ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.25
Committed: Tue Dec 2 12:17:38 2014 UTC (9 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.24: +5 -34 lines
Log Message:
Remove network interface probe

File Contents

# Content
1 /*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.concurrent.atomic.AtomicLong;
29 import java.util.function.IntConsumer;
30 import java.util.function.LongConsumer;
31 import java.util.function.DoubleConsumer;
32 import java.util.stream.StreamSupport;
33 import java.util.stream.IntStream;
34 import java.util.stream.LongStream;
35 import java.util.stream.DoubleStream;
36
37 /**
38 * A generator of uniform pseudorandom values applicable for use in
39 * (among other contexts) isolated parallel computations that may
40 * generate subtasks. Class {@code SplittableRandom} supports methods for
41 * producing pseudorandom numbers of type {@code int}, {@code long},
42 * and {@code double} with similar usages as for class
43 * {@link java.util.Random} but differs in the following ways:
44 *
45 * <ul>
46 *
47 * <li>Series of generated values pass the DieHarder suite testing
48 * independence and uniformity properties of random number generators.
49 * (Most recently validated with <a
50 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51 * 3.31.1</a>.) These tests validate only the methods for certain
52 * types and ranges, but similar properties are expected to hold, at
53 * least approximately, for others as well. The <em>period</em>
54 * (length of any series of generated values before it repeats) is at
55 * least 2<sup>64</sup>. </li>
56 *
57 * <li> Method {@link #split} constructs and returns a new
58 * SplittableRandom instance that shares no mutable state with the
59 * current instance. However, with very high probability, the
60 * values collectively generated by the two objects have the same
61 * statistical properties as if the same quantity of values were
62 * generated by a single thread using a single {@code
63 * SplittableRandom} object. </li>
64 *
65 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66 * They are designed to be split, not shared, across threads. For
67 * example, a {@link java.util.concurrent.ForkJoinTask
68 * fork/join-style} computation using random numbers might include a
69 * construction of the form {@code new
70 * Subtask(aSplittableRandom.split()).fork()}.
71 *
72 * <li>This class provides additional methods for generating random
73 * streams, that employ the above techniques when used in {@code
74 * stream.parallel()} mode.</li>
75 *
76 * </ul>
77 *
78 * <p>Instances of {@code SplittableRandom} are not cryptographically
79 * secure. Consider instead using {@link java.security.SecureRandom}
80 * in security-sensitive applications. Additionally,
81 * default-constructed instances do not use a cryptographically random
82 * seed unless the {@linkplain System#getProperty system property}
83 * {@code java.util.secureRandomSeed} is set to {@code true}.
84 *
85 * @author Guy Steele
86 * @author Doug Lea
87 * @since 1.8
88 */
89 public final class SplittableRandom {
90
91 /*
92 * Implementation Overview.
93 *
94 * This algorithm was inspired by the "DotMix" algorithm by
95 * Leiserson, Schardl, and Sukha "Deterministic Parallel
96 * Random-Number Generation for Dynamic-Multithreading Platforms",
97 * PPoPP 2012, as well as those in "Parallel random numbers: as
98 * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
99 * differs mainly in simplifying and cheapening operations.
100 *
101 * The primary update step (method nextSeed()) is to add a
102 * constant ("gamma") to the current (64 bit) seed, forming a
103 * simple sequence. The seed and the gamma values for any two
104 * SplittableRandom instances are highly likely to be different.
105 *
106 * Methods nextLong, nextInt, and derivatives do not return the
107 * sequence (seed) values, but instead a hash-like bit-mix of
108 * their bits, producing more independently distributed sequences.
109 * For nextLong, the mix64 function is based on David Stafford's
110 * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111 * "Mix13" variant of the "64-bit finalizer" function in Austin
112 * Appleby's MurmurHash3 algorithm (see
113 * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114 * function is based on Stafford's Mix04 mix function, but returns
115 * the upper 32 bits cast as int.
116 *
117 * The split operation uses the current generator to form the seed
118 * and gamma for another SplittableRandom. To conservatively
119 * avoid potential correlations between seed and value generation,
120 * gamma selection (method mixGamma) uses different
121 * (Murmurhash3's) mix constants. To avoid potential weaknesses
122 * in bit-mixing transformations, we restrict gammas to odd values
123 * with at least 24 0-1 or 1-0 bit transitions. Rather than
124 * rejecting candidates with too few or too many bits set, method
125 * mixGamma flips some bits (which has the effect of mapping at
126 * most 4 to any given gamma value). This reduces the effective
127 * set of 64bit odd gamma values by about 2%, and serves as an
128 * automated screening for sequence constant selection that is
129 * left as an empirical decision in some other hashing and crypto
130 * algorithms.
131 *
132 * The resulting generator thus transforms a sequence in which
133 * (typically) many bits change on each step, with an inexpensive
134 * mixer with good (but less than cryptographically secure)
135 * avalanching.
136 *
137 * The default (no-argument) constructor, in essence, invokes
138 * split() for a common "defaultGen" SplittableRandom. Unlike
139 * other cases, this split must be performed in a thread-safe
140 * manner, so we use an AtomicLong to represent the seed rather
141 * than use an explicit SplittableRandom. To bootstrap the
142 * defaultGen, we start off using a seed based on current time
143 * unless the java.util.secureRandomSeed property is set. This
144 * serves as a slimmed-down (and insecure) variant of SecureRandom
145 * that also avoids stalls that may occur when using /dev/random.
146 *
147 * It is a relatively simple matter to apply the basic design here
148 * to use 128 bit seeds. However, emulating 128bit arithmetic and
149 * carrying around twice the state add more overhead than appears
150 * warranted for current usages.
151 *
152 * File organization: First the non-public methods that constitute
153 * the main algorithm, then the main public methods, followed by
154 * some custom spliterator classes needed for stream methods.
155 */
156
157 /**
158 * The golden ratio scaled to 64bits, used as the initial gamma
159 * value for (unsplit) SplittableRandoms.
160 */
161 private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162
163 /**
164 * The least non-zero value returned by nextDouble(). This value
165 * is scaled by a random value of 53 bits to produce a result.
166 */
167 private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168
169 /**
170 * The seed. Updated only via method nextSeed.
171 */
172 private long seed;
173
174 /**
175 * The step value.
176 */
177 private final long gamma;
178
179 /**
180 * Internal constructor used by all others except default constructor.
181 */
182 private SplittableRandom(long seed, long gamma) {
183 this.seed = seed;
184 this.gamma = gamma;
185 }
186
187 /**
188 * Computes Stafford variant 13 of 64bit mix function.
189 */
190 private static long mix64(long z) {
191 z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192 z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193 return z ^ (z >>> 31);
194 }
195
196 /**
197 * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198 */
199 private static int mix32(long z) {
200 z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201 return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202 }
203
204 /**
205 * Returns the gamma value to use for a new split instance.
206 */
207 private static long mixGamma(long z) {
208 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209 z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210 z = (z ^ (z >>> 33)) | 1L; // force to be odd
211 int n = Long.bitCount(z ^ (z >>> 1)); // ensure enough transitions
212 return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213 }
214
215 /**
216 * Adds gamma to seed.
217 */
218 private long nextSeed() {
219 return seed += gamma;
220 }
221
222 /**
223 * The seed generator for default constructors.
224 */
225 private static final AtomicLong defaultGen = new AtomicLong(initialSeed());
226
227 private static long initialSeed() {
228 String pp = java.security.AccessController.doPrivileged(
229 new sun.security.action.GetPropertyAction(
230 "java.util.secureRandomSeed"));
231 if (pp != null && pp.equalsIgnoreCase("true")) {
232 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
233 long s = (long)(seedBytes[0]) & 0xffL;
234 for (int i = 1; i < 8; ++i)
235 s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
236 return s;
237 }
238 return (mix64(System.currentTimeMillis()) ^
239 mix64(System.nanoTime()));
240 }
241
242 // IllegalArgumentException messages
243 static final String BadBound = "bound must be positive";
244 static final String BadRange = "bound must be greater than origin";
245 static final String BadSize = "size must be non-negative";
246
247 /*
248 * Internal versions of nextX methods used by streams, as well as
249 * the public nextX(origin, bound) methods. These exist mainly to
250 * avoid the need for multiple versions of stream spliterators
251 * across the different exported forms of streams.
252 */
253
254 /**
255 * The form of nextLong used by LongStream Spliterators. If
256 * origin is greater than bound, acts as unbounded form of
257 * nextLong, else as bounded form.
258 *
259 * @param origin the least value, unless greater than bound
260 * @param bound the upper bound (exclusive), must not equal origin
261 * @return a pseudorandom value
262 */
263 final long internalNextLong(long origin, long bound) {
264 /*
265 * Four Cases:
266 *
267 * 1. If the arguments indicate unbounded form, act as
268 * nextLong().
269 *
270 * 2. If the range is an exact power of two, apply the
271 * associated bit mask.
272 *
273 * 3. If the range is positive, loop to avoid potential bias
274 * when the implicit nextLong() bound (2<sup>64</sup>) is not
275 * evenly divisible by the range. The loop rejects candidates
276 * computed from otherwise over-represented values. The
277 * expected number of iterations under an ideal generator
278 * varies from 1 to 2, depending on the bound. The loop itself
279 * takes an unlovable form. Because the first candidate is
280 * already available, we need a break-in-the-middle
281 * construction, which is concisely but cryptically performed
282 * within the while-condition of a body-less for loop.
283 *
284 * 4. Otherwise, the range cannot be represented as a positive
285 * long. The loop repeatedly generates unbounded longs until
286 * obtaining a candidate meeting constraints (with an expected
287 * number of iterations of less than two).
288 */
289
290 long r = mix64(nextSeed());
291 if (origin < bound) {
292 long n = bound - origin, m = n - 1;
293 if ((n & m) == 0L) // power of two
294 r = (r & m) + origin;
295 else if (n > 0L) { // reject over-represented candidates
296 for (long u = r >>> 1; // ensure nonnegative
297 u + m - (r = u % n) < 0L; // rejection check
298 u = mix64(nextSeed()) >>> 1) // retry
299 ;
300 r += origin;
301 }
302 else { // range not representable as long
303 while (r < origin || r >= bound)
304 r = mix64(nextSeed());
305 }
306 }
307 return r;
308 }
309
310 /**
311 * The form of nextInt used by IntStream Spliterators.
312 * Exactly the same as long version, except for types.
313 *
314 * @param origin the least value, unless greater than bound
315 * @param bound the upper bound (exclusive), must not equal origin
316 * @return a pseudorandom value
317 */
318 final int internalNextInt(int origin, int bound) {
319 int r = mix32(nextSeed());
320 if (origin < bound) {
321 int n = bound - origin, m = n - 1;
322 if ((n & m) == 0)
323 r = (r & m) + origin;
324 else if (n > 0) {
325 for (int u = r >>> 1;
326 u + m - (r = u % n) < 0;
327 u = mix32(nextSeed()) >>> 1)
328 ;
329 r += origin;
330 }
331 else {
332 while (r < origin || r >= bound)
333 r = mix32(nextSeed());
334 }
335 }
336 return r;
337 }
338
339 /**
340 * The form of nextDouble used by DoubleStream Spliterators.
341 *
342 * @param origin the least value, unless greater than bound
343 * @param bound the upper bound (exclusive), must not equal origin
344 * @return a pseudorandom value
345 */
346 final double internalNextDouble(double origin, double bound) {
347 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
348 if (origin < bound) {
349 r = r * (bound - origin) + origin;
350 if (r >= bound) // correct for rounding
351 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
352 }
353 return r;
354 }
355
356 /* ---------------- public methods ---------------- */
357
358 /**
359 * Creates a new SplittableRandom instance using the specified
360 * initial seed. SplittableRandom instances created with the same
361 * seed in the same program generate identical sequences of values.
362 *
363 * @param seed the initial seed
364 */
365 public SplittableRandom(long seed) {
366 this(seed, GOLDEN_GAMMA);
367 }
368
369 /**
370 * Creates a new SplittableRandom instance that is likely to
371 * generate sequences of values that are statistically independent
372 * of those of any other instances in the current program; and
373 * may, and typically does, vary across program invocations.
374 */
375 public SplittableRandom() { // emulate defaultGen.split()
376 long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
377 this.seed = mix64(s);
378 this.gamma = mixGamma(s + GOLDEN_GAMMA);
379 }
380
381 /**
382 * Constructs and returns a new SplittableRandom instance that
383 * shares no mutable state with this instance. However, with very
384 * high probability, the set of values collectively generated by
385 * the two objects has the same statistical properties as if the
386 * same quantity of values were generated by a single thread using
387 * a single SplittableRandom object. Either or both of the two
388 * objects may be further split using the {@code split()} method,
389 * and the same expected statistical properties apply to the
390 * entire set of generators constructed by such recursive
391 * splitting.
392 *
393 * @return the new SplittableRandom instance
394 */
395 public SplittableRandom split() {
396 return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
397 }
398
399 /**
400 * Returns a pseudorandom {@code int} value.
401 *
402 * @return a pseudorandom {@code int} value
403 */
404 public int nextInt() {
405 return mix32(nextSeed());
406 }
407
408 /**
409 * Returns a pseudorandom {@code int} value between zero (inclusive)
410 * and the specified bound (exclusive).
411 *
412 * @param bound the upper bound (exclusive). Must be positive.
413 * @return a pseudorandom {@code int} value between zero
414 * (inclusive) and the bound (exclusive)
415 * @throws IllegalArgumentException if {@code bound} is not positive
416 */
417 public int nextInt(int bound) {
418 if (bound <= 0)
419 throw new IllegalArgumentException(BadBound);
420 // Specialize internalNextInt for origin 0
421 int r = mix32(nextSeed());
422 int m = bound - 1;
423 if ((bound & m) == 0) // power of two
424 r &= m;
425 else { // reject over-represented candidates
426 for (int u = r >>> 1;
427 u + m - (r = u % bound) < 0;
428 u = mix32(nextSeed()) >>> 1)
429 ;
430 }
431 return r;
432 }
433
434 /**
435 * Returns a pseudorandom {@code int} value between the specified
436 * origin (inclusive) and the specified bound (exclusive).
437 *
438 * @param origin the least value returned
439 * @param bound the upper bound (exclusive)
440 * @return a pseudorandom {@code int} value between the origin
441 * (inclusive) and the bound (exclusive)
442 * @throws IllegalArgumentException if {@code origin} is greater than
443 * or equal to {@code bound}
444 */
445 public int nextInt(int origin, int bound) {
446 if (origin >= bound)
447 throw new IllegalArgumentException(BadRange);
448 return internalNextInt(origin, bound);
449 }
450
451 /**
452 * Returns a pseudorandom {@code long} value.
453 *
454 * @return a pseudorandom {@code long} value
455 */
456 public long nextLong() {
457 return mix64(nextSeed());
458 }
459
460 /**
461 * Returns a pseudorandom {@code long} value between zero (inclusive)
462 * and the specified bound (exclusive).
463 *
464 * @param bound the upper bound (exclusive). Must be positive.
465 * @return a pseudorandom {@code long} value between zero
466 * (inclusive) and the bound (exclusive)
467 * @throws IllegalArgumentException if {@code bound} is not positive
468 */
469 public long nextLong(long bound) {
470 if (bound <= 0)
471 throw new IllegalArgumentException(BadBound);
472 // Specialize internalNextLong for origin 0
473 long r = mix64(nextSeed());
474 long m = bound - 1;
475 if ((bound & m) == 0L) // power of two
476 r &= m;
477 else { // reject over-represented candidates
478 for (long u = r >>> 1;
479 u + m - (r = u % bound) < 0L;
480 u = mix64(nextSeed()) >>> 1)
481 ;
482 }
483 return r;
484 }
485
486 /**
487 * Returns a pseudorandom {@code long} value between the specified
488 * origin (inclusive) and the specified bound (exclusive).
489 *
490 * @param origin the least value returned
491 * @param bound the upper bound (exclusive)
492 * @return a pseudorandom {@code long} value between the origin
493 * (inclusive) and the bound (exclusive)
494 * @throws IllegalArgumentException if {@code origin} is greater than
495 * or equal to {@code bound}
496 */
497 public long nextLong(long origin, long bound) {
498 if (origin >= bound)
499 throw new IllegalArgumentException(BadRange);
500 return internalNextLong(origin, bound);
501 }
502
503 /**
504 * Returns a pseudorandom {@code double} value between zero
505 * (inclusive) and one (exclusive).
506 *
507 * @return a pseudorandom {@code double} value between zero
508 * (inclusive) and one (exclusive)
509 */
510 public double nextDouble() {
511 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
512 }
513
514 /**
515 * Returns a pseudorandom {@code double} value between 0.0
516 * (inclusive) and the specified bound (exclusive).
517 *
518 * @param bound the upper bound (exclusive). Must be positive.
519 * @return a pseudorandom {@code double} value between zero
520 * (inclusive) and the bound (exclusive)
521 * @throws IllegalArgumentException if {@code bound} is not positive
522 */
523 public double nextDouble(double bound) {
524 if (!(bound > 0.0))
525 throw new IllegalArgumentException(BadBound);
526 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
527 return (result < bound) ? result : // correct for rounding
528 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
529 }
530
531 /**
532 * Returns a pseudorandom {@code double} value between the specified
533 * origin (inclusive) and bound (exclusive).
534 *
535 * @param origin the least value returned
536 * @param bound the upper bound (exclusive)
537 * @return a pseudorandom {@code double} value between the origin
538 * (inclusive) and the bound (exclusive)
539 * @throws IllegalArgumentException if {@code origin} is greater than
540 * or equal to {@code bound}
541 */
542 public double nextDouble(double origin, double bound) {
543 if (!(origin < bound))
544 throw new IllegalArgumentException(BadRange);
545 return internalNextDouble(origin, bound);
546 }
547
548 /**
549 * Returns a pseudorandom {@code boolean} value.
550 *
551 * @return a pseudorandom {@code boolean} value
552 */
553 public boolean nextBoolean() {
554 return mix32(nextSeed()) < 0;
555 }
556
557 // stream methods, coded in a way intended to better isolate for
558 // maintenance purposes the small differences across forms.
559
560 /**
561 * Returns a stream producing the given {@code streamSize} number
562 * of pseudorandom {@code int} values from this generator and/or
563 * one split from it.
564 *
565 * @param streamSize the number of values to generate
566 * @return a stream of pseudorandom {@code int} values
567 * @throws IllegalArgumentException if {@code streamSize} is
568 * less than zero
569 */
570 public IntStream ints(long streamSize) {
571 if (streamSize < 0L)
572 throw new IllegalArgumentException(BadSize);
573 return StreamSupport.intStream
574 (new RandomIntsSpliterator
575 (this, 0L, streamSize, Integer.MAX_VALUE, 0),
576 false);
577 }
578
579 /**
580 * Returns an effectively unlimited stream of pseudorandom {@code int}
581 * values from this generator and/or one split from it.
582 *
583 * @implNote This method is implemented to be equivalent to {@code
584 * ints(Long.MAX_VALUE)}.
585 *
586 * @return a stream of pseudorandom {@code int} values
587 */
588 public IntStream ints() {
589 return StreamSupport.intStream
590 (new RandomIntsSpliterator
591 (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
592 false);
593 }
594
595 /**
596 * Returns a stream producing the given {@code streamSize} number
597 * of pseudorandom {@code int} values from this generator and/or one split
598 * from it; each value conforms to the given origin (inclusive) and bound
599 * (exclusive).
600 *
601 * @param streamSize the number of values to generate
602 * @param randomNumberOrigin the origin (inclusive) of each random value
603 * @param randomNumberBound the bound (exclusive) of each random value
604 * @return a stream of pseudorandom {@code int} values,
605 * each with the given origin (inclusive) and bound (exclusive)
606 * @throws IllegalArgumentException if {@code streamSize} is
607 * less than zero, or {@code randomNumberOrigin}
608 * is greater than or equal to {@code randomNumberBound}
609 */
610 public IntStream ints(long streamSize, int randomNumberOrigin,
611 int randomNumberBound) {
612 if (streamSize < 0L)
613 throw new IllegalArgumentException(BadSize);
614 if (randomNumberOrigin >= randomNumberBound)
615 throw new IllegalArgumentException(BadRange);
616 return StreamSupport.intStream
617 (new RandomIntsSpliterator
618 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
619 false);
620 }
621
622 /**
623 * Returns an effectively unlimited stream of pseudorandom {@code
624 * int} values from this generator and/or one split from it; each value
625 * conforms to the given origin (inclusive) and bound (exclusive).
626 *
627 * @implNote This method is implemented to be equivalent to {@code
628 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
629 *
630 * @param randomNumberOrigin the origin (inclusive) of each random value
631 * @param randomNumberBound the bound (exclusive) of each random value
632 * @return a stream of pseudorandom {@code int} values,
633 * each with the given origin (inclusive) and bound (exclusive)
634 * @throws IllegalArgumentException if {@code randomNumberOrigin}
635 * is greater than or equal to {@code randomNumberBound}
636 */
637 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
638 if (randomNumberOrigin >= randomNumberBound)
639 throw new IllegalArgumentException(BadRange);
640 return StreamSupport.intStream
641 (new RandomIntsSpliterator
642 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
643 false);
644 }
645
646 /**
647 * Returns a stream producing the given {@code streamSize} number
648 * of pseudorandom {@code long} values from this generator and/or
649 * one split from it.
650 *
651 * @param streamSize the number of values to generate
652 * @return a stream of pseudorandom {@code long} values
653 * @throws IllegalArgumentException if {@code streamSize} is
654 * less than zero
655 */
656 public LongStream longs(long streamSize) {
657 if (streamSize < 0L)
658 throw new IllegalArgumentException(BadSize);
659 return StreamSupport.longStream
660 (new RandomLongsSpliterator
661 (this, 0L, streamSize, Long.MAX_VALUE, 0L),
662 false);
663 }
664
665 /**
666 * Returns an effectively unlimited stream of pseudorandom {@code
667 * long} values from this generator and/or one split from it.
668 *
669 * @implNote This method is implemented to be equivalent to {@code
670 * longs(Long.MAX_VALUE)}.
671 *
672 * @return a stream of pseudorandom {@code long} values
673 */
674 public LongStream longs() {
675 return StreamSupport.longStream
676 (new RandomLongsSpliterator
677 (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
678 false);
679 }
680
681 /**
682 * Returns a stream producing the given {@code streamSize} number of
683 * pseudorandom {@code long} values from this generator and/or one split
684 * from it; each value conforms to the given origin (inclusive) and bound
685 * (exclusive).
686 *
687 * @param streamSize the number of values to generate
688 * @param randomNumberOrigin the origin (inclusive) of each random value
689 * @param randomNumberBound the bound (exclusive) of each random value
690 * @return a stream of pseudorandom {@code long} values,
691 * each with the given origin (inclusive) and bound (exclusive)
692 * @throws IllegalArgumentException if {@code streamSize} is
693 * less than zero, or {@code randomNumberOrigin}
694 * is greater than or equal to {@code randomNumberBound}
695 */
696 public LongStream longs(long streamSize, long randomNumberOrigin,
697 long randomNumberBound) {
698 if (streamSize < 0L)
699 throw new IllegalArgumentException(BadSize);
700 if (randomNumberOrigin >= randomNumberBound)
701 throw new IllegalArgumentException(BadRange);
702 return StreamSupport.longStream
703 (new RandomLongsSpliterator
704 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
705 false);
706 }
707
708 /**
709 * Returns an effectively unlimited stream of pseudorandom {@code
710 * long} values from this generator and/or one split from it; each value
711 * conforms to the given origin (inclusive) and bound (exclusive).
712 *
713 * @implNote This method is implemented to be equivalent to {@code
714 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
715 *
716 * @param randomNumberOrigin the origin (inclusive) of each random value
717 * @param randomNumberBound the bound (exclusive) of each random value
718 * @return a stream of pseudorandom {@code long} values,
719 * each with the given origin (inclusive) and bound (exclusive)
720 * @throws IllegalArgumentException if {@code randomNumberOrigin}
721 * is greater than or equal to {@code randomNumberBound}
722 */
723 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
724 if (randomNumberOrigin >= randomNumberBound)
725 throw new IllegalArgumentException(BadRange);
726 return StreamSupport.longStream
727 (new RandomLongsSpliterator
728 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
729 false);
730 }
731
732 /**
733 * Returns a stream producing the given {@code streamSize} number of
734 * pseudorandom {@code double} values from this generator and/or one split
735 * from it; each value is between zero (inclusive) and one (exclusive).
736 *
737 * @param streamSize the number of values to generate
738 * @return a stream of {@code double} values
739 * @throws IllegalArgumentException if {@code streamSize} is
740 * less than zero
741 */
742 public DoubleStream doubles(long streamSize) {
743 if (streamSize < 0L)
744 throw new IllegalArgumentException(BadSize);
745 return StreamSupport.doubleStream
746 (new RandomDoublesSpliterator
747 (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
748 false);
749 }
750
751 /**
752 * Returns an effectively unlimited stream of pseudorandom {@code
753 * double} values from this generator and/or one split from it; each value
754 * is between zero (inclusive) and one (exclusive).
755 *
756 * @implNote This method is implemented to be equivalent to {@code
757 * doubles(Long.MAX_VALUE)}.
758 *
759 * @return a stream of pseudorandom {@code double} values
760 */
761 public DoubleStream doubles() {
762 return StreamSupport.doubleStream
763 (new RandomDoublesSpliterator
764 (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
765 false);
766 }
767
768 /**
769 * Returns a stream producing the given {@code streamSize} number of
770 * pseudorandom {@code double} values from this generator and/or one split
771 * from it; each value conforms to the given origin (inclusive) and bound
772 * (exclusive).
773 *
774 * @param streamSize the number of values to generate
775 * @param randomNumberOrigin the origin (inclusive) of each random value
776 * @param randomNumberBound the bound (exclusive) of each random value
777 * @return a stream of pseudorandom {@code double} values,
778 * each with the given origin (inclusive) and bound (exclusive)
779 * @throws IllegalArgumentException if {@code streamSize} is
780 * less than zero
781 * @throws IllegalArgumentException if {@code randomNumberOrigin}
782 * is greater than or equal to {@code randomNumberBound}
783 */
784 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
785 double randomNumberBound) {
786 if (streamSize < 0L)
787 throw new IllegalArgumentException(BadSize);
788 if (!(randomNumberOrigin < randomNumberBound))
789 throw new IllegalArgumentException(BadRange);
790 return StreamSupport.doubleStream
791 (new RandomDoublesSpliterator
792 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
793 false);
794 }
795
796 /**
797 * Returns an effectively unlimited stream of pseudorandom {@code
798 * double} values from this generator and/or one split from it; each value
799 * conforms to the given origin (inclusive) and bound (exclusive).
800 *
801 * @implNote This method is implemented to be equivalent to {@code
802 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
803 *
804 * @param randomNumberOrigin the origin (inclusive) of each random value
805 * @param randomNumberBound the bound (exclusive) of each random value
806 * @return a stream of pseudorandom {@code double} values,
807 * each with the given origin (inclusive) and bound (exclusive)
808 * @throws IllegalArgumentException if {@code randomNumberOrigin}
809 * is greater than or equal to {@code randomNumberBound}
810 */
811 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
812 if (!(randomNumberOrigin < randomNumberBound))
813 throw new IllegalArgumentException(BadRange);
814 return StreamSupport.doubleStream
815 (new RandomDoublesSpliterator
816 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
817 false);
818 }
819
820 /**
821 * Spliterator for int streams. We multiplex the four int
822 * versions into one class by treating a bound less than origin as
823 * unbounded, and also by treating "infinite" as equivalent to
824 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
825 * approach. The long and double versions of this class are
826 * identical except for types.
827 */
828 static final class RandomIntsSpliterator implements Spliterator.OfInt {
829 final SplittableRandom rng;
830 long index;
831 final long fence;
832 final int origin;
833 final int bound;
834 RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
835 int origin, int bound) {
836 this.rng = rng; this.index = index; this.fence = fence;
837 this.origin = origin; this.bound = bound;
838 }
839
840 public RandomIntsSpliterator trySplit() {
841 long i = index, m = (i + fence) >>> 1;
842 return (m <= i) ? null :
843 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
844 }
845
846 public long estimateSize() {
847 return fence - index;
848 }
849
850 public int characteristics() {
851 return (Spliterator.SIZED | Spliterator.SUBSIZED |
852 Spliterator.NONNULL | Spliterator.IMMUTABLE);
853 }
854
855 public boolean tryAdvance(IntConsumer consumer) {
856 if (consumer == null) throw new NullPointerException();
857 long i = index, f = fence;
858 if (i < f) {
859 consumer.accept(rng.internalNextInt(origin, bound));
860 index = i + 1;
861 return true;
862 }
863 return false;
864 }
865
866 public void forEachRemaining(IntConsumer consumer) {
867 if (consumer == null) throw new NullPointerException();
868 long i = index, f = fence;
869 if (i < f) {
870 index = f;
871 SplittableRandom r = rng;
872 int o = origin, b = bound;
873 do {
874 consumer.accept(r.internalNextInt(o, b));
875 } while (++i < f);
876 }
877 }
878 }
879
880 /**
881 * Spliterator for long streams.
882 */
883 static final class RandomLongsSpliterator implements Spliterator.OfLong {
884 final SplittableRandom rng;
885 long index;
886 final long fence;
887 final long origin;
888 final long bound;
889 RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
890 long origin, long bound) {
891 this.rng = rng; this.index = index; this.fence = fence;
892 this.origin = origin; this.bound = bound;
893 }
894
895 public RandomLongsSpliterator trySplit() {
896 long i = index, m = (i + fence) >>> 1;
897 return (m <= i) ? null :
898 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
899 }
900
901 public long estimateSize() {
902 return fence - index;
903 }
904
905 public int characteristics() {
906 return (Spliterator.SIZED | Spliterator.SUBSIZED |
907 Spliterator.NONNULL | Spliterator.IMMUTABLE);
908 }
909
910 public boolean tryAdvance(LongConsumer consumer) {
911 if (consumer == null) throw new NullPointerException();
912 long i = index, f = fence;
913 if (i < f) {
914 consumer.accept(rng.internalNextLong(origin, bound));
915 index = i + 1;
916 return true;
917 }
918 return false;
919 }
920
921 public void forEachRemaining(LongConsumer consumer) {
922 if (consumer == null) throw new NullPointerException();
923 long i = index, f = fence;
924 if (i < f) {
925 index = f;
926 SplittableRandom r = rng;
927 long o = origin, b = bound;
928 do {
929 consumer.accept(r.internalNextLong(o, b));
930 } while (++i < f);
931 }
932 }
933
934 }
935
936 /**
937 * Spliterator for double streams.
938 */
939 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
940 final SplittableRandom rng;
941 long index;
942 final long fence;
943 final double origin;
944 final double bound;
945 RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
946 double origin, double bound) {
947 this.rng = rng; this.index = index; this.fence = fence;
948 this.origin = origin; this.bound = bound;
949 }
950
951 public RandomDoublesSpliterator trySplit() {
952 long i = index, m = (i + fence) >>> 1;
953 return (m <= i) ? null :
954 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
955 }
956
957 public long estimateSize() {
958 return fence - index;
959 }
960
961 public int characteristics() {
962 return (Spliterator.SIZED | Spliterator.SUBSIZED |
963 Spliterator.NONNULL | Spliterator.IMMUTABLE);
964 }
965
966 public boolean tryAdvance(DoubleConsumer consumer) {
967 if (consumer == null) throw new NullPointerException();
968 long i = index, f = fence;
969 if (i < f) {
970 consumer.accept(rng.internalNextDouble(origin, bound));
971 index = i + 1;
972 return true;
973 }
974 return false;
975 }
976
977 public void forEachRemaining(DoubleConsumer consumer) {
978 if (consumer == null) throw new NullPointerException();
979 long i = index, f = fence;
980 if (i < f) {
981 index = f;
982 SplittableRandom r = rng;
983 double o = origin, b = bound;
984 do {
985 consumer.accept(r.internalNextDouble(o, b));
986 } while (++i < f);
987 }
988 }
989 }
990
991 }