws IllegalArgumentException if {@code bound} is not positive
453 */
454 public int nextInt(int bound) {
455 if (bound <= 0)
456 throw new IllegalArgumentException(BadBound);
457 // Specialize internalNextInt for origin 0
458 int r = mix32(nextSeed());
459 int m = bound - 1;
460 if ((bound & m) == 0) // power of two
461 r &= m;
462 else { // reject over-represented candidates
463 for (int u = r >>> 1;
464 u + m - (r = u % bound) < 0;
465 u = mix32(nextSeed()) >>> 1)
466 ;
467 }
468 return r;
469 }
470
471 /**
472 * Returns a pseudorandom {@code int} value between the specified
473 * origin (inclusive) and the specified bound (exclusive).
474 *
475 * @param origin the least value returned
476 * @param bound the upper bound (exclusive)
477 * @return a pseudorandom {@code int} value between the origin
478 * (inclusive) and the bound (exclusive)
479 * @throws IllegalArgumentException if {@code origin} is greater than
480 * or equal to {@code bound}
481 */
482 public int nextInt(int origin, int bound) {
483 if (origin >= bound)
484 throw new IllegalArgumentException(BadRange);
485 return internalNextInt(origin, bound);
486 }
487
488 /**
489 * Returns a pseudorandom {@code long} value.
490 *
491 * @return a pseudorandom {@code long} value
492 */
493 public long nextLong() {
494 return mix64(nextSeed());
495 }
496
497 /**
498 * Returns a pseudorandom {@code long} value between zero (inclusive)
499 * and the specified bound (exclusive).
500 *
501 * @param bound the upper bound (exclusive). Must be positive.
502 * @return a pseudorandom {@code long} value between zero
503 * (inclusive) and the bound (exclusive)
504 * @throws IllegalArgumentException if {@code bound} is not positive
505 */
506 public long nextLong(long bound) {
507 if (bound <= 0)
508 throw new IllegalArgumentException(BadBound);
509 // Specialize internalNextLong for origin 0
510 long r = mix64(nextSeed());
511 long m = bound - 1;
512 if ((bound & m) == 0L) // power of two
513 r &= m;
514 else { // reject over-represented candidates
515 for (long u = r >>> 1;
516 u + m - (r = u % bound) < 0L;
517 u = mix64(nextSeed()) >>> 1)
518 ;
519 }
520 return r;
521 }
522
523 /**
524 * Returns a pseudorandom {@code long} value between the specified
525 * origin (inclusive) and the specified bound (exclusive).
526 *
527 * @param origin the least value returned
528 * @param bound the upper bound (exclusive)
529 * @return a pseudorandom {@code long} value between the origin
530 * (inclusive) and the bound (exclusive)
531 * @throws IllegalArgumentException if {@code origin} is greater than
532 * or equal to {@code bound}
533 */
534 public long nextLong(long origin, long bound) {
535 if (origin >= bound)
536 throw new IllegalArgumentException(BadRange);
537 return internalNextLong(origin, bound);
538 }
539
540 /**
541 * Returns a pseudorandom {@code double} value between zero
542 * (inclusive) and one (exclusive).
543 *
544 * @return a pseudorandom {@code double} value between zero
545 * (inclusive) and one (exclusive)
546 */
547 public double nextDouble() {
548 return (mix64(nextSeed()) >>> 11) * DOUBLE_ULP;
549 }
550
551 /**
552 * Returns a pseudorandom {@code double} value between 0.0
553 * (inclusive) and the specified bound (exclusive).
554 *
555 * @param bound the upper bound (exclusive). Must be positive.
556 * @return a pseudorandom {@code double} value between zero
557 * (inclusive) and the bound (exclusive)
558 * @throws IllegalArgumentException if {@code bound} is not positive
559 */
560 public double nextDouble(double bound) {
561 if (!(bound > 0.0))
562 throw new IllegalArgumentException(BadBound);
563 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_ULP * bound;
564 return (result < bound) ? result : // correct for rounding
565 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
566 }
567
568 /**
569 * Returns a pseudorandom {@code double} value between the specified
570 * origin (inclusive) and bound (exclusive).
571 *
572 * @param origin the least value returned
573 * @param bound the upper bound (exclusive)
574 * @return a pseudorandom {@code double} value between the origin
575 * (inclusive) and the bound (exclusive)
576 * @throws IllegalArgumentException if {@code origin} is greater than
577 * or equal to {@code bound}
578 */
579 public double nextDouble(double origin, double bound) {
580 if (!(origin < bound))
581 throw new IllegalArgumentException(BadRange);
582 return internalNextDouble(origin, bound);
583 }
584
585 /**
586 * Returns a pseudorandom {@code boolean} value.
587 *
588 * @return a pseudorandom {@code boolean} value
589 */
590 public boolean nextBoolean() {
591 return mix32(nextSeed()) < 0;
592 }
593
594 // stream methods, coded in a way intended to better isolate for
595 // maintenance purposes the small differences across forms.
596
597 /**
598 * Returns a stream producing the given {@code streamSize} number
599 * of pseudorandom {@code int} values from this generator and/or
600 * one split from it.
601 *
602 * @param streamSize the number of values to generate
603 * @return a stream of pseudorandom {@code int} values
604 * @throws IllegalArgumentException if {@code streamSize} is
605 * less than zero
606 */
607 public IntStream ints(long streamSize) {
608 if (streamSize < 0L)
609 throw new IllegalArgumentException(BadSize);
610 return StreamSupport.intStream
611 (new RandomIntsSpliterator
612 (this, 0L, streamSize, Integer.MAX_VALUE, 0),
613 false);
614 }
615
616 /**
617 * Returns an effectively unlimited stream of pseudorandom {@code int}
618 * values from this generator and/or one split from it.
619 *
620 * @implNote This method is implemented to be equivalent to {@code
621 * ints(Long.MAX_VALUE)}.
622 *
623 * @return a stream of pseudorandom {@code int} values
624 */
625 public IntStream ints() {
626 return StreamSupport.intStream
627 (new RandomIntsSpliterator
628 (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
629 false);
630 }
631
632 /**
633 * Returns a stream producing the given {@code streamSize} number
634 * of pseudorandom {@code int} values from this generator and/or one split
635 * from it; each value conforms to the given origin (inclusive) and bound
636 * (exclusive).
637 *
638 * @param streamSize the number of values to generate
639 * @param randomNumberOrigin the origin (inclusive) of each random value
640 * @param randomNumberBound the bound (exclusive) of each random value
641 * @return a stream of pseudorandom {@code int} values,
642 * each with the given origin (inclusive) and bound (exclusive)
643 * @throws IllegalArgumentException if {@code streamSize} is
644 * less than zero, or {@code randomNumberOrigin}
645 * is greater than or equal to {@code randomNumberBound}
646 */
647 public IntStream ints(long streamSize, int randomNumberOrigin,
648 int randomNumberBound) {
649 if (streamSize < 0L)
650 throw new IllegalArgumentException(BadSize);
651 if (randomNumberOrigin >= randomNumberBound)
652 throw new IllegalArgumentException(BadRange);
653 return StreamSupport.intStream
654 (new RandomIntsSpliterator
655 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
656 false);
657 }
658
659 /**
660 * Returns an effectively unlimited stream of pseudorandom {@code
661 * int} values from this generator and/or one split from it; each value
662 * conforms to the given origin (inclusive) and bound (exclusive).
663 *
664 * @implNote This method is implemented to be equivalent to {@code
665 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
666 *
667 * @param randomNumberOrigin the origin (inclusive) of each random value
668 * @param randomNumberBound the bound (exclusive) of each random value
669 * @return a stream of pseudorandom {@code int} values,
670 * each with the given origin (inclusive) and bound (exclusive)
671 * @throws IllegalArgumentException if {@code randomNumberOrigin}
672 * is greater than or equal to {@code randomNumberBound}
673 */
674 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
675 if (randomNumberOrigin >= randomNumberBound)
676 throw new IllegalArgumentException(BadRange);
677 return StreamSupport.intStream
678 (new RandomIntsSpliterator
679 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
680 false);
681 }
682
683 /**
684 * Returns a stream producing the given {@code streamSize} number
685 * of pseudorandom {@code long} values from this generator and/or
686 * one split from it.
687 *
688 * @param streamSize the number of values to generate
689 * @return a stream of pseudorandom {@code long} values
690 * @throws IllegalArgumentException if {@code streamSize} is
691 * less than zero
692 */
693 public LongStream longs(long streamSize) {
694 if (streamSize < 0L)
695 throw new IllegalArgumentException(BadSize);
696 return StreamSupport.longStream
697 (new RandomLongsSpliterator
698 (this, 0L, streamSize, Long.MAX_VALUE, 0L),
699 false);
700 }
701
702 /**
703 * Returns an effectively unlimited stream of pseudorandom {@code
704 * long} values from this generator and/or one split from it.
705 *
706 * @implNote This method is implemented to be equivalent to {@code
707 * longs(Long.MAX_VALUE)}.
708 *
709 * @return a stream of pseudorandom {@code long} values
710 */
711 public LongStream longs() {
712 return StreamSupport.longStream
713 (new RandomLongsSpliterator
714 (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
715 false);
716 }
717
718 /**
719 * Returns a stream producing the given {@code streamSize} number of
720 * pseudorandom {@code long} values from this generator and/or one split
721 * from it; each value conforms to the given origin (inclusive) and bound
722 * (exclusive).
723 *
724 * @param streamSize the number of values to generate
725 * @param randomNumberOrigin the origin (inclusive) of each random value
726 * @param randomNumberBound the bound (exclusive) of each random value
727 * @return a stream of pseudorandom {@code long} values,
728 * each with the given origin (inclusive) and bound (exclusive)
729 * @throws IllegalArgumentException if {@code streamSize} is
730 * less than zero, or {@code randomNumberOrigin}
731 * is greater than or equal to {@code randomNumberBound}
732 */
733 public LongStream longs(long streamSize, long randomNumberOrigin,
734 long randomNumberBound) {
735 if (streamSize < 0L)
736 throw new IllegalArgumentException(BadSize);
737 if (randomNumberOrigin >= randomNumberBound)
738 throw new IllegalArgumentException(BadRange);
739 return StreamSupport.longStream
740 (new RandomLongsSpliterator
741 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
742 false);
743 }
744
745 /**
746 * Returns an effectively unlimited stream of pseudorandom {@code
747 * long} values from this generator and/or one split from it; each value
748 * conforms to the given origin (inclusive) and bound (exclusive).
749 *
750 * @implNote This method is implemented to be equivalent to {@code
751 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
752 *
753 * @param randomNumberOrigin the origin (inclusive) of each random value
754 * @param randomNumberBound the bound (exclusive) of each random value
755 * @return a stream of pseudorandom {@code long} values,
756 * each with the given origin (inclusive) and bound (exclusive)
757 * @throws IllegalArgumentException if {@code randomNumberOrigin}
758 * is greater than or equal to {@code randomNumberBound}
759 */
760 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
761 if (randomNumberOrigin >= randomNumberBound)
762 throw new IllegalArgumentException(BadRange);
763 return StreamSupport.longStream
764 (new RandomLongsSpliterator
765 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
766 false);
767 }
768
769 /**
770 * Returns a stream producing the given {@code streamSize} number of
771 * pseudorandom {@code double} values from this generator and/or one split
772 * from it; each value is between zero (inclusive) and one (exclusive).
773 *
774 * @param streamSize the number of values to generate
775 * @return a stream of {@code double} values
776 * @throws IllegalArgumentException if {@code streamSize} is
777 * less than zero
778 */
779 public DoubleStream doubles(long streamSize) {
780 if (streamSize < 0L)
781 throw new IllegalArgumentException(BadSize);
782 return StreamSupport.doubleStream
783 (new RandomDoublesSpliterator
784 (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
785 false);
786 }
787
788 /**
789 * Returns an effectively unlimited stream of pseudorandom {@code
790 * double} values from this generator and/or one split from it; each value
791 * is between zero (inclusive) and one (exclusive).
792 *
793 * @implNote This method is implemented to be equivalent to {@code
794 * doubles(Long.MAX_VALUE)}.
795 *
796 * @return a stream of pseudorandom {@code double} values
797 */
798 public DoubleStream doubles() {
799 return StreamSupport.doubleStream
800 (new RandomDoublesSpliterator
801 (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
802 false);
803 }
804
805 /**
806 * Returns a stream producing the given {@code streamSize} number of
807 * pseudorandom {@code double} values from this generator and/or one split
808 * from it; each value conforms to the given origin (inclusive) and bound
809 * (exclusive).
810 *
811 * @param streamSize the number of values to generate
812 * @param randomNumberOrigin the origin (inclusive) of each random value
813 * @param randomNumberBound the bound (exclusive) of each random value
814 * @return a stream of pseudorandom {@code double} values,
815 * each with the given origin (inclusive) and bound (exclusive)
816 * @throws IllegalArgumentException if {@code streamSize} is
817 * less than zero
818 * @throws IllegalArgumentException if {@code randomNumberOrigin}
819 * is greater than or equal to {@code randomNumberBound}
820 */
821 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
822 double randomNumberBound) {
823 if (streamSize < 0L)
824 throw new IllegalArgumentException(BadSize);
825 if (!(randomNumberOrigin < randomNumberBound))
826 throw new IllegalArgumentException(BadRange);
827 return StreamSupport.doubleStream
828 (new RandomDoublesSpliterator
829 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
830 false);
831 }
832
833 /**
834 * Returns an effectively unlimited stream of pseudorandom {@code
835 * double} values from this generator and/or one split from it; each value
836 * conforms to the given origin (inclusive) and bound (exclusive).
837 *
838 * @implNote This method is implemented to be equivalent to {@code
839 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
840 *
841 * @param randomNumberOrigin the origin (inclusive) of each random value
842 * @param randomNumberBound the bound (exclusive) of each random value
843 * @return a stream of pseudorandom {@code double} values,
844 * each with the given origin (inclusive) and bound (exclusive)
845 * @throws IllegalArgumentException if {@code randomNumberOrigin}
846 * is greater than or equal to {@code randomNumberBound}
847 */
848 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
849 if (!(randomNumberOrigin < randomNumberBound))
850 throw new IllegalArgumentException(BadRange);
851 return StreamSupport.doubleStream
852 (new RandomDoublesSpliterator
853 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
854 false);
855 }
856
857 /**
858 * Spliterator for int streams. We multiplex the four int
859 * versions into one class by treating a bound less than origin as
860 * unbounded, and also by treating "infinite" as equivalent to
861 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
862 * approach. The long and double versions of this class are
863 * identical except for types.
864 */
865 static final class RandomIntsSpliterator implements Spliterator.OfInt {
866 final SplittableRandom rng;
867 long index;
868 final long fence;
869 final int origin;
870 final int bound;
871 RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
872 int origin, int bound) {
873 this.rng = rng; this.index = index; this.fence = fence;
874 this.origin = origin; this.bound = bound;
875 }
876
877 public RandomIntsSpliterator trySplit() {
878 long i = index, m = (i + fence) >>> 1;
879 return (m <= i) ? null :
880 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
881 }
882
883 public long estimateSize() {
884 return fence - index;
885 }
886
887 public int characteristics() {
888 return (Spliterator.SIZED | Spliterator.SUBSIZED |
889 Spliterator.NONNULL | Spliterator.IMMUTABLE);
890 }
891
892 public boolean tryAdvance(IntConsumer consumer) {
893 if (consumer == null) throw new NullPointerException();
894 long i = index, f = fence;
895 if (i < f) {
896 consumer.accept(rng.internalNextInt(origin, bound));
897 index = i + 1;
898 return true;
899 }
900 return false;
901 }
902
903 public void forEachRemaining(IntConsumer consumer) {
904 if (consumer == null) throw new NullPointerException();
905 long i = index, f = fence;
906 if (i < f) {
907 index = f;
908 SplittableRandom r = rng;
909 int o = origin, b = bound;
910 do {
911 consumer.accept(r.internalNextInt(o, b));
912 } while (++i < f);
913 }
914 }
915 }
916
917 /**
918 * Spliterator for long streams.
919 */
920 static final class RandomLongsSpliterator implements Spliterator.OfLong {
921 final SplittableRandom rng;
922 long index;
923 final long fence;
924 final long origin;
925 final long bound;
926 RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
927 long origin, long bound) {
928 this.rng = rng; this.index = index; this.fence = fence;
929 this.origin = origin; this.bound = bound;
930 }
931
932 public RandomLongsSpliterator trySplit() {
933 long i = index, m = (i + fence) >>> 1;
934 return (m <= i) ? null :
935 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
936 }
937
938 public long estimateSize() {
939 return fence - index;
940 }
941
942 public int characteristics() {
943 return (Spliterator.SIZED | Spliterator.SUBSIZED |
944 Spliterator.NONNULL | Spliterator.IMMUTABLE);
945 }
946
947 public boolean tryAdvance(LongConsumer consumer) {
948 if (consumer == null) throw new NullPointerException();
949 long i = index, f = fence;
950 if (i < f) {
951 consumer.accept(rng.internalNextLong(origin, bound));
952 index = i + 1;
953 return true;
954 }
955 return false;
956 }
957
958 public void forEachRemaining(LongConsumer consumer) {
959 if (consumer == null) throw new NullPointerException();
960 long i = index, f = fence;
961 if (i < f) {
962 index = f;
963 SplittableRandom r = rng;
964 long o = origin, b = bound;
965 do {
966 consumer.accept(r.internalNextLong(o, b));
967 } while (++i < f);
968 }
969 }
970
971 }
972
973 /**
974 * Spliterator for double streams.
975 */
976 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
977 final SplittableRandom rng;
978 long index;
979 final long fence;
980 final double origin;
981 final double bound;
982 RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
983 double origin, double bound) {
984 this.rng = rng; this.index = index; this.fence = fence;
985 this.origin = origin; this.bound = bound;
986 }
987
988 public RandomDoublesSpliterator trySplit() {
989 long i = index, m = (i + fence) >>> 1;
990 return (m <= i) ? null :
991 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
992 }
993
994 public long estimateSize() {
995 return fence - index;
996 }
997
998 public int characteristics() {
999 return (Spliterator.SIZED | Spliterator.SUBSIZED |
1000 Spliterator.NONNULL | Spliterator.IMMUTABLE);
1001 }
1002
1003 public boolean tryAdvance(DoubleConsumer consumer) {
1004 if (consumer == null) throw new NullPointerException();
1005 long i = index, f = fence;
1006 if (i < f) {
1007 consumer.accept(rng.internalNextDouble(origin, bound));
1008 index = i + 1;
1009 return true;
1010 }
1011 return false;
1012 }
1013
1014 public void forEachRemaining(DoubleConsumer consumer) {
1015 if (consumer == null) throw new NullPointerException();
1016 long i = index, f = fence;
1017 if (i < f) {
1018 index = f;
1019 SplittableRandom r = rng;
1020 double o = origin, b = bound;
1021 do {
1022 consumer.accept(r.internalNextDouble(o, b));
1023 } while (++i < f);
1024 }
1025 }
1026 }
1027
1028 }