ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.4
Committed: Thu Jul 11 13:40:42 2013 UTC (10 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.3: +11 -10 lines
Log Message:
Incorporate suggestions

File Contents

# Content
1 /*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.concurrent.atomic.AtomicLong;
29 import java.util.Spliterator;
30 import java.util.function.IntConsumer;
31 import java.util.function.LongConsumer;
32 import java.util.function.DoubleConsumer;
33 import java.util.stream.StreamSupport;
34 import java.util.stream.IntStream;
35 import java.util.stream.LongStream;
36 import java.util.stream.DoubleStream;
37
38
39 /**
40 * A generator of uniform pseudorandom values applicable for use in
41 * (among other contexts) isolated parallel computations that may
42 * generate subtasks. Class SplittableRandom supports methods for
43 * producing pseudorandom numbers of type {@code int}, {@code long},
44 * and {@code double} with similar usages as for class
45 * {@link java.util.Random} but differs in the following ways: <ul>
46 *
47 * <li>Series of generated values pass the DieHarder suite testing
48 * independence and uniformity properties of random number generators.
49 * (Most recently validated with <a
50 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51 * 3.31.1</a>.) These tests validate only the methods for certain
52 * types and ranges, but similar properties are expected to hold, at
53 * least approximately, for others as well. </li>
54 *
55 * <li> Method {@link #split} constructs and returns a new
56 * SplittableRandom instance that shares no mutable state with the
57 * current instance. However, with very high probability, the set of
58 * values collectively generated by the two objects has the same
59 * statistical properties as if the same quantity of values were
60 * generated by a single thread using a single {@code
61 * SplittableRandom} object. </li>
62 *
63 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
64 * They are designed to be split, not shared, across threads. For
65 * example, a {@link java.util.concurrent.ForkJoinTask
66 * fork/join-style} computation using random numbers might include a
67 * construction of the form {@code new
68 * Subtask(aSplittableRandom.split()).fork()}.
69 *
70 * <li>This class provides additional methods for generating random
71 * streams, that employ the above techniques when used in {@code
72 * stream.parallel()} mode.</li>
73 *
74 * </ul>
75 *
76 * @author Guy Steele
77 * @author Doug Lea
78 * @since 1.8
79 */
80 public class SplittableRandom {
81
82 /*
83 * File organization: First the non-public methods that constitute
84 * the main algorithm, then the main public methods, followed by
85 * some custom spliterator classes needed for stream methods.
86 *
87 * Credits: Primary algorithm and code by Guy Steele. Stream
88 * support methods by Doug Lea. Documentation jointly produced
89 * with additional help from Brian Goetz.
90 */
91
92 /*
93 * Implementation Overview.
94 *
95 * This algorithm was inspired by the "DotMix" algorithm by
96 * Leiserson, Schardl, and Sukha "Deterministic Parallel
97 * Random-Number Generation for Dynamic-Multithreading Platforms",
98 * PPoPP 2012, but improves and extends it in several ways.
99 *
100 * The primary update step is simply to add a constant ("gamma")
101 * to the current seed, modulo a prime ("George"). However, the
102 * nextLong and nextInt methods do not return this value, but
103 * instead the results of bit-mixing transformations that produce
104 * more uniformly distributed sequences.
105 *
106 * "George" is the otherwise nameless (because it cannot be
107 * represented) prime number 2^64+13. Using a prime number larger
108 * than can fit in a long ensures that all possible long values
109 * can occur, plus 13 others that just get skipped over when they
110 * are encountered; see method addGammaModGeorge. For this to
111 * work, initial gamma values must be at least 13.
112 *
113 * The value of gamma differs for each instance across a series of
114 * splits, and is generated using a slightly stripped-down variant
115 * of the same algorithm, but operating across calls to split(),
116 * not calls to nextSeed(): Each instance carries the state of
117 * this generator as nextSplit, and uses mix64(nextSplit) as its
118 * own gamma value. Computations of gammas themselves use a fixed
119 * constant as the second argument to the addGammaModGeorge
120 * function, GAMMA_GAMMA, a "genuinely random" number from a
121 * radioactive decay reading (obtained from
122 * http://www.fourmilab.ch/hotbits/) meeting the above range
123 * constraint. Using a fixed constant maintains the invariant that
124 * the value of gamma is the same for every instance that is at
125 * the same split-distance from their common root. (Note: there is
126 * nothing especially magic about obtaining this constant from a
127 * "truly random" physical source rather than just choosing one
128 * arbitrarily; using "hotbits" was merely an aesthetically pleasing
129 * choice. In either case, good statistical behavior of the
130 * algorithm should be, and was, verified by using the DieHarder
131 * test suite.)
132 *
133 * The mix64 bit-mixing function called by nextLong and other
134 * methods computes the same value as the "64-bit finalizer"
135 * function in Austin Appleby's MurmurHash3 algorithm. See
136 * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
137 * comments: "The constants for the finalizers were generated by a
138 * simple simulated-annealing algorithm, and both avalanche all
139 * bits of 'h' to within 0.25% bias." It also appears to work to
140 * use instead any of the variants proposed by David Stafford at
141 * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
142 * but these variants have not yet been tested as thoroughly
143 * in the context of the implementation of SplittableRandom.
144 *
145 * The mix32 function used for nextInt just consists of two of the
146 * five lines of mix64; avalanche testing shows that the 64-bit result
147 * has its top 32 bits avalanched well, though not the bottom 32 bits.
148 * DieHarder tests show that it is adequate for generating one
149 * random int from the 64-bit result of nextSeed.
150 *
151 * Support for the default (no-argument) constructor relies on an
152 * AtomicLong (defaultSeedGenerator) to help perform the
153 * equivalent of a split of a statically constructed
154 * SplittableRandom. Unlike other cases, this split must be
155 * performed in a thread-safe manner. We use
156 * AtomicLong.compareAndSet as the (typically) most efficient
157 * mechanism. To bootstrap, we start off using System.nanotime(),
158 * and update using another "genuinely random" constant
159 * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
160 * not 0, for its splitSeed argument (addGammaModGeorge(0,
161 * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
162 * this root generator, even though the root is not explicitly
163 * represented as a SplittableRandom.
164 */
165
166 /**
167 * The "genuinely random" value for producing new gamma values.
168 * The value is arbitrary, subject to the requirement that it be
169 * greater or equal to 13.
170 */
171 private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
172
173 /**
174 * The "genuinely random" seed update value for default constructors.
175 * The value is arbitrary, subject to the requirement that it be
176 * greater or equal to 13.
177 */
178 private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
179
180 /**
181 * The next seed for default constructors.
182 */
183 private static final AtomicLong defaultSeedGenerator =
184 new AtomicLong(System.nanoTime());
185
186 /**
187 * The seed, updated only via method nextSeed.
188 */
189 private long seed;
190
191 /**
192 * The constant value added to seed (mod George) on each update.
193 */
194 private final long gamma;
195
196 /**
197 * The next seed to use for splits. Propagated using
198 * addGammaModGeorge across instances.
199 */
200 private final long nextSplit;
201
202 /**
203 * Internal constructor used by all other constructors and by
204 * method split. Establishes the initial seed for this instance,
205 * and uses the given splitSeed to establish gamma, as well as the
206 * nextSplit to use by this instance.
207 */
208 private SplittableRandom(long seed, long splitSeed) {
209 this.seed = seed;
210 long s = splitSeed, g;
211 do { // ensure gamma >= 13, considered as an unsigned integer
212 s = addGammaModGeorge(s, GAMMA_GAMMA);
213 g = mix64(s);
214 } while (Long.compareUnsigned(g, 13L) < 0);
215 this.gamma = g;
216 this.nextSplit = s;
217 }
218
219 /**
220 * Adds the given gamma value, g, to the given seed value s, mod
221 * George (2^64+13). We regard s and g as unsigned values
222 * (ranging from 0 to 2^64-1). We add g to s either once or twice
223 * (mod George) as necessary to produce an (unsigned) result less
224 * than 2^64. We require that g must be at least 13. This
225 * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
226 * George < 2^64; thus we need only a conditional, not a loop,
227 * to be sure of getting a representable value.
228 *
229 * @param s a seed value
230 * @param g a gamma value, 13 <= g (as unsigned)
231 */
232 private static long addGammaModGeorge(long s, long g) {
233 long p = s + g;
234 if (Long.compareUnsigned(p, g) >= 0)
235 return p;
236 long q = p - 13L;
237 return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
238 }
239
240 /**
241 * Updates in-place and returns seed.
242 * See above for explanation.
243 */
244 private long nextSeed() {
245 return seed = addGammaModGeorge(seed, gamma);
246 }
247
248 /**
249 * Returns a bit-mixed transformation of its argument.
250 * See above for explanation.
251 */
252 private static long mix64(long z) {
253 z ^= (z >>> 33);
254 z *= 0xff51afd7ed558ccdL;
255 z ^= (z >>> 33);
256 z *= 0xc4ceb9fe1a85ec53L;
257 z ^= (z >>> 33);
258 return z;
259 }
260
261 /**
262 * Returns a bit-mixed int transformation of its argument.
263 * See above for explanation.
264 */
265 private static int mix32(long z) {
266 z ^= (z >>> 33);
267 z *= 0xc4ceb9fe1a85ec53L;
268 return (int)(z >>> 32);
269 }
270
271 /**
272 * Atomically updates and returns next seed for default constructor
273 */
274 private static long nextDefaultSeed() {
275 long oldSeed, newSeed;
276 do {
277 oldSeed = defaultSeedGenerator.get();
278 newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
279 } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
280 return mix64(newSeed);
281 }
282
283 /*
284 * Internal versions of nextX methods used by streams, as well as
285 * the public nextX(origin, bound) methods. These exist mainly to
286 * avoid the need for multiple versions of stream spliterators
287 * across the different exported forms of streams.
288 */
289
290 /**
291 * The form of nextLong used by LongStream Spliterators. If
292 * origin is greater than bound, acts as unbounded form of
293 * nextLong, else as bounded form.
294 *
295 * @param origin the least value, unless greater than bound
296 * @param bound the upper bound (exclusive), must not equal origin
297 * @return a pseudorandom value
298 */
299 final long internalNextLong(long origin, long bound) {
300 /*
301 * Four Cases:
302 *
303 * 1. If the arguments indicate unbounded form, act as
304 * nextLong().
305 *
306 * 2. If the range is an exact power of two, apply the
307 * associated bit mask.
308 *
309 * 3. If the range is positive, loop to avoid potential bias
310 * when the implicit nextLong() bound (2<sup>64</sup>) is not
311 * evenly divisible by the range. The loop rejects candidates
312 * computed from otherwise over-represented values. The
313 * expected number of iterations under an ideal generator
314 * varies from 1 to 2, depending on the bound. The loop itself
315 * takes an unlovable form. Because the first candidate is
316 * already available, we need a break-in-the-middle
317 * construction, which is concisely but cryptically performed
318 * within the while-condition of a body-less for loop.
319 *
320 * 4. Otherwise, the range cannot be represented as a positive
321 * long. The loop repeatedly generates unbounded longs until
322 * obtaining a candidate meeting constraints (with an expected
323 * number of iterations of less than two).
324 */
325
326 long r = mix64(nextSeed());
327 if (origin < bound) {
328 long n = bound - origin, m = n - 1;
329 if ((n & m) == 0L) // power of two
330 r = (r & m) + origin;
331 else if (n > 0) { // reject over-represented candidates
332 for (long u = r >>> 1; // ensure nonnegative
333 u + m - (r = u % n) < 0L; // reject
334 u = mix64(nextSeed()) >>> 1) // retry
335 ;
336 r += origin;
337 }
338 else { // range not representable as long
339 while (r < origin || r >= bound)
340 r = mix64(nextSeed());
341 }
342 }
343 return r;
344 }
345
346 /**
347 * The form of nextInt used by IntStream Spliterators.
348 * Exactly the same as long version, except for types.
349 *
350 * @param origin the least value, unless greater than bound
351 * @param bound the upper bound (exclusive), must not equal origin
352 * @return a pseudorandom value
353 */
354 final int internalNextInt(int origin, int bound) {
355 int r = mix32(nextSeed());
356 if (origin < bound) {
357 int n = bound - origin, m = n - 1;
358 if ((n & m) == 0L)
359 r = (r & m) + origin;
360 else if (n > 0) {
361 for (int u = r >>> 1;
362 u + m - (r = u % n) < 0L;
363 u = mix32(nextSeed()) >>> 1)
364 ;
365 r += origin;
366 }
367 else {
368 while (r < origin || r >= bound)
369 r = mix32(nextSeed());
370 }
371 }
372 return r;
373 }
374
375 /**
376 * The form of nextDouble used by DoubleStream Spliterators.
377 *
378 * @param origin the least value, unless greater than bound
379 * @param bound the upper bound (exclusive), must not equal origin
380 * @return a pseudorandom value
381 */
382 final double internalNextDouble(double origin, double bound) {
383 long bits = (1023L << 52) | (nextLong() >>> 12);
384 double r = Double.longBitsToDouble(bits) - 1.0;
385 if (origin < bound) {
386 r = r * (bound - origin) + origin;
387 if (r == bound) // correct for rounding
388 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
389 }
390 return r;
391 }
392
393 /* ---------------- public methods ---------------- */
394
395 /**
396 * Creates a new SplittableRandom instance using the given initial
397 * seed. Two SplittableRandom instances created with the same seed
398 * generate identical sequences of values.
399 *
400 * @param seed the initial seed
401 */
402 public SplittableRandom(long seed) {
403 this(seed, 0);
404 }
405
406 /**
407 * Creates a new SplittableRandom instance that is likely to
408 * generate sequences of values that are statistically independent
409 * of those of any other instances in the current program; and
410 * may, and typically does, vary across program invocations.
411 */
412 public SplittableRandom() {
413 this(nextDefaultSeed(), GAMMA_GAMMA);
414 }
415
416 /**
417 * Constructs and returns a new SplittableRandom instance that
418 * shares no mutable state with this instance. However, with very
419 * high probability, the set of values collectively generated by
420 * the two objects has the same statistical properties as if the
421 * same quantity of values were generated by a single thread using
422 * a single SplittableRandom object. Either or both of the two
423 * objects may be further split using the {@code split()} method,
424 * and the same expected statistical properties apply to the
425 * entire set of generators constructed by such recursive
426 * splitting.
427 *
428 * @return the new SplittableRandom instance
429 */
430 public SplittableRandom split() {
431 return new SplittableRandom(nextSeed(), nextSplit);
432 }
433
434 /**
435 * Returns a pseudorandom {@code int} value.
436 *
437 * @return a pseudorandom value
438 */
439 public int nextInt() {
440 return mix32(nextSeed());
441 }
442
443 /**
444 * Returns a pseudorandom {@code int} value between 0 (inclusive)
445 * and the specified bound (exclusive).
446 *
447 * @param bound the bound on the random number to be returned. Must be
448 * positive.
449 * @return a pseudorandom {@code int} value between {@code 0}
450 * (inclusive) and the bound (exclusive).
451 * @exception IllegalArgumentException if the bound is not positive
452 */
453 public int nextInt(int bound) {
454 if (bound <= 0)
455 throw new IllegalArgumentException("bound must be positive");
456 // Specialize internalNextInt for origin 0
457 int r = mix32(nextSeed());
458 int m = bound - 1;
459 if ((bound & m) == 0L) // power of two
460 r &= m;
461 else { // reject over-represented candidates
462 for (int u = r >>> 1;
463 u + m - (r = u % bound) < 0L;
464 u = mix32(nextSeed()) >>> 1)
465 ;
466 }
467 return r;
468 }
469
470 /**
471 * Returns a pseudorandom {@code int} value between the specified
472 * origin (inclusive) and the specified bound (exclusive).
473 *
474 * @param origin the least value returned
475 * @param bound the upper bound (exclusive)
476 * @return a pseudorandom {@code int} value between the origin
477 * (inclusive) and the bound (exclusive).
478 * @exception IllegalArgumentException if {@code origin} is greater than
479 * or equal to {@code bound}
480 */
481 public int nextInt(int origin, int bound) {
482 if (origin >= bound)
483 throw new IllegalArgumentException("bound must be greater than origin");
484 return internalNextInt(origin, bound);
485 }
486
487 /**
488 * Returns a pseudorandom {@code long} value.
489 *
490 * @return a pseudorandom value
491 */
492 public long nextLong() {
493 return mix64(nextSeed());
494 }
495
496 /**
497 * Returns a pseudorandom {@code long} value between 0 (inclusive)
498 * and the specified bound (exclusive).
499 *
500 * @param bound the bound on the random number to be returned. Must be
501 * positive.
502 * @return a pseudorandom {@code long} value between {@code 0}
503 * (inclusive) and the bound (exclusive).
504 * @exception IllegalArgumentException if the bound is not positive
505 */
506 public long nextLong(long bound) {
507 if (bound <= 0)
508 throw new IllegalArgumentException("bound must be positive");
509 // Specialize internalNextLong for origin 0
510 long r = mix64(nextSeed());
511 long m = bound - 1;
512 if ((bound & m) == 0L) // power of two
513 r &= m;
514 else { // reject over-represented candidates
515 for (long u = r >>> 1;
516 u + m - (r = u % bound) < 0L;
517 u = mix64(nextSeed()) >>> 1)
518 ;
519 }
520 return r;
521 }
522
523 /**
524 * Returns a pseudorandom {@code long} value between the specified
525 * origin (inclusive) and the specified bound (exclusive).
526 *
527 * @param origin the least value returned
528 * @param bound the upper bound (exclusive)
529 * @return a pseudorandom {@code long} value between the origin
530 * (inclusive) and the bound (exclusive).
531 * @exception IllegalArgumentException if {@code origin} is greater than
532 * or equal to {@code bound}
533 */
534 public long nextLong(long origin, long bound) {
535 if (origin >= bound)
536 throw new IllegalArgumentException("bound must be greater than origin");
537 return internalNextLong(origin, bound);
538 }
539
540 /**
541 * Returns a pseudorandom {@code double} value between {@code 0.0}
542 * (inclusive) and {@code 1.0} (exclusive).
543 *
544 * @return a pseudorandom value between {@code 0.0}
545 * (inclusive) and {@code 1.0} (exclusive)
546 */
547 public double nextDouble() {
548 long bits = (1023L << 52) | (nextLong() >>> 12);
549 return Double.longBitsToDouble(bits) - 1.0;
550 }
551
552 /**
553 * Returns a pseudorandom {@code double} value between 0.0
554 * (inclusive) and the specified bound (exclusive).
555 *
556 * @param bound the bound on the random number to be returned. Must be
557 * positive.
558 * @return a pseudorandom {@code double} value between {@code 0.0}
559 * (inclusive) and the bound (exclusive).
560 * @throws IllegalArgumentException if {@code bound} is not positive
561 */
562 public double nextDouble(double bound) {
563 if (bound <= 0.0)
564 throw new IllegalArgumentException("bound must be positive");
565 double result = nextDouble() * bound;
566 return (result < bound) ? result : // correct for rounding
567 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
568 }
569
570 /**
571 * Returns a pseudorandom {@code double} value between the given
572 * origin (inclusive) and bound (exclusive).
573 *
574 * @param origin the least value returned
575 * @param bound the upper bound
576 * @return a pseudorandom {@code double} value between the origin
577 * (inclusive) and the bound (exclusive).
578 * @throws IllegalArgumentException if {@code origin} is greater than
579 * or equal to {@code bound}
580 */
581 public double nextDouble(double origin, double bound) {
582 if (origin >= bound)
583 throw new IllegalArgumentException("bound must be greater than origin");
584 return internalNextDouble(origin, bound);
585 }
586
587 // stream methods, coded in a way intended to better isolate for
588 // maintenance purposes the small differences across forms.
589
590 /**
591 * Returns a stream with the given {@code streamSize} number of
592 * pseudorandom {@code int} values.
593 *
594 * @param streamSize the number of values to generate
595 * @return a stream of pseudorandom {@code int} values
596 * @throws IllegalArgumentException if {@code streamSize} is
597 * less than zero
598 */
599 public IntStream ints(long streamSize) {
600 if (streamSize < 0L)
601 throw new IllegalArgumentException("negative Stream size");
602 return StreamSupport.intStream
603 (new RandomIntsSpliterator
604 (this, 0L, streamSize, Integer.MAX_VALUE, 0),
605 false);
606 }
607
608 /**
609 * Returns an effectively unlimited stream of pseudorandom {@code int}
610 * values
611 *
612 * @implNote This method is implemented to be equivalent to {@code
613 * ints(Long.MAX_VALUE)}.
614 *
615 * @return a stream of pseudorandom {@code int} values
616 */
617 public IntStream ints() {
618 return StreamSupport.intStream
619 (new RandomIntsSpliterator
620 (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
621 false);
622 }
623
624 /**
625 * Returns a stream with the given {@code streamSize} number of
626 * pseudorandom {@code int} values, each conforming to the given
627 * origin and bound.
628 *
629 * @param streamSize the number of values to generate
630 * @param randomNumberOrigin the origin of each random value
631 * @param randomNumberBound the bound of each random value
632 * @return a stream of pseudorandom {@code int} values,
633 * each with the given origin and bound.
634 * @throws IllegalArgumentException if {@code streamSize} is
635 * less than zero.
636 * @throws IllegalArgumentException if {@code randomNumberOrigin}
637 * is greater than or equal to {@code randomNumberBound}
638 */
639 public IntStream ints(long streamSize, int randomNumberOrigin,
640 int randomNumberBound) {
641 if (streamSize < 0L)
642 throw new IllegalArgumentException("negative Stream size");
643 if (randomNumberOrigin >= randomNumberBound)
644 throw new IllegalArgumentException("bound must be greater than origin");
645 return StreamSupport.intStream
646 (new RandomIntsSpliterator
647 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
648 false);
649 }
650
651 /**
652 * Returns an effectively unlimited stream of pseudorandom {@code
653 * int} values, each conforming to the given origin and bound.
654 *
655 * @implNote This method is implemented to be equivalent to {@code
656 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
657 *
658 * @param randomNumberOrigin the origin of each random value
659 * @param randomNumberBound the bound of each random value
660 * @return a stream of pseudorandom {@code int} values,
661 * each with the given origin and bound.
662 * @throws IllegalArgumentException if {@code randomNumberOrigin}
663 * is greater than or equal to {@code randomNumberBound}
664 */
665 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
666 if (randomNumberOrigin >= randomNumberBound)
667 throw new IllegalArgumentException("bound must be greater than origin");
668 return StreamSupport.intStream
669 (new RandomIntsSpliterator
670 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
671 false);
672 }
673
674 /**
675 * Returns a stream with the given {@code streamSize} number of
676 * pseudorandom {@code long} values.
677 *
678 * @param streamSize the number of values to generate
679 * @return a stream of {@code long} values
680 * @throws IllegalArgumentException if {@code streamSize} is
681 * less than zero
682 */
683 public LongStream longs(long streamSize) {
684 if (streamSize < 0L)
685 throw new IllegalArgumentException("negative Stream size");
686 return StreamSupport.longStream
687 (new RandomLongsSpliterator
688 (this, 0L, streamSize, Long.MAX_VALUE, 0L),
689 false);
690 }
691
692 /**
693 * Returns an effectively unlimited stream of pseudorandom {@code long}
694 * values.
695 *
696 * @implNote This method is implemented to be equivalent to {@code
697 * longs(Long.MAX_VALUE)}.
698 *
699 * @return a stream of pseudorandom {@code long} values
700 */
701 public LongStream longs() {
702 return StreamSupport.longStream
703 (new RandomLongsSpliterator
704 (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
705 false);
706 }
707
708 /**
709 * Returns a stream with the given {@code streamSize} number of
710 * pseudorandom {@code long} values, each conforming to the
711 * given origin and bound.
712 *
713 * @param streamSize the number of values to generate
714 * @param randomNumberOrigin the origin of each random value
715 * @param randomNumberBound the bound of each random value
716 * @return a stream of pseudorandom {@code long} values,
717 * each with the given origin and bound.
718 * @throws IllegalArgumentException if {@code streamSize} is
719 * less than zero.
720 * @throws IllegalArgumentException if {@code randomNumberOrigin}
721 * is greater than or equal to {@code randomNumberBound}
722 */
723 public LongStream longs(long streamSize, long randomNumberOrigin,
724 long randomNumberBound) {
725 if (streamSize < 0L)
726 throw new IllegalArgumentException("negative Stream size");
727 if (randomNumberOrigin >= randomNumberBound)
728 throw new IllegalArgumentException("bound must be greater than origin");
729 return StreamSupport.longStream
730 (new RandomLongsSpliterator
731 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
732 false);
733 }
734
735 /**
736 * Returns an effectively unlimited stream of pseudorandom {@code
737 * long} values, each conforming to the given origin and bound.
738 *
739 * @implNote This method is implemented to be equivalent to {@code
740 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
741 *
742 * @param randomNumberOrigin the origin of each random value
743 * @param randomNumberBound the bound of each random value
744 * @return a stream of pseudorandom {@code long} values,
745 * each with the given origin and bound.
746 * @throws IllegalArgumentException if {@code randomNumberOrigin}
747 * is greater than or equal to {@code randomNumberBound}
748 */
749 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
750 if (randomNumberOrigin >= randomNumberBound)
751 throw new IllegalArgumentException("bound must be greater than origin");
752 return StreamSupport.longStream
753 (new RandomLongsSpliterator
754 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
755 false);
756 }
757
758 /**
759 * Returns a stream with the given {@code streamSize} number of
760 * pseudorandom {@code double} values, each between {@code 0.0}
761 * (inclusive) and {@code 1.0} (exclusive).
762 *
763 * @param streamSize the number of values to generate
764 * @return a stream of {@code double} values
765 * @throws IllegalArgumentException if {@code streamSize} is
766 * less than zero
767 */
768 public DoubleStream doubles(long streamSize) {
769 if (streamSize < 0L)
770 throw new IllegalArgumentException("negative Stream size");
771 return StreamSupport.doubleStream
772 (new RandomDoublesSpliterator
773 (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
774 false);
775 }
776
777 /**
778 * Returns an effectively unlimited stream of pseudorandom {@code
779 * double} values, each between {@code 0.0} (inclusive) and {@code
780 * 1.0} (exclusive).
781 *
782 * @implNote This method is implemented to be equivalent to {@code
783 * doubles(Long.MAX_VALUE)}.
784 *
785 * @return a stream of pseudorandom {@code double} values
786 */
787 public DoubleStream doubles() {
788 return StreamSupport.doubleStream
789 (new RandomDoublesSpliterator
790 (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
791 false);
792 }
793
794 /**
795 * Returns a stream with the given {@code streamSize} number of
796 * pseudorandom {@code double} values, each conforming to the
797 * given origin and bound.
798 *
799 * @param streamSize the number of values to generate
800 * @param randomNumberOrigin the origin of each random value
801 * @param randomNumberBound the bound of each random value
802 * @return a stream of pseudorandom {@code double} values,
803 * each with the given origin and bound.
804 * @throws IllegalArgumentException if {@code streamSize} is
805 * less than zero.
806 * @throws IllegalArgumentException if {@code randomNumberOrigin}
807 * is greater than or equal to {@code randomNumberBound}
808 */
809 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
810 double randomNumberBound) {
811 if (streamSize < 0L)
812 throw new IllegalArgumentException("negative Stream size");
813 if (randomNumberOrigin >= randomNumberBound)
814 throw new IllegalArgumentException("bound must be greater than origin");
815 return StreamSupport.doubleStream
816 (new RandomDoublesSpliterator
817 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
818 false);
819 }
820
821 /**
822 * Returns an effectively unlimited stream of pseudorandom {@code
823 * double} values, each conforming to the given origin and bound.
824 *
825 * @implNote This method is implemented to be equivalent to {@code
826 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
827 *
828 * @param randomNumberOrigin the origin of each random value
829 * @param randomNumberBound the bound of each random value
830 * @return a stream of pseudorandom {@code double} values,
831 * each with the given origin and bound.
832 * @throws IllegalArgumentException if {@code randomNumberOrigin}
833 * is greater than or equal to {@code randomNumberBound}
834 */
835 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
836 if (randomNumberOrigin >= randomNumberBound)
837 throw new IllegalArgumentException("bound must be greater than origin");
838 return StreamSupport.doubleStream
839 (new RandomDoublesSpliterator
840 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
841 false);
842 }
843
844 /**
845 * Spliterator for int streams. We multiplex the four int
846 * versions into one class by treating and bound < origin as
847 * unbounded, and also by treating "infinite" as equivalent to
848 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
849 * approach. The long and double versions of this class are
850 * identical except for types.
851 */
852 static class RandomIntsSpliterator implements Spliterator.OfInt {
853 final SplittableRandom rng;
854 long index;
855 final long fence;
856 final int origin;
857 final int bound;
858 RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
859 int origin, int bound) {
860 this.rng = rng; this.index = index; this.fence = fence;
861 this.origin = origin; this.bound = bound;
862 }
863
864 public RandomIntsSpliterator trySplit() {
865 long i = index, m = (i + fence) >>> 1;
866 return (m <= i) ? null :
867 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
868 }
869
870 public long estimateSize() {
871 return fence - index;
872 }
873
874 public int characteristics() {
875 return (Spliterator.SIZED | Spliterator.SUBSIZED |
876 Spliterator.NONNULL | Spliterator.IMMUTABLE);
877 }
878
879 public boolean tryAdvance(IntConsumer consumer) {
880 if (consumer == null) throw new NullPointerException();
881 long i = index, f = fence;
882 if (i < f) {
883 consumer.accept(rng.internalNextInt(origin, bound));
884 index = i + 1;
885 return true;
886 }
887 return false;
888 }
889
890 public void forEachRemaining(IntConsumer consumer) {
891 if (consumer == null) throw new NullPointerException();
892 long i = index, f = fence;
893 if (i < f) {
894 index = f;
895 int o = origin, b = bound;
896 do {
897 consumer.accept(rng.internalNextInt(o, b));
898 } while (++i < f);
899 }
900 }
901 }
902
903 /**
904 * Spliterator for long streams.
905 */
906 static class RandomLongsSpliterator implements Spliterator.OfLong {
907 final SplittableRandom rng;
908 long index;
909 final long fence;
910 final long origin;
911 final long bound;
912 RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
913 long origin, long bound) {
914 this.rng = rng; this.index = index; this.fence = fence;
915 this.origin = origin; this.bound = bound;
916 }
917
918 public RandomLongsSpliterator trySplit() {
919 long i = index, m = (i + fence) >>> 1;
920 return (m <= i) ? null :
921 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
922 }
923
924 public long estimateSize() {
925 return fence - index;
926 }
927
928 public int characteristics() {
929 return (Spliterator.SIZED | Spliterator.SUBSIZED |
930 Spliterator.NONNULL | Spliterator.IMMUTABLE);
931 }
932
933 public boolean tryAdvance(LongConsumer consumer) {
934 if (consumer == null) throw new NullPointerException();
935 long i = index, f = fence;
936 if (i < f) {
937 consumer.accept(rng.internalNextLong(origin, bound));
938 index = i + 1;
939 return true;
940 }
941 return false;
942 }
943
944 public void forEachRemaining(LongConsumer consumer) {
945 if (consumer == null) throw new NullPointerException();
946 long i = index, f = fence;
947 if (i < f) {
948 index = f;
949 long o = origin, b = bound;
950 do {
951 consumer.accept(rng.internalNextLong(o, b));
952 } while (++i < f);
953 }
954 }
955
956 }
957
958 /**
959 * Spliterator for double streams.
960 */
961 static class RandomDoublesSpliterator implements Spliterator.OfDouble {
962 final SplittableRandom rng;
963 long index;
964 final long fence;
965 final double origin;
966 final double bound;
967 RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
968 double origin, double bound) {
969 this.rng = rng; this.index = index; this.fence = fence;
970 this.origin = origin; this.bound = bound;
971 }
972
973 public RandomDoublesSpliterator trySplit() {
974 long i = index, m = (i + fence) >>> 1;
975 return (m <= i) ? null :
976 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
977 }
978
979 public long estimateSize() {
980 return fence - index;
981 }
982
983 public int characteristics() {
984 return (Spliterator.SIZED | Spliterator.SUBSIZED |
985 Spliterator.NONNULL | Spliterator.IMMUTABLE);
986 }
987
988 public boolean tryAdvance(DoubleConsumer consumer) {
989 if (consumer == null) throw new NullPointerException();
990 long i = index, f = fence;
991 if (i < f) {
992 consumer.accept(rng.internalNextDouble(origin, bound));
993 index = i + 1;
994 return true;
995 }
996 return false;
997 }
998
999 public void forEachRemaining(DoubleConsumer consumer) {
1000 if (consumer == null) throw new NullPointerException();
1001 long i = index, f = fence;
1002 if (i < f) {
1003 index = f;
1004 double o = origin, b = bound;
1005 do {
1006 consumer.accept(rng.internalNextDouble(o, b));
1007 } while (++i < f);
1008 }
1009 }
1010 }
1011
1012 }
1013