ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.31
Committed: Fri Feb 19 03:39:15 2016 UTC (8 years, 2 months ago) by jsr166
Branch: MAIN
Changes since 1.30: +5 -3 lines
Log Message:
unlambdafy to "fix" 8150014: java/lang/invoke/LFCaching/LFMultiThreadCachingTest.java fails with NoClassDefFoundError

File Contents

# Content
1 /*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.concurrent.atomic.AtomicLong;
29 import java.util.function.DoubleConsumer;
30 import java.util.function.IntConsumer;
31 import java.util.function.LongConsumer;
32 import java.util.stream.DoubleStream;
33 import java.util.stream.IntStream;
34 import java.util.stream.LongStream;
35 import java.util.stream.StreamSupport;
36
37 /**
38 * A generator of uniform pseudorandom values applicable for use in
39 * (among other contexts) isolated parallel computations that may
40 * generate subtasks. Class {@code SplittableRandom} supports methods for
41 * producing pseudorandom numbers of type {@code int}, {@code long},
42 * and {@code double} with similar usages as for class
43 * {@link java.util.Random} but differs in the following ways:
44 *
45 * <ul>
46 *
47 * <li>Series of generated values pass the DieHarder suite testing
48 * independence and uniformity properties of random number generators.
49 * (Most recently validated with <a
50 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51 * 3.31.1</a>.) These tests validate only the methods for certain
52 * types and ranges, but similar properties are expected to hold, at
53 * least approximately, for others as well. The <em>period</em>
54 * (length of any series of generated values before it repeats) is at
55 * least 2<sup>64</sup>.
56 *
57 * <li>Method {@link #split} constructs and returns a new
58 * SplittableRandom instance that shares no mutable state with the
59 * current instance. However, with very high probability, the
60 * values collectively generated by the two objects have the same
61 * statistical properties as if the same quantity of values were
62 * generated by a single thread using a single {@code
63 * SplittableRandom} object.
64 *
65 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66 * They are designed to be split, not shared, across threads. For
67 * example, a {@link java.util.concurrent.ForkJoinTask
68 * fork/join-style} computation using random numbers might include a
69 * construction of the form {@code new
70 * Subtask(aSplittableRandom.split()).fork()}.
71 *
72 * <li>This class provides additional methods for generating random
73 * streams, that employ the above techniques when used in {@code
74 * stream.parallel()} mode.
75 *
76 * </ul>
77 *
78 * <p>Instances of {@code SplittableRandom} are not cryptographically
79 * secure. Consider instead using {@link java.security.SecureRandom}
80 * in security-sensitive applications. Additionally,
81 * default-constructed instances do not use a cryptographically random
82 * seed unless the {@linkplain System#getProperty system property}
83 * {@code java.util.secureRandomSeed} is set to {@code true}.
84 *
85 * @author Guy Steele
86 * @author Doug Lea
87 * @since 1.8
88 */
89 public final class SplittableRandom {
90
91 /*
92 * Implementation Overview.
93 *
94 * This algorithm was inspired by the "DotMix" algorithm by
95 * Leiserson, Schardl, and Sukha "Deterministic Parallel
96 * Random-Number Generation for Dynamic-Multithreading Platforms",
97 * PPoPP 2012, as well as those in "Parallel random numbers: as
98 * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
99 * differs mainly in simplifying and cheapening operations.
100 *
101 * The primary update step (method nextSeed()) is to add a
102 * constant ("gamma") to the current (64 bit) seed, forming a
103 * simple sequence. The seed and the gamma values for any two
104 * SplittableRandom instances are highly likely to be different.
105 *
106 * Methods nextLong, nextInt, and derivatives do not return the
107 * sequence (seed) values, but instead a hash-like bit-mix of
108 * their bits, producing more independently distributed sequences.
109 * For nextLong, the mix64 function is based on David Stafford's
110 * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111 * "Mix13" variant of the "64-bit finalizer" function in Austin
112 * Appleby's MurmurHash3 algorithm (see
113 * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114 * function is based on Stafford's Mix04 mix function, but returns
115 * the upper 32 bits cast as int.
116 *
117 * The split operation uses the current generator to form the seed
118 * and gamma for another SplittableRandom. To conservatively
119 * avoid potential correlations between seed and value generation,
120 * gamma selection (method mixGamma) uses different
121 * (Murmurhash3's) mix constants. To avoid potential weaknesses
122 * in bit-mixing transformations, we restrict gammas to odd values
123 * with at least 24 0-1 or 1-0 bit transitions. Rather than
124 * rejecting candidates with too few or too many bits set, method
125 * mixGamma flips some bits (which has the effect of mapping at
126 * most 4 to any given gamma value). This reduces the effective
127 * set of 64bit odd gamma values by about 2%, and serves as an
128 * automated screening for sequence constant selection that is
129 * left as an empirical decision in some other hashing and crypto
130 * algorithms.
131 *
132 * The resulting generator thus transforms a sequence in which
133 * (typically) many bits change on each step, with an inexpensive
134 * mixer with good (but less than cryptographically secure)
135 * avalanching.
136 *
137 * The default (no-argument) constructor, in essence, invokes
138 * split() for a common "defaultGen" SplittableRandom. Unlike
139 * other cases, this split must be performed in a thread-safe
140 * manner, so we use an AtomicLong to represent the seed rather
141 * than use an explicit SplittableRandom. To bootstrap the
142 * defaultGen, we start off using a seed based on current time
143 * unless the java.util.secureRandomSeed property is set. This
144 * serves as a slimmed-down (and insecure) variant of SecureRandom
145 * that also avoids stalls that may occur when using /dev/random.
146 *
147 * It is a relatively simple matter to apply the basic design here
148 * to use 128 bit seeds. However, emulating 128bit arithmetic and
149 * carrying around twice the state add more overhead than appears
150 * warranted for current usages.
151 *
152 * File organization: First the non-public methods that constitute
153 * the main algorithm, then the main public methods, followed by
154 * some custom spliterator classes needed for stream methods.
155 */
156
157 /**
158 * The golden ratio scaled to 64bits, used as the initial gamma
159 * value for (unsplit) SplittableRandoms.
160 */
161 private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162
163 /**
164 * The least non-zero value returned by nextDouble(). This value
165 * is scaled by a random value of 53 bits to produce a result.
166 */
167 private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168
169 /**
170 * The seed. Updated only via method nextSeed.
171 */
172 private long seed;
173
174 /**
175 * The step value.
176 */
177 private final long gamma;
178
179 /**
180 * Internal constructor used by all others except default constructor.
181 */
182 private SplittableRandom(long seed, long gamma) {
183 this.seed = seed;
184 this.gamma = gamma;
185 }
186
187 /**
188 * Computes Stafford variant 13 of 64bit mix function.
189 */
190 private static long mix64(long z) {
191 z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192 z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193 return z ^ (z >>> 31);
194 }
195
196 /**
197 * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198 */
199 private static int mix32(long z) {
200 z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201 return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202 }
203
204 /**
205 * Returns the gamma value to use for a new split instance.
206 */
207 private static long mixGamma(long z) {
208 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209 z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210 z = (z ^ (z >>> 33)) | 1L; // force to be odd
211 int n = Long.bitCount(z ^ (z >>> 1)); // ensure enough transitions
212 return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213 }
214
215 /**
216 * Adds gamma to seed.
217 */
218 private long nextSeed() {
219 return seed += gamma;
220 }
221
222 /**
223 * The seed generator for default constructors.
224 */
225 private static final AtomicLong defaultGen = new AtomicLong(initialSeed());
226
227 private static long initialSeed() {
228 if (java.security.AccessController.doPrivileged(
229 new java.security.PrivilegedAction<Boolean>() {
230 public Boolean run() {
231 return Boolean.getBoolean("java.util.secureRandomSeed");
232 }})) {
233 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
234 long s = (long)seedBytes[0] & 0xffL;
235 for (int i = 1; i < 8; ++i)
236 s = (s << 8) | ((long)seedBytes[i] & 0xffL);
237 return s;
238 }
239 return (mix64(System.currentTimeMillis()) ^
240 mix64(System.nanoTime()));
241 }
242
243 // IllegalArgumentException messages
244 static final String BAD_BOUND = "bound must be positive";
245 static final String BAD_RANGE = "bound must be greater than origin";
246 static final String BAD_SIZE = "size must be non-negative";
247
248 /*
249 * Internal versions of nextX methods used by streams, as well as
250 * the public nextX(origin, bound) methods. These exist mainly to
251 * avoid the need for multiple versions of stream spliterators
252 * across the different exported forms of streams.
253 */
254
255 /**
256 * The form of nextLong used by LongStream Spliterators. If
257 * origin is greater than bound, acts as unbounded form of
258 * nextLong, else as bounded form.
259 *
260 * @param origin the least value, unless greater than bound
261 * @param bound the upper bound (exclusive), must not equal origin
262 * @return a pseudorandom value
263 */
264 final long internalNextLong(long origin, long bound) {
265 /*
266 * Four Cases:
267 *
268 * 1. If the arguments indicate unbounded form, act as
269 * nextLong().
270 *
271 * 2. If the range is an exact power of two, apply the
272 * associated bit mask.
273 *
274 * 3. If the range is positive, loop to avoid potential bias
275 * when the implicit nextLong() bound (2<sup>64</sup>) is not
276 * evenly divisible by the range. The loop rejects candidates
277 * computed from otherwise over-represented values. The
278 * expected number of iterations under an ideal generator
279 * varies from 1 to 2, depending on the bound. The loop itself
280 * takes an unlovable form. Because the first candidate is
281 * already available, we need a break-in-the-middle
282 * construction, which is concisely but cryptically performed
283 * within the while-condition of a body-less for loop.
284 *
285 * 4. Otherwise, the range cannot be represented as a positive
286 * long. The loop repeatedly generates unbounded longs until
287 * obtaining a candidate meeting constraints (with an expected
288 * number of iterations of less than two).
289 */
290
291 long r = mix64(nextSeed());
292 if (origin < bound) {
293 long n = bound - origin, m = n - 1;
294 if ((n & m) == 0L) // power of two
295 r = (r & m) + origin;
296 else if (n > 0L) { // reject over-represented candidates
297 for (long u = r >>> 1; // ensure nonnegative
298 u + m - (r = u % n) < 0L; // rejection check
299 u = mix64(nextSeed()) >>> 1) // retry
300 ;
301 r += origin;
302 }
303 else { // range not representable as long
304 while (r < origin || r >= bound)
305 r = mix64(nextSeed());
306 }
307 }
308 return r;
309 }
310
311 /**
312 * The form of nextInt used by IntStream Spliterators.
313 * Exactly the same as long version, except for types.
314 *
315 * @param origin the least value, unless greater than bound
316 * @param bound the upper bound (exclusive), must not equal origin
317 * @return a pseudorandom value
318 */
319 final int internalNextInt(int origin, int bound) {
320 int r = mix32(nextSeed());
321 if (origin < bound) {
322 int n = bound - origin, m = n - 1;
323 if ((n & m) == 0)
324 r = (r & m) + origin;
325 else if (n > 0) {
326 for (int u = r >>> 1;
327 u + m - (r = u % n) < 0;
328 u = mix32(nextSeed()) >>> 1)
329 ;
330 r += origin;
331 }
332 else {
333 while (r < origin || r >= bound)
334 r = mix32(nextSeed());
335 }
336 }
337 return r;
338 }
339
340 /**
341 * The form of nextDouble used by DoubleStream Spliterators.
342 *
343 * @param origin the least value, unless greater than bound
344 * @param bound the upper bound (exclusive), must not equal origin
345 * @return a pseudorandom value
346 */
347 final double internalNextDouble(double origin, double bound) {
348 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
349 if (origin < bound) {
350 r = r * (bound - origin) + origin;
351 if (r >= bound) // correct for rounding
352 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
353 }
354 return r;
355 }
356
357 /* ---------------- public methods ---------------- */
358
359 /**
360 * Creates a new SplittableRandom instance using the specified
361 * initial seed. SplittableRandom instances created with the same
362 * seed in the same program generate identical sequences of values.
363 *
364 * @param seed the initial seed
365 */
366 public SplittableRandom(long seed) {
367 this(seed, GOLDEN_GAMMA);
368 }
369
370 /**
371 * Creates a new SplittableRandom instance that is likely to
372 * generate sequences of values that are statistically independent
373 * of those of any other instances in the current program; and
374 * may, and typically does, vary across program invocations.
375 */
376 public SplittableRandom() { // emulate defaultGen.split()
377 long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
378 this.seed = mix64(s);
379 this.gamma = mixGamma(s + GOLDEN_GAMMA);
380 }
381
382 /**
383 * Constructs and returns a new SplittableRandom instance that
384 * shares no mutable state with this instance. However, with very
385 * high probability, the set of values collectively generated by
386 * the two objects has the same statistical properties as if the
387 * same quantity of values were generated by a single thread using
388 * a single SplittableRandom object. Either or both of the two
389 * objects may be further split using the {@code split()} method,
390 * and the same expected statistical properties apply to the
391 * entire set of generators constructed by such recursive
392 * splitting.
393 *
394 * @return the new SplittableRandom instance
395 */
396 public SplittableRandom split() {
397 return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
398 }
399
400 /**
401 * Returns a pseudorandom {@code int} value.
402 *
403 * @return a pseudorandom {@code int} value
404 */
405 public int nextInt() {
406 return mix32(nextSeed());
407 }
408
409 /**
410 * Returns a pseudorandom {@code int} value between zero (inclusive)
411 * and the specified bound (exclusive).
412 *
413 * @param bound the upper bound (exclusive). Must be positive.
414 * @return a pseudorandom {@code int} value between zero
415 * (inclusive) and the bound (exclusive)
416 * @throws IllegalArgumentException if {@code bound} is not positive
417 */
418 public int nextInt(int bound) {
419 if (bound <= 0)
420 throw new IllegalArgumentException(BAD_BOUND);
421 // Specialize internalNextInt for origin 0
422 int r = mix32(nextSeed());
423 int m = bound - 1;
424 if ((bound & m) == 0) // power of two
425 r &= m;
426 else { // reject over-represented candidates
427 for (int u = r >>> 1;
428 u + m - (r = u % bound) < 0;
429 u = mix32(nextSeed()) >>> 1)
430 ;
431 }
432 return r;
433 }
434
435 /**
436 * Returns a pseudorandom {@code int} value between the specified
437 * origin (inclusive) and the specified bound (exclusive).
438 *
439 * @param origin the least value returned
440 * @param bound the upper bound (exclusive)
441 * @return a pseudorandom {@code int} value between the origin
442 * (inclusive) and the bound (exclusive)
443 * @throws IllegalArgumentException if {@code origin} is greater than
444 * or equal to {@code bound}
445 */
446 public int nextInt(int origin, int bound) {
447 if (origin >= bound)
448 throw new IllegalArgumentException(BAD_RANGE);
449 return internalNextInt(origin, bound);
450 }
451
452 /**
453 * Returns a pseudorandom {@code long} value.
454 *
455 * @return a pseudorandom {@code long} value
456 */
457 public long nextLong() {
458 return mix64(nextSeed());
459 }
460
461 /**
462 * Returns a pseudorandom {@code long} value between zero (inclusive)
463 * and the specified bound (exclusive).
464 *
465 * @param bound the upper bound (exclusive). Must be positive.
466 * @return a pseudorandom {@code long} value between zero
467 * (inclusive) and the bound (exclusive)
468 * @throws IllegalArgumentException if {@code bound} is not positive
469 */
470 public long nextLong(long bound) {
471 if (bound <= 0)
472 throw new IllegalArgumentException(BAD_BOUND);
473 // Specialize internalNextLong for origin 0
474 long r = mix64(nextSeed());
475 long m = bound - 1;
476 if ((bound & m) == 0L) // power of two
477 r &= m;
478 else { // reject over-represented candidates
479 for (long u = r >>> 1;
480 u + m - (r = u % bound) < 0L;
481 u = mix64(nextSeed()) >>> 1)
482 ;
483 }
484 return r;
485 }
486
487 /**
488 * Returns a pseudorandom {@code long} value between the specified
489 * origin (inclusive) and the specified bound (exclusive).
490 *
491 * @param origin the least value returned
492 * @param bound the upper bound (exclusive)
493 * @return a pseudorandom {@code long} value between the origin
494 * (inclusive) and the bound (exclusive)
495 * @throws IllegalArgumentException if {@code origin} is greater than
496 * or equal to {@code bound}
497 */
498 public long nextLong(long origin, long bound) {
499 if (origin >= bound)
500 throw new IllegalArgumentException(BAD_RANGE);
501 return internalNextLong(origin, bound);
502 }
503
504 /**
505 * Returns a pseudorandom {@code double} value between zero
506 * (inclusive) and one (exclusive).
507 *
508 * @return a pseudorandom {@code double} value between zero
509 * (inclusive) and one (exclusive)
510 */
511 public double nextDouble() {
512 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
513 }
514
515 /**
516 * Returns a pseudorandom {@code double} value between 0.0
517 * (inclusive) and the specified bound (exclusive).
518 *
519 * @param bound the upper bound (exclusive). Must be positive.
520 * @return a pseudorandom {@code double} value between zero
521 * (inclusive) and the bound (exclusive)
522 * @throws IllegalArgumentException if {@code bound} is not positive
523 */
524 public double nextDouble(double bound) {
525 if (!(bound > 0.0))
526 throw new IllegalArgumentException(BAD_BOUND);
527 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
528 return (result < bound) ? result : // correct for rounding
529 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
530 }
531
532 /**
533 * Returns a pseudorandom {@code double} value between the specified
534 * origin (inclusive) and bound (exclusive).
535 *
536 * @param origin the least value returned
537 * @param bound the upper bound (exclusive)
538 * @return a pseudorandom {@code double} value between the origin
539 * (inclusive) and the bound (exclusive)
540 * @throws IllegalArgumentException if {@code origin} is greater than
541 * or equal to {@code bound}
542 */
543 public double nextDouble(double origin, double bound) {
544 if (!(origin < bound))
545 throw new IllegalArgumentException(BAD_RANGE);
546 return internalNextDouble(origin, bound);
547 }
548
549 /**
550 * Returns a pseudorandom {@code boolean} value.
551 *
552 * @return a pseudorandom {@code boolean} value
553 */
554 public boolean nextBoolean() {
555 return mix32(nextSeed()) < 0;
556 }
557
558 // stream methods, coded in a way intended to better isolate for
559 // maintenance purposes the small differences across forms.
560
561 /**
562 * Returns a stream producing the given {@code streamSize} number
563 * of pseudorandom {@code int} values from this generator and/or
564 * one split from it.
565 *
566 * @param streamSize the number of values to generate
567 * @return a stream of pseudorandom {@code int} values
568 * @throws IllegalArgumentException if {@code streamSize} is
569 * less than zero
570 */
571 public IntStream ints(long streamSize) {
572 if (streamSize < 0L)
573 throw new IllegalArgumentException(BAD_SIZE);
574 return StreamSupport.intStream
575 (new RandomIntsSpliterator
576 (this, 0L, streamSize, Integer.MAX_VALUE, 0),
577 false);
578 }
579
580 /**
581 * Returns an effectively unlimited stream of pseudorandom {@code int}
582 * values from this generator and/or one split from it.
583 *
584 * @implNote This method is implemented to be equivalent to {@code
585 * ints(Long.MAX_VALUE)}.
586 *
587 * @return a stream of pseudorandom {@code int} values
588 */
589 public IntStream ints() {
590 return StreamSupport.intStream
591 (new RandomIntsSpliterator
592 (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
593 false);
594 }
595
596 /**
597 * Returns a stream producing the given {@code streamSize} number
598 * of pseudorandom {@code int} values from this generator and/or one split
599 * from it; each value conforms to the given origin (inclusive) and bound
600 * (exclusive).
601 *
602 * @param streamSize the number of values to generate
603 * @param randomNumberOrigin the origin (inclusive) of each random value
604 * @param randomNumberBound the bound (exclusive) of each random value
605 * @return a stream of pseudorandom {@code int} values,
606 * each with the given origin (inclusive) and bound (exclusive)
607 * @throws IllegalArgumentException if {@code streamSize} is
608 * less than zero, or {@code randomNumberOrigin}
609 * is greater than or equal to {@code randomNumberBound}
610 */
611 public IntStream ints(long streamSize, int randomNumberOrigin,
612 int randomNumberBound) {
613 if (streamSize < 0L)
614 throw new IllegalArgumentException(BAD_SIZE);
615 if (randomNumberOrigin >= randomNumberBound)
616 throw new IllegalArgumentException(BAD_RANGE);
617 return StreamSupport.intStream
618 (new RandomIntsSpliterator
619 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
620 false);
621 }
622
623 /**
624 * Returns an effectively unlimited stream of pseudorandom {@code
625 * int} values from this generator and/or one split from it; each value
626 * conforms to the given origin (inclusive) and bound (exclusive).
627 *
628 * @implNote This method is implemented to be equivalent to {@code
629 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
630 *
631 * @param randomNumberOrigin the origin (inclusive) of each random value
632 * @param randomNumberBound the bound (exclusive) of each random value
633 * @return a stream of pseudorandom {@code int} values,
634 * each with the given origin (inclusive) and bound (exclusive)
635 * @throws IllegalArgumentException if {@code randomNumberOrigin}
636 * is greater than or equal to {@code randomNumberBound}
637 */
638 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
639 if (randomNumberOrigin >= randomNumberBound)
640 throw new IllegalArgumentException(BAD_RANGE);
641 return StreamSupport.intStream
642 (new RandomIntsSpliterator
643 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
644 false);
645 }
646
647 /**
648 * Returns a stream producing the given {@code streamSize} number
649 * of pseudorandom {@code long} values from this generator and/or
650 * one split from it.
651 *
652 * @param streamSize the number of values to generate
653 * @return a stream of pseudorandom {@code long} values
654 * @throws IllegalArgumentException if {@code streamSize} is
655 * less than zero
656 */
657 public LongStream longs(long streamSize) {
658 if (streamSize < 0L)
659 throw new IllegalArgumentException(BAD_SIZE);
660 return StreamSupport.longStream
661 (new RandomLongsSpliterator
662 (this, 0L, streamSize, Long.MAX_VALUE, 0L),
663 false);
664 }
665
666 /**
667 * Returns an effectively unlimited stream of pseudorandom {@code
668 * long} values from this generator and/or one split from it.
669 *
670 * @implNote This method is implemented to be equivalent to {@code
671 * longs(Long.MAX_VALUE)}.
672 *
673 * @return a stream of pseudorandom {@code long} values
674 */
675 public LongStream longs() {
676 return StreamSupport.longStream
677 (new RandomLongsSpliterator
678 (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
679 false);
680 }
681
682 /**
683 * Returns a stream producing the given {@code streamSize} number of
684 * pseudorandom {@code long} values from this generator and/or one split
685 * from it; each value conforms to the given origin (inclusive) and bound
686 * (exclusive).
687 *
688 * @param streamSize the number of values to generate
689 * @param randomNumberOrigin the origin (inclusive) of each random value
690 * @param randomNumberBound the bound (exclusive) of each random value
691 * @return a stream of pseudorandom {@code long} values,
692 * each with the given origin (inclusive) and bound (exclusive)
693 * @throws IllegalArgumentException if {@code streamSize} is
694 * less than zero, or {@code randomNumberOrigin}
695 * is greater than or equal to {@code randomNumberBound}
696 */
697 public LongStream longs(long streamSize, long randomNumberOrigin,
698 long randomNumberBound) {
699 if (streamSize < 0L)
700 throw new IllegalArgumentException(BAD_SIZE);
701 if (randomNumberOrigin >= randomNumberBound)
702 throw new IllegalArgumentException(BAD_RANGE);
703 return StreamSupport.longStream
704 (new RandomLongsSpliterator
705 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
706 false);
707 }
708
709 /**
710 * Returns an effectively unlimited stream of pseudorandom {@code
711 * long} values from this generator and/or one split from it; each value
712 * conforms to the given origin (inclusive) and bound (exclusive).
713 *
714 * @implNote This method is implemented to be equivalent to {@code
715 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
716 *
717 * @param randomNumberOrigin the origin (inclusive) of each random value
718 * @param randomNumberBound the bound (exclusive) of each random value
719 * @return a stream of pseudorandom {@code long} values,
720 * each with the given origin (inclusive) and bound (exclusive)
721 * @throws IllegalArgumentException if {@code randomNumberOrigin}
722 * is greater than or equal to {@code randomNumberBound}
723 */
724 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
725 if (randomNumberOrigin >= randomNumberBound)
726 throw new IllegalArgumentException(BAD_RANGE);
727 return StreamSupport.longStream
728 (new RandomLongsSpliterator
729 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
730 false);
731 }
732
733 /**
734 * Returns a stream producing the given {@code streamSize} number of
735 * pseudorandom {@code double} values from this generator and/or one split
736 * from it; each value is between zero (inclusive) and one (exclusive).
737 *
738 * @param streamSize the number of values to generate
739 * @return a stream of {@code double} values
740 * @throws IllegalArgumentException if {@code streamSize} is
741 * less than zero
742 */
743 public DoubleStream doubles(long streamSize) {
744 if (streamSize < 0L)
745 throw new IllegalArgumentException(BAD_SIZE);
746 return StreamSupport.doubleStream
747 (new RandomDoublesSpliterator
748 (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
749 false);
750 }
751
752 /**
753 * Returns an effectively unlimited stream of pseudorandom {@code
754 * double} values from this generator and/or one split from it; each value
755 * is between zero (inclusive) and one (exclusive).
756 *
757 * @implNote This method is implemented to be equivalent to {@code
758 * doubles(Long.MAX_VALUE)}.
759 *
760 * @return a stream of pseudorandom {@code double} values
761 */
762 public DoubleStream doubles() {
763 return StreamSupport.doubleStream
764 (new RandomDoublesSpliterator
765 (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
766 false);
767 }
768
769 /**
770 * Returns a stream producing the given {@code streamSize} number of
771 * pseudorandom {@code double} values from this generator and/or one split
772 * from it; each value conforms to the given origin (inclusive) and bound
773 * (exclusive).
774 *
775 * @param streamSize the number of values to generate
776 * @param randomNumberOrigin the origin (inclusive) of each random value
777 * @param randomNumberBound the bound (exclusive) of each random value
778 * @return a stream of pseudorandom {@code double} values,
779 * each with the given origin (inclusive) and bound (exclusive)
780 * @throws IllegalArgumentException if {@code streamSize} is
781 * less than zero
782 * @throws IllegalArgumentException if {@code randomNumberOrigin}
783 * is greater than or equal to {@code randomNumberBound}
784 */
785 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
786 double randomNumberBound) {
787 if (streamSize < 0L)
788 throw new IllegalArgumentException(BAD_SIZE);
789 if (!(randomNumberOrigin < randomNumberBound))
790 throw new IllegalArgumentException(BAD_RANGE);
791 return StreamSupport.doubleStream
792 (new RandomDoublesSpliterator
793 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
794 false);
795 }
796
797 /**
798 * Returns an effectively unlimited stream of pseudorandom {@code
799 * double} values from this generator and/or one split from it; each value
800 * conforms to the given origin (inclusive) and bound (exclusive).
801 *
802 * @implNote This method is implemented to be equivalent to {@code
803 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
804 *
805 * @param randomNumberOrigin the origin (inclusive) of each random value
806 * @param randomNumberBound the bound (exclusive) of each random value
807 * @return a stream of pseudorandom {@code double} values,
808 * each with the given origin (inclusive) and bound (exclusive)
809 * @throws IllegalArgumentException if {@code randomNumberOrigin}
810 * is greater than or equal to {@code randomNumberBound}
811 */
812 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
813 if (!(randomNumberOrigin < randomNumberBound))
814 throw new IllegalArgumentException(BAD_RANGE);
815 return StreamSupport.doubleStream
816 (new RandomDoublesSpliterator
817 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
818 false);
819 }
820
821 /**
822 * Spliterator for int streams. We multiplex the four int
823 * versions into one class by treating a bound less than origin as
824 * unbounded, and also by treating "infinite" as equivalent to
825 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
826 * approach. The long and double versions of this class are
827 * identical except for types.
828 */
829 private static final class RandomIntsSpliterator
830 implements Spliterator.OfInt {
831 final SplittableRandom rng;
832 long index;
833 final long fence;
834 final int origin;
835 final int bound;
836 RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
837 int origin, int bound) {
838 this.rng = rng; this.index = index; this.fence = fence;
839 this.origin = origin; this.bound = bound;
840 }
841
842 public RandomIntsSpliterator trySplit() {
843 long i = index, m = (i + fence) >>> 1;
844 return (m <= i) ? null :
845 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
846 }
847
848 public long estimateSize() {
849 return fence - index;
850 }
851
852 public int characteristics() {
853 return (Spliterator.SIZED | Spliterator.SUBSIZED |
854 Spliterator.NONNULL | Spliterator.IMMUTABLE);
855 }
856
857 public boolean tryAdvance(IntConsumer consumer) {
858 if (consumer == null) throw new NullPointerException();
859 long i = index, f = fence;
860 if (i < f) {
861 consumer.accept(rng.internalNextInt(origin, bound));
862 index = i + 1;
863 return true;
864 }
865 return false;
866 }
867
868 public void forEachRemaining(IntConsumer consumer) {
869 if (consumer == null) throw new NullPointerException();
870 long i = index, f = fence;
871 if (i < f) {
872 index = f;
873 SplittableRandom r = rng;
874 int o = origin, b = bound;
875 do {
876 consumer.accept(r.internalNextInt(o, b));
877 } while (++i < f);
878 }
879 }
880 }
881
882 /**
883 * Spliterator for long streams.
884 */
885 private static final class RandomLongsSpliterator
886 implements Spliterator.OfLong {
887 final SplittableRandom rng;
888 long index;
889 final long fence;
890 final long origin;
891 final long bound;
892 RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
893 long origin, long bound) {
894 this.rng = rng; this.index = index; this.fence = fence;
895 this.origin = origin; this.bound = bound;
896 }
897
898 public RandomLongsSpliterator trySplit() {
899 long i = index, m = (i + fence) >>> 1;
900 return (m <= i) ? null :
901 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
902 }
903
904 public long estimateSize() {
905 return fence - index;
906 }
907
908 public int characteristics() {
909 return (Spliterator.SIZED | Spliterator.SUBSIZED |
910 Spliterator.NONNULL | Spliterator.IMMUTABLE);
911 }
912
913 public boolean tryAdvance(LongConsumer consumer) {
914 if (consumer == null) throw new NullPointerException();
915 long i = index, f = fence;
916 if (i < f) {
917 consumer.accept(rng.internalNextLong(origin, bound));
918 index = i + 1;
919 return true;
920 }
921 return false;
922 }
923
924 public void forEachRemaining(LongConsumer consumer) {
925 if (consumer == null) throw new NullPointerException();
926 long i = index, f = fence;
927 if (i < f) {
928 index = f;
929 SplittableRandom r = rng;
930 long o = origin, b = bound;
931 do {
932 consumer.accept(r.internalNextLong(o, b));
933 } while (++i < f);
934 }
935 }
936
937 }
938
939 /**
940 * Spliterator for double streams.
941 */
942 private static final class RandomDoublesSpliterator
943 implements Spliterator.OfDouble {
944 final SplittableRandom rng;
945 long index;
946 final long fence;
947 final double origin;
948 final double bound;
949 RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
950 double origin, double bound) {
951 this.rng = rng; this.index = index; this.fence = fence;
952 this.origin = origin; this.bound = bound;
953 }
954
955 public RandomDoublesSpliterator trySplit() {
956 long i = index, m = (i + fence) >>> 1;
957 return (m <= i) ? null :
958 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
959 }
960
961 public long estimateSize() {
962 return fence - index;
963 }
964
965 public int characteristics() {
966 return (Spliterator.SIZED | Spliterator.SUBSIZED |
967 Spliterator.NONNULL | Spliterator.IMMUTABLE);
968 }
969
970 public boolean tryAdvance(DoubleConsumer consumer) {
971 if (consumer == null) throw new NullPointerException();
972 long i = index, f = fence;
973 if (i < f) {
974 consumer.accept(rng.internalNextDouble(origin, bound));
975 index = i + 1;
976 return true;
977 }
978 return false;
979 }
980
981 public void forEachRemaining(DoubleConsumer consumer) {
982 if (consumer == null) throw new NullPointerException();
983 long i = index, f = fence;
984 if (i < f) {
985 index = f;
986 SplittableRandom r = rng;
987 double o = origin, b = bound;
988 do {
989 consumer.accept(r.internalNextDouble(o, b));
990 } while (++i < f);
991 }
992 }
993 }
994
995 }