ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.35
Committed: Sun Nov 13 02:23:22 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.34: +1 -1 lines
Log Message:
typo

File Contents

# Content
1 /*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.concurrent.atomic.AtomicLong;
29 import java.util.function.DoubleConsumer;
30 import java.util.function.IntConsumer;
31 import java.util.function.LongConsumer;
32 import java.util.stream.DoubleStream;
33 import java.util.stream.IntStream;
34 import java.util.stream.LongStream;
35 import java.util.stream.StreamSupport;
36
37 /**
38 * A generator of uniform pseudorandom values applicable for use in
39 * (among other contexts) isolated parallel computations that may
40 * generate subtasks. Class {@code SplittableRandom} supports methods for
41 * producing pseudorandom numbers of type {@code int}, {@code long},
42 * and {@code double} with similar usages as for class
43 * {@link java.util.Random} but differs in the following ways:
44 *
45 * <ul>
46 *
47 * <li>Series of generated values pass the DieHarder suite testing
48 * independence and uniformity properties of random number generators.
49 * (Most recently validated with <a
50 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51 * 3.31.1</a>.) These tests validate only the methods for certain
52 * types and ranges, but similar properties are expected to hold, at
53 * least approximately, for others as well. The <em>period</em>
54 * (length of any series of generated values before it repeats) is at
55 * least 2<sup>64</sup>.
56 *
57 * <li>Method {@link #split} constructs and returns a new
58 * SplittableRandom instance that shares no mutable state with the
59 * current instance. However, with very high probability, the
60 * values collectively generated by the two objects have the same
61 * statistical properties as if the same quantity of values were
62 * generated by a single thread using a single {@code
63 * SplittableRandom} object.
64 *
65 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66 * They are designed to be split, not shared, across threads. For
67 * example, a {@link java.util.concurrent.ForkJoinTask
68 * fork/join-style} computation using random numbers might include a
69 * construction of the form {@code new
70 * Subtask(aSplittableRandom.split()).fork()}.
71 *
72 * <li>This class provides additional methods for generating random
73 * streams, that employ the above techniques when used in {@code
74 * stream.parallel()} mode.
75 *
76 * </ul>
77 *
78 * <p>Instances of {@code SplittableRandom} are not cryptographically
79 * secure. Consider instead using {@link java.security.SecureRandom}
80 * in security-sensitive applications. Additionally,
81 * default-constructed instances do not use a cryptographically random
82 * seed unless the {@linkplain System#getProperty system property}
83 * {@code java.util.secureRandomSeed} is set to {@code true}.
84 *
85 * @author Guy Steele
86 * @author Doug Lea
87 * @since 1.8
88 */
89 public final class SplittableRandom {
90
91 /*
92 * Implementation Overview.
93 *
94 * This algorithm was inspired by the "DotMix" algorithm by
95 * Leiserson, Schardl, and Sukha "Deterministic Parallel
96 * Random-Number Generation for Dynamic-Multithreading Platforms",
97 * PPoPP 2012, as well as those in "Parallel random numbers: as
98 * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
99 * differs mainly in simplifying and cheapening operations.
100 *
101 * The primary update step (method nextSeed()) is to add a
102 * constant ("gamma") to the current (64 bit) seed, forming a
103 * simple sequence. The seed and the gamma values for any two
104 * SplittableRandom instances are highly likely to be different.
105 *
106 * Methods nextLong, nextInt, and derivatives do not return the
107 * sequence (seed) values, but instead a hash-like bit-mix of
108 * their bits, producing more independently distributed sequences.
109 * For nextLong, the mix64 function is based on David Stafford's
110 * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111 * "Mix13" variant of the "64-bit finalizer" function in Austin
112 * Appleby's MurmurHash3 algorithm (see
113 * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114 * function is based on Stafford's Mix04 mix function, but returns
115 * the upper 32 bits cast as int.
116 *
117 * The split operation uses the current generator to form the seed
118 * and gamma for another SplittableRandom. To conservatively
119 * avoid potential correlations between seed and value generation,
120 * gamma selection (method mixGamma) uses different
121 * (Murmurhash3's) mix constants. To avoid potential weaknesses
122 * in bit-mixing transformations, we restrict gammas to odd values
123 * with at least 24 0-1 or 1-0 bit transitions. Rather than
124 * rejecting candidates with too few or too many bits set, method
125 * mixGamma flips some bits (which has the effect of mapping at
126 * most 4 to any given gamma value). This reduces the effective
127 * set of 64bit odd gamma values by about 2%, and serves as an
128 * automated screening for sequence constant selection that is
129 * left as an empirical decision in some other hashing and crypto
130 * algorithms.
131 *
132 * The resulting generator thus transforms a sequence in which
133 * (typically) many bits change on each step, with an inexpensive
134 * mixer with good (but less than cryptographically secure)
135 * avalanching.
136 *
137 * The default (no-argument) constructor, in essence, invokes
138 * split() for a common "defaultGen" SplittableRandom. Unlike
139 * other cases, this split must be performed in a thread-safe
140 * manner, so we use an AtomicLong to represent the seed rather
141 * than use an explicit SplittableRandom. To bootstrap the
142 * defaultGen, we start off using a seed based on current time
143 * unless the java.util.secureRandomSeed property is set. This
144 * serves as a slimmed-down (and insecure) variant of SecureRandom
145 * that also avoids stalls that may occur when using /dev/random.
146 *
147 * It is a relatively simple matter to apply the basic design here
148 * to use 128 bit seeds. However, emulating 128bit arithmetic and
149 * carrying around twice the state add more overhead than appears
150 * warranted for current usages.
151 *
152 * File organization: First the non-public methods that constitute
153 * the main algorithm, then the main public methods, followed by
154 * some custom spliterator classes needed for stream methods.
155 */
156
157 /**
158 * The golden ratio scaled to 64bits, used as the initial gamma
159 * value for (unsplit) SplittableRandoms.
160 */
161 private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162
163 /**
164 * The least non-zero value returned by nextDouble(). This value
165 * is scaled by a random value of 53 bits to produce a result.
166 */
167 private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168
169 /**
170 * The seed. Updated only via method nextSeed.
171 */
172 private long seed;
173
174 /**
175 * The step value.
176 */
177 private final long gamma;
178
179 /**
180 * Internal constructor used by all others except default constructor.
181 */
182 private SplittableRandom(long seed, long gamma) {
183 this.seed = seed;
184 this.gamma = gamma;
185 }
186
187 /**
188 * Computes Stafford variant 13 of 64bit mix function.
189 */
190 private static long mix64(long z) {
191 z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192 z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193 return z ^ (z >>> 31);
194 }
195
196 /**
197 * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198 */
199 private static int mix32(long z) {
200 z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201 return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202 }
203
204 /**
205 * Returns the gamma value to use for a new split instance.
206 */
207 private static long mixGamma(long z) {
208 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209 z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210 z = (z ^ (z >>> 33)) | 1L; // force to be odd
211 int n = Long.bitCount(z ^ (z >>> 1)); // ensure enough transitions
212 return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213 }
214
215 /**
216 * Adds gamma to seed.
217 */
218 private long nextSeed() {
219 return seed += gamma;
220 }
221
222 // IllegalArgumentException messages
223 static final String BAD_BOUND = "bound must be positive";
224 static final String BAD_RANGE = "bound must be greater than origin";
225 static final String BAD_SIZE = "size must be non-negative";
226
227 /**
228 * The seed generator for default constructors.
229 */
230 private static final AtomicLong defaultGen
231 = new AtomicLong(mix64(System.currentTimeMillis()) ^
232 mix64(System.nanoTime()));
233
234 // at end of <clinit> to survive static initialization circularity
235 static {
236 if (java.security.AccessController.doPrivileged(
237 new java.security.PrivilegedAction<Boolean>() {
238 public Boolean run() {
239 return Boolean.getBoolean("java.util.secureRandomSeed");
240 }})) {
241 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
242 long s = (long)seedBytes[0] & 0xffL;
243 for (int i = 1; i < 8; ++i)
244 s = (s << 8) | ((long)seedBytes[i] & 0xffL);
245 defaultGen.set(s);
246 }
247 }
248
249 /*
250 * Internal versions of nextX methods used by streams, as well as
251 * the public nextX(origin, bound) methods. These exist mainly to
252 * avoid the need for multiple versions of stream spliterators
253 * across the different exported forms of streams.
254 */
255
256 /**
257 * The form of nextLong used by LongStream Spliterators. If
258 * origin is greater than bound, acts as unbounded form of
259 * nextLong, else as bounded form.
260 *
261 * @param origin the least value, unless greater than bound
262 * @param bound the upper bound (exclusive), must not equal origin
263 * @return a pseudorandom value
264 */
265 final long internalNextLong(long origin, long bound) {
266 /*
267 * Four Cases:
268 *
269 * 1. If the arguments indicate unbounded form, act as
270 * nextLong().
271 *
272 * 2. If the range is an exact power of two, apply the
273 * associated bit mask.
274 *
275 * 3. If the range is positive, loop to avoid potential bias
276 * when the implicit nextLong() bound (2<sup>64</sup>) is not
277 * evenly divisible by the range. The loop rejects candidates
278 * computed from otherwise over-represented values. The
279 * expected number of iterations under an ideal generator
280 * varies from 1 to 2, depending on the bound. The loop itself
281 * takes an unlovable form. Because the first candidate is
282 * already available, we need a break-in-the-middle
283 * construction, which is concisely but cryptically performed
284 * within the while-condition of a body-less for loop.
285 *
286 * 4. Otherwise, the range cannot be represented as a positive
287 * long. The loop repeatedly generates unbounded longs until
288 * obtaining a candidate meeting constraints (with an expected
289 * number of iterations of less than two).
290 */
291
292 long r = mix64(nextSeed());
293 if (origin < bound) {
294 long n = bound - origin, m = n - 1;
295 if ((n & m) == 0L) // power of two
296 r = (r & m) + origin;
297 else if (n > 0L) { // reject over-represented candidates
298 for (long u = r >>> 1; // ensure nonnegative
299 u + m - (r = u % n) < 0L; // rejection check
300 u = mix64(nextSeed()) >>> 1) // retry
301 ;
302 r += origin;
303 }
304 else { // range not representable as long
305 while (r < origin || r >= bound)
306 r = mix64(nextSeed());
307 }
308 }
309 return r;
310 }
311
312 /**
313 * The form of nextInt used by IntStream Spliterators.
314 * Exactly the same as long version, except for types.
315 *
316 * @param origin the least value, unless greater than bound
317 * @param bound the upper bound (exclusive), must not equal origin
318 * @return a pseudorandom value
319 */
320 final int internalNextInt(int origin, int bound) {
321 int r = mix32(nextSeed());
322 if (origin < bound) {
323 int n = bound - origin, m = n - 1;
324 if ((n & m) == 0)
325 r = (r & m) + origin;
326 else if (n > 0) {
327 for (int u = r >>> 1;
328 u + m - (r = u % n) < 0;
329 u = mix32(nextSeed()) >>> 1)
330 ;
331 r += origin;
332 }
333 else {
334 while (r < origin || r >= bound)
335 r = mix32(nextSeed());
336 }
337 }
338 return r;
339 }
340
341 /**
342 * The form of nextDouble used by DoubleStream Spliterators.
343 *
344 * @param origin the least value, unless greater than bound
345 * @param bound the upper bound (exclusive), must not equal origin
346 * @return a pseudorandom value
347 */
348 final double internalNextDouble(double origin, double bound) {
349 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
350 if (origin < bound) {
351 r = r * (bound - origin) + origin;
352 if (r >= bound) // correct for rounding
353 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
354 }
355 return r;
356 }
357
358 /* ---------------- public methods ---------------- */
359
360 /**
361 * Creates a new SplittableRandom instance using the specified
362 * initial seed. SplittableRandom instances created with the same
363 * seed in the same program generate identical sequences of values.
364 *
365 * @param seed the initial seed
366 */
367 public SplittableRandom(long seed) {
368 this(seed, GOLDEN_GAMMA);
369 }
370
371 /**
372 * Creates a new SplittableRandom instance that is likely to
373 * generate sequences of values that are statistically independent
374 * of those of any other instances in the current program; and
375 * may, and typically does, vary across program invocations.
376 */
377 public SplittableRandom() { // emulate defaultGen.split()
378 long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
379 this.seed = mix64(s);
380 this.gamma = mixGamma(s + GOLDEN_GAMMA);
381 }
382
383 /**
384 * Constructs and returns a new SplittableRandom instance that
385 * shares no mutable state with this instance. However, with very
386 * high probability, the set of values collectively generated by
387 * the two objects has the same statistical properties as if the
388 * same quantity of values were generated by a single thread using
389 * a single SplittableRandom object. Either or both of the two
390 * objects may be further split using the {@code split()} method,
391 * and the same expected statistical properties apply to the
392 * entire set of generators constructed by such recursive
393 * splitting.
394 *
395 * @return the new SplittableRandom instance
396 */
397 public SplittableRandom split() {
398 return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
399 }
400
401 /**
402 * Returns a pseudorandom {@code int} value.
403 *
404 * @return a pseudorandom {@code int} value
405 */
406 public int nextInt() {
407 return mix32(nextSeed());
408 }
409
410 /**
411 * Returns a pseudorandom {@code int} value between zero (inclusive)
412 * and the specified bound (exclusive).
413 *
414 * @param bound the upper bound (exclusive). Must be positive.
415 * @return a pseudorandom {@code int} value between zero
416 * (inclusive) and the bound (exclusive)
417 * @throws IllegalArgumentException if {@code bound} is not positive
418 */
419 public int nextInt(int bound) {
420 if (bound <= 0)
421 throw new IllegalArgumentException(BAD_BOUND);
422 // Specialize internalNextInt for origin 0
423 int r = mix32(nextSeed());
424 int m = bound - 1;
425 if ((bound & m) == 0) // power of two
426 r &= m;
427 else { // reject over-represented candidates
428 for (int u = r >>> 1;
429 u + m - (r = u % bound) < 0;
430 u = mix32(nextSeed()) >>> 1)
431 ;
432 }
433 return r;
434 }
435
436 /**
437 * Returns a pseudorandom {@code int} value between the specified
438 * origin (inclusive) and the specified bound (exclusive).
439 *
440 * @param origin the least value returned
441 * @param bound the upper bound (exclusive)
442 * @return a pseudorandom {@code int} value between the origin
443 * (inclusive) and the bound (exclusive)
444 * @throws IllegalArgumentException if {@code origin} is greater than
445 * or equal to {@code bound}
446 */
447 public int nextInt(int origin, int bound) {
448 if (origin >= bound)
449 throw new IllegalArgumentException(BAD_RANGE);
450 return internalNextInt(origin, bound);
451 }
452
453 /**
454 * Returns a pseudorandom {@code long} value.
455 *
456 * @return a pseudorandom {@code long} value
457 */
458 public long nextLong() {
459 return mix64(nextSeed());
460 }
461
462 /**
463 * Returns a pseudorandom {@code long} value between zero (inclusive)
464 * and the specified bound (exclusive).
465 *
466 * @param bound the upper bound (exclusive). Must be positive.
467 * @return a pseudorandom {@code long} value between zero
468 * (inclusive) and the bound (exclusive)
469 * @throws IllegalArgumentException if {@code bound} is not positive
470 */
471 public long nextLong(long bound) {
472 if (bound <= 0)
473 throw new IllegalArgumentException(BAD_BOUND);
474 // Specialize internalNextLong for origin 0
475 long r = mix64(nextSeed());
476 long m = bound - 1;
477 if ((bound & m) == 0L) // power of two
478 r &= m;
479 else { // reject over-represented candidates
480 for (long u = r >>> 1;
481 u + m - (r = u % bound) < 0L;
482 u = mix64(nextSeed()) >>> 1)
483 ;
484 }
485 return r;
486 }
487
488 /**
489 * Returns a pseudorandom {@code long} value between the specified
490 * origin (inclusive) and the specified bound (exclusive).
491 *
492 * @param origin the least value returned
493 * @param bound the upper bound (exclusive)
494 * @return a pseudorandom {@code long} value between the origin
495 * (inclusive) and the bound (exclusive)
496 * @throws IllegalArgumentException if {@code origin} is greater than
497 * or equal to {@code bound}
498 */
499 public long nextLong(long origin, long bound) {
500 if (origin >= bound)
501 throw new IllegalArgumentException(BAD_RANGE);
502 return internalNextLong(origin, bound);
503 }
504
505 /**
506 * Returns a pseudorandom {@code double} value between zero
507 * (inclusive) and one (exclusive).
508 *
509 * @return a pseudorandom {@code double} value between zero
510 * (inclusive) and one (exclusive)
511 */
512 public double nextDouble() {
513 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
514 }
515
516 /**
517 * Returns a pseudorandom {@code double} value between 0.0
518 * (inclusive) and the specified bound (exclusive).
519 *
520 * @param bound the upper bound (exclusive). Must be positive.
521 * @return a pseudorandom {@code double} value between zero
522 * (inclusive) and the bound (exclusive)
523 * @throws IllegalArgumentException if {@code bound} is not positive
524 */
525 public double nextDouble(double bound) {
526 if (!(bound > 0.0))
527 throw new IllegalArgumentException(BAD_BOUND);
528 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
529 return (result < bound) ? result : // correct for rounding
530 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
531 }
532
533 /**
534 * Generates a pseudorandom number with the indicated number of
535 * bits. Unlike in superclass {@link Random}, this method is never
536 * internally called or used by any other publicly accessible
537 * method.
538 *
539 * @param bits random bits
540 * @return the next pseudorandom value from this random number
541 * generator's sequence
542 */
543 protected int next(int bits) {
544 return (int)(nextLong() >>> (64 - bits));
545 }
546
547 /**
548 * Returns a pseudorandom {@code double} value between the specified
549 * origin (inclusive) and bound (exclusive).
550 *
551 * @param origin the least value returned
552 * @param bound the upper bound (exclusive)
553 * @return a pseudorandom {@code double} value between the origin
554 * (inclusive) and the bound (exclusive)
555 * @throws IllegalArgumentException if {@code origin} is greater than
556 * or equal to {@code bound}
557 */
558 public double nextDouble(double origin, double bound) {
559 if (!(origin < bound))
560 throw new IllegalArgumentException(BAD_RANGE);
561 return internalNextDouble(origin, bound);
562 }
563
564 /**
565 * Returns a pseudorandom {@code boolean} value.
566 *
567 * @return a pseudorandom {@code boolean} value
568 */
569 public boolean nextBoolean() {
570 return mix32(nextSeed()) < 0;
571 }
572
573 // stream methods, coded in a way intended to better isolate for
574 // maintenance purposes the small differences across forms.
575
576 /**
577 * Returns a stream producing the given {@code streamSize} number
578 * of pseudorandom {@code int} values from this generator and/or
579 * one split from it.
580 *
581 * @param streamSize the number of values to generate
582 * @return a stream of pseudorandom {@code int} values
583 * @throws IllegalArgumentException if {@code streamSize} is
584 * less than zero
585 */
586 public IntStream ints(long streamSize) {
587 if (streamSize < 0L)
588 throw new IllegalArgumentException(BAD_SIZE);
589 return StreamSupport.intStream
590 (new RandomIntsSpliterator
591 (this, 0L, streamSize, Integer.MAX_VALUE, 0),
592 false);
593 }
594
595 /**
596 * Returns an effectively unlimited stream of pseudorandom {@code int}
597 * values from this generator and/or one split from it.
598 *
599 * @implNote This method is implemented to be equivalent to {@code
600 * ints(Long.MAX_VALUE)}.
601 *
602 * @return a stream of pseudorandom {@code int} values
603 */
604 public IntStream ints() {
605 return StreamSupport.intStream
606 (new RandomIntsSpliterator
607 (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
608 false);
609 }
610
611 /**
612 * Returns a stream producing the given {@code streamSize} number
613 * of pseudorandom {@code int} values from this generator and/or one split
614 * from it; each value conforms to the given origin (inclusive) and bound
615 * (exclusive).
616 *
617 * @param streamSize the number of values to generate
618 * @param randomNumberOrigin the origin (inclusive) of each random value
619 * @param randomNumberBound the bound (exclusive) of each random value
620 * @return a stream of pseudorandom {@code int} values,
621 * each with the given origin (inclusive) and bound (exclusive)
622 * @throws IllegalArgumentException if {@code streamSize} is
623 * less than zero, or {@code randomNumberOrigin}
624 * is greater than or equal to {@code randomNumberBound}
625 */
626 public IntStream ints(long streamSize, int randomNumberOrigin,
627 int randomNumberBound) {
628 if (streamSize < 0L)
629 throw new IllegalArgumentException(BAD_SIZE);
630 if (randomNumberOrigin >= randomNumberBound)
631 throw new IllegalArgumentException(BAD_RANGE);
632 return StreamSupport.intStream
633 (new RandomIntsSpliterator
634 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
635 false);
636 }
637
638 /**
639 * Returns an effectively unlimited stream of pseudorandom {@code
640 * int} values from this generator and/or one split from it; each value
641 * conforms to the given origin (inclusive) and bound (exclusive).
642 *
643 * @implNote This method is implemented to be equivalent to {@code
644 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
645 *
646 * @param randomNumberOrigin the origin (inclusive) of each random value
647 * @param randomNumberBound the bound (exclusive) of each random value
648 * @return a stream of pseudorandom {@code int} values,
649 * each with the given origin (inclusive) and bound (exclusive)
650 * @throws IllegalArgumentException if {@code randomNumberOrigin}
651 * is greater than or equal to {@code randomNumberBound}
652 */
653 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
654 if (randomNumberOrigin >= randomNumberBound)
655 throw new IllegalArgumentException(BAD_RANGE);
656 return StreamSupport.intStream
657 (new RandomIntsSpliterator
658 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
659 false);
660 }
661
662 /**
663 * Returns a stream producing the given {@code streamSize} number
664 * of pseudorandom {@code long} values from this generator and/or
665 * one split from it.
666 *
667 * @param streamSize the number of values to generate
668 * @return a stream of pseudorandom {@code long} values
669 * @throws IllegalArgumentException if {@code streamSize} is
670 * less than zero
671 */
672 public LongStream longs(long streamSize) {
673 if (streamSize < 0L)
674 throw new IllegalArgumentException(BAD_SIZE);
675 return StreamSupport.longStream
676 (new RandomLongsSpliterator
677 (this, 0L, streamSize, Long.MAX_VALUE, 0L),
678 false);
679 }
680
681 /**
682 * Returns an effectively unlimited stream of pseudorandom {@code
683 * long} values from this generator and/or one split from it.
684 *
685 * @implNote This method is implemented to be equivalent to {@code
686 * longs(Long.MAX_VALUE)}.
687 *
688 * @return a stream of pseudorandom {@code long} values
689 */
690 public LongStream longs() {
691 return StreamSupport.longStream
692 (new RandomLongsSpliterator
693 (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
694 false);
695 }
696
697 /**
698 * Returns a stream producing the given {@code streamSize} number of
699 * pseudorandom {@code long} values from this generator and/or one split
700 * from it; each value conforms to the given origin (inclusive) and bound
701 * (exclusive).
702 *
703 * @param streamSize the number of values to generate
704 * @param randomNumberOrigin the origin (inclusive) of each random value
705 * @param randomNumberBound the bound (exclusive) of each random value
706 * @return a stream of pseudorandom {@code long} values,
707 * each with the given origin (inclusive) and bound (exclusive)
708 * @throws IllegalArgumentException if {@code streamSize} is
709 * less than zero, or {@code randomNumberOrigin}
710 * is greater than or equal to {@code randomNumberBound}
711 */
712 public LongStream longs(long streamSize, long randomNumberOrigin,
713 long randomNumberBound) {
714 if (streamSize < 0L)
715 throw new IllegalArgumentException(BAD_SIZE);
716 if (randomNumberOrigin >= randomNumberBound)
717 throw new IllegalArgumentException(BAD_RANGE);
718 return StreamSupport.longStream
719 (new RandomLongsSpliterator
720 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
721 false);
722 }
723
724 /**
725 * Returns an effectively unlimited stream of pseudorandom {@code
726 * long} values from this generator and/or one split from it; each value
727 * conforms to the given origin (inclusive) and bound (exclusive).
728 *
729 * @implNote This method is implemented to be equivalent to {@code
730 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
731 *
732 * @param randomNumberOrigin the origin (inclusive) of each random value
733 * @param randomNumberBound the bound (exclusive) of each random value
734 * @return a stream of pseudorandom {@code long} values,
735 * each with the given origin (inclusive) and bound (exclusive)
736 * @throws IllegalArgumentException if {@code randomNumberOrigin}
737 * is greater than or equal to {@code randomNumberBound}
738 */
739 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
740 if (randomNumberOrigin >= randomNumberBound)
741 throw new IllegalArgumentException(BAD_RANGE);
742 return StreamSupport.longStream
743 (new RandomLongsSpliterator
744 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
745 false);
746 }
747
748 /**
749 * Returns a stream producing the given {@code streamSize} number of
750 * pseudorandom {@code double} values from this generator and/or one split
751 * from it; each value is between zero (inclusive) and one (exclusive).
752 *
753 * @param streamSize the number of values to generate
754 * @return a stream of {@code double} values
755 * @throws IllegalArgumentException if {@code streamSize} is
756 * less than zero
757 */
758 public DoubleStream doubles(long streamSize) {
759 if (streamSize < 0L)
760 throw new IllegalArgumentException(BAD_SIZE);
761 return StreamSupport.doubleStream
762 (new RandomDoublesSpliterator
763 (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
764 false);
765 }
766
767 /**
768 * Returns an effectively unlimited stream of pseudorandom {@code
769 * double} values from this generator and/or one split from it; each value
770 * is between zero (inclusive) and one (exclusive).
771 *
772 * @implNote This method is implemented to be equivalent to {@code
773 * doubles(Long.MAX_VALUE)}.
774 *
775 * @return a stream of pseudorandom {@code double} values
776 */
777 public DoubleStream doubles() {
778 return StreamSupport.doubleStream
779 (new RandomDoublesSpliterator
780 (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
781 false);
782 }
783
784 /**
785 * Returns a stream producing the given {@code streamSize} number of
786 * pseudorandom {@code double} values from this generator and/or one split
787 * from it; each value conforms to the given origin (inclusive) and bound
788 * (exclusive).
789 *
790 * @param streamSize the number of values to generate
791 * @param randomNumberOrigin the origin (inclusive) of each random value
792 * @param randomNumberBound the bound (exclusive) of each random value
793 * @return a stream of pseudorandom {@code double} values,
794 * each with the given origin (inclusive) and bound (exclusive)
795 * @throws IllegalArgumentException if {@code streamSize} is
796 * less than zero
797 * @throws IllegalArgumentException if {@code randomNumberOrigin}
798 * is greater than or equal to {@code randomNumberBound}
799 */
800 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
801 double randomNumberBound) {
802 if (streamSize < 0L)
803 throw new IllegalArgumentException(BAD_SIZE);
804 if (!(randomNumberOrigin < randomNumberBound))
805 throw new IllegalArgumentException(BAD_RANGE);
806 return StreamSupport.doubleStream
807 (new RandomDoublesSpliterator
808 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
809 false);
810 }
811
812 /**
813 * Returns an effectively unlimited stream of pseudorandom {@code
814 * double} values from this generator and/or one split from it; each value
815 * conforms to the given origin (inclusive) and bound (exclusive).
816 *
817 * @implNote This method is implemented to be equivalent to {@code
818 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
819 *
820 * @param randomNumberOrigin the origin (inclusive) of each random value
821 * @param randomNumberBound the bound (exclusive) of each random value
822 * @return a stream of pseudorandom {@code double} values,
823 * each with the given origin (inclusive) and bound (exclusive)
824 * @throws IllegalArgumentException if {@code randomNumberOrigin}
825 * is greater than or equal to {@code randomNumberBound}
826 */
827 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
828 if (!(randomNumberOrigin < randomNumberBound))
829 throw new IllegalArgumentException(BAD_RANGE);
830 return StreamSupport.doubleStream
831 (new RandomDoublesSpliterator
832 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
833 false);
834 }
835
836 /**
837 * Spliterator for int streams. We multiplex the four int
838 * versions into one class by treating a bound less than origin as
839 * unbounded, and also by treating "infinite" as equivalent to
840 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
841 * approach. The long and double versions of this class are
842 * identical except for types.
843 */
844 private static final class RandomIntsSpliterator
845 implements Spliterator.OfInt {
846 final SplittableRandom rng;
847 long index;
848 final long fence;
849 final int origin;
850 final int bound;
851 RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
852 int origin, int bound) {
853 this.rng = rng; this.index = index; this.fence = fence;
854 this.origin = origin; this.bound = bound;
855 }
856
857 public RandomIntsSpliterator trySplit() {
858 long i = index, m = (i + fence) >>> 1;
859 return (m <= i) ? null :
860 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
861 }
862
863 public long estimateSize() {
864 return fence - index;
865 }
866
867 public int characteristics() {
868 return (Spliterator.SIZED | Spliterator.SUBSIZED |
869 Spliterator.NONNULL | Spliterator.IMMUTABLE);
870 }
871
872 public boolean tryAdvance(IntConsumer consumer) {
873 if (consumer == null) throw new NullPointerException();
874 long i = index, f = fence;
875 if (i < f) {
876 consumer.accept(rng.internalNextInt(origin, bound));
877 index = i + 1;
878 return true;
879 }
880 return false;
881 }
882
883 public void forEachRemaining(IntConsumer consumer) {
884 if (consumer == null) throw new NullPointerException();
885 long i = index, f = fence;
886 if (i < f) {
887 index = f;
888 SplittableRandom r = rng;
889 int o = origin, b = bound;
890 do {
891 consumer.accept(r.internalNextInt(o, b));
892 } while (++i < f);
893 }
894 }
895 }
896
897 /**
898 * Spliterator for long streams.
899 */
900 private static final class RandomLongsSpliterator
901 implements Spliterator.OfLong {
902 final SplittableRandom rng;
903 long index;
904 final long fence;
905 final long origin;
906 final long bound;
907 RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
908 long origin, long bound) {
909 this.rng = rng; this.index = index; this.fence = fence;
910 this.origin = origin; this.bound = bound;
911 }
912
913 public RandomLongsSpliterator trySplit() {
914 long i = index, m = (i + fence) >>> 1;
915 return (m <= i) ? null :
916 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
917 }
918
919 public long estimateSize() {
920 return fence - index;
921 }
922
923 public int characteristics() {
924 return (Spliterator.SIZED | Spliterator.SUBSIZED |
925 Spliterator.NONNULL | Spliterator.IMMUTABLE);
926 }
927
928 public boolean tryAdvance(LongConsumer consumer) {
929 if (consumer == null) throw new NullPointerException();
930 long i = index, f = fence;
931 if (i < f) {
932 consumer.accept(rng.internalNextLong(origin, bound));
933 index = i + 1;
934 return true;
935 }
936 return false;
937 }
938
939 public void forEachRemaining(LongConsumer consumer) {
940 if (consumer == null) throw new NullPointerException();
941 long i = index, f = fence;
942 if (i < f) {
943 index = f;
944 SplittableRandom r = rng;
945 long o = origin, b = bound;
946 do {
947 consumer.accept(r.internalNextLong(o, b));
948 } while (++i < f);
949 }
950 }
951
952 }
953
954 /**
955 * Spliterator for double streams.
956 */
957 private static final class RandomDoublesSpliterator
958 implements Spliterator.OfDouble {
959 final SplittableRandom rng;
960 long index;
961 final long fence;
962 final double origin;
963 final double bound;
964 RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
965 double origin, double bound) {
966 this.rng = rng; this.index = index; this.fence = fence;
967 this.origin = origin; this.bound = bound;
968 }
969
970 public RandomDoublesSpliterator trySplit() {
971 long i = index, m = (i + fence) >>> 1;
972 return (m <= i) ? null :
973 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
974 }
975
976 public long estimateSize() {
977 return fence - index;
978 }
979
980 public int characteristics() {
981 return (Spliterator.SIZED | Spliterator.SUBSIZED |
982 Spliterator.NONNULL | Spliterator.IMMUTABLE);
983 }
984
985 public boolean tryAdvance(DoubleConsumer consumer) {
986 if (consumer == null) throw new NullPointerException();
987 long i = index, f = fence;
988 if (i < f) {
989 consumer.accept(rng.internalNextDouble(origin, bound));
990 index = i + 1;
991 return true;
992 }
993 return false;
994 }
995
996 public void forEachRemaining(DoubleConsumer consumer) {
997 if (consumer == null) throw new NullPointerException();
998 long i = index, f = fence;
999 if (i < f) {
1000 index = f;
1001 SplittableRandom r = rng;
1002 double o = origin, b = bound;
1003 do {
1004 consumer.accept(r.internalNextDouble(o, b));
1005 } while (++i < f);
1006 }
1007 }
1008 }
1009
1010 }