ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.9
Committed: Sun Jul 14 03:47:31 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.8: +3 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.concurrent.atomic.AtomicLong;
29 import java.util.Spliterator;
30 import java.util.function.IntConsumer;
31 import java.util.function.LongConsumer;
32 import java.util.function.DoubleConsumer;
33 import java.util.stream.StreamSupport;
34 import java.util.stream.IntStream;
35 import java.util.stream.LongStream;
36 import java.util.stream.DoubleStream;
37
38 /**
39 * A generator of uniform pseudorandom values applicable for use in
40 * (among other contexts) isolated parallel computations that may
41 * generate subtasks. Class SplittableRandom supports methods for
42 * producing pseudorandom numbers of type {@code int}, {@code long},
43 * and {@code double} with similar usages as for class
44 * {@link java.util.Random} but differs in the following ways:
45 *
46 * <ul>
47 *
48 * <li>Series of generated values pass the DieHarder suite testing
49 * independence and uniformity properties of random number generators.
50 * (Most recently validated with <a
51 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
52 * 3.31.1</a>.) These tests validate only the methods for certain
53 * types and ranges, but similar properties are expected to hold, at
54 * least approximately, for others as well. </li>
55 *
56 * <li> Method {@link #split} constructs and returns a new
57 * SplittableRandom instance that shares no mutable state with the
58 * current instance. However, with very high probability, the
59 * values collectively generated by the two objects have the same
60 * statistical properties as if the same quantity of values were
61 * generated by a single thread using a single {@code
62 * SplittableRandom} object. </li>
63 *
64 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
65 * They are designed to be split, not shared, across threads. For
66 * example, a {@link java.util.concurrent.ForkJoinTask
67 * fork/join-style} computation using random numbers might include a
68 * construction of the form {@code new
69 * Subtask(aSplittableRandom.split()).fork()}.
70 *
71 * <li>This class provides additional methods for generating random
72 * streams, that employ the above techniques when used in {@code
73 * stream.parallel()} mode.</li>
74 *
75 * </ul>
76 *
77 * @author Guy Steele
78 * @author Doug Lea
79 * @since 1.8
80 */
81 public class SplittableRandom {
82
83 /*
84 * File organization: First the non-public methods that constitute
85 * the main algorithm, then the main public methods, followed by
86 * some custom spliterator classes needed for stream methods.
87 *
88 * Credits: Primary algorithm and code by Guy Steele. Stream
89 * support methods by Doug Lea. Documentation jointly produced
90 * with additional help from Brian Goetz.
91 */
92
93 /*
94 * Implementation Overview.
95 *
96 * This algorithm was inspired by the "DotMix" algorithm by
97 * Leiserson, Schardl, and Sukha "Deterministic Parallel
98 * Random-Number Generation for Dynamic-Multithreading Platforms",
99 * PPoPP 2012, but improves and extends it in several ways.
100 *
101 * The primary update step (see method nextSeed()) is simply to
102 * add a constant ("gamma") to the current seed, modulo a prime
103 * ("George"). However, the nextLong and nextInt methods do not
104 * return this value, but instead the results of bit-mixing
105 * transformations that produce more uniformly distributed
106 * sequences.
107 *
108 * "George" is the otherwise nameless (because it cannot be
109 * represented) prime number 2^64+13. Using a prime number larger
110 * than can fit in a long ensures that all possible long values
111 * can occur, plus 13 others that just get skipped over when they
112 * are encountered; see method addGammaModGeorge. For this to
113 * work, initial gamma values must be at least 13.
114 *
115 * The value of gamma differs for each instance across a series of
116 * splits, and is generated using a slightly stripped-down variant
117 * of the same algorithm, but operating across calls to split(),
118 * not calls to nextSeed(): Each instance carries the state of
119 * this generator as nextSplit, and uses mix64(nextSplit) as its
120 * own gamma value. Computations of gammas themselves use a fixed
121 * constant as the second argument to the addGammaModGeorge
122 * function, GAMMA_GAMMA, a "genuinely random" number from a
123 * radioactive decay reading (obtained from
124 * http://www.fourmilab.ch/hotbits/) meeting the above range
125 * constraint. Using a fixed constant maintains the invariant that
126 * the value of gamma is the same for every instance that is at
127 * the same split-distance from their common root. (Note: there is
128 * nothing especially magic about obtaining this constant from a
129 * "truly random" physical source rather than just choosing one
130 * arbitrarily; using "hotbits" was merely an aesthetically pleasing
131 * choice. In either case, good statistical behavior of the
132 * algorithm should be, and was, verified by using the DieHarder
133 * test suite.)
134 *
135 * The mix64 bit-mixing function called by nextLong and other
136 * methods computes the same value as the "64-bit finalizer"
137 * function in Austin Appleby's MurmurHash3 algorithm. See
138 * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
139 * comments: "The constants for the finalizers were generated by a
140 * simple simulated-annealing algorithm, and both avalanche all
141 * bits of 'h' to within 0.25% bias." It also appears to work to
142 * use instead any of the variants proposed by David Stafford at
143 * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
144 * but these variants have not yet been tested as thoroughly
145 * in the context of the implementation of SplittableRandom.
146 *
147 * The mix32 function used for nextInt just consists of two of the
148 * five lines of mix64; avalanche testing shows that the 64-bit result
149 * has its top 32 bits avalanched well, though not the bottom 32 bits.
150 * DieHarder tests show that it is adequate for generating one
151 * random int from the 64-bit result of nextSeed.
152 *
153 * Support for the default (no-argument) constructor relies on an
154 * AtomicLong (defaultSeedGenerator) to help perform the
155 * equivalent of a split of a statically constructed
156 * SplittableRandom. Unlike other cases, this split must be
157 * performed in a thread-safe manner. We use
158 * AtomicLong.compareAndSet as the (typically) most efficient
159 * mechanism. To bootstrap, we start off using System.nanotime(),
160 * and update using another "genuinely random" constant
161 * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
162 * not 0, for its splitSeed argument (addGammaModGeorge(0,
163 * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
164 * this root generator, even though the root is not explicitly
165 * represented as a SplittableRandom.
166 */
167
168 /**
169 * The "genuinely random" value for producing new gamma values.
170 * The value is arbitrary, subject to the requirement that it be
171 * greater or equal to 13.
172 */
173 private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
174
175 /**
176 * The "genuinely random" seed update value for default constructors.
177 * The value is arbitrary, subject to the requirement that it be
178 * greater or equal to 13.
179 */
180 private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
181
182 /**
183 * The least non-zero value returned by nextDouble(). This value
184 * is scaled by a random value of 53 bits to produce a result.
185 */
186 private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
187
188 /**
189 * The next seed for default constructors.
190 */
191 private static final AtomicLong defaultSeedGenerator =
192 new AtomicLong(System.nanoTime());
193
194 /**
195 * The seed, updated only via method nextSeed.
196 */
197 private long seed;
198
199 /**
200 * The constant value added to seed (mod George) on each update.
201 */
202 private final long gamma;
203
204 /**
205 * The next seed to use for splits. Propagated using
206 * addGammaModGeorge across instances.
207 */
208 private final long nextSplit;
209
210 /**
211 * Adds the given gamma value, g, to the given seed value s, mod
212 * George (2^64+13). We regard s and g as unsigned values
213 * (ranging from 0 to 2^64-1). We add g to s either once or twice
214 * (mod George) as necessary to produce an (unsigned) result less
215 * than 2^64. We require that g must be at least 13. This
216 * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
217 * George < 2^64; thus we need only a conditional, not a loop,
218 * to be sure of getting a representable value.
219 *
220 * @param s a seed value
221 * @param g a gamma value, 13 <= g (as unsigned)
222 */
223 private static long addGammaModGeorge(long s, long g) {
224 long p = s + g;
225 if (Long.compareUnsigned(p, g) >= 0)
226 return p;
227 long q = p - 13L;
228 return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
229 }
230
231 /**
232 * Returns a bit-mixed transformation of its argument.
233 * See above for explanation.
234 */
235 private static long mix64(long z) {
236 z ^= (z >>> 33);
237 z *= 0xff51afd7ed558ccdL;
238 z ^= (z >>> 33);
239 z *= 0xc4ceb9fe1a85ec53L;
240 z ^= (z >>> 33);
241 return z;
242 }
243
244 /**
245 * Returns a bit-mixed int transformation of its argument.
246 * See above for explanation.
247 */
248 private static int mix32(long z) {
249 z ^= (z >>> 33);
250 z *= 0xc4ceb9fe1a85ec53L;
251 return (int)(z >>> 32);
252 }
253
254 /**
255 * Internal constructor used by all other constructors and by
256 * method split. Establishes the initial seed for this instance,
257 * and uses the given splitSeed to establish gamma, as well as the
258 * nextSplit to use by this instance. The loop to skip ineligible
259 * gammas very rarely iterates, and does so at most 13 times.
260 */
261 private SplittableRandom(long seed, long splitSeed) {
262 this.seed = seed;
263 long s = splitSeed, g;
264 do { // ensure gamma >= 13, considered as an unsigned integer
265 s = addGammaModGeorge(s, GAMMA_GAMMA);
266 g = mix64(s);
267 } while (Long.compareUnsigned(g, 13L) < 0);
268 this.gamma = g;
269 this.nextSplit = s;
270 }
271
272 /**
273 * Updates in-place and returns seed.
274 * See above for explanation.
275 */
276 private long nextSeed() {
277 return seed = addGammaModGeorge(seed, gamma);
278 }
279
280 /**
281 * Atomically updates and returns next seed for default constructor.
282 */
283 private static long nextDefaultSeed() {
284 long oldSeed, newSeed;
285 do {
286 oldSeed = defaultSeedGenerator.get();
287 newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
288 } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
289 return mix64(newSeed);
290 }
291
292 /*
293 * Internal versions of nextX methods used by streams, as well as
294 * the public nextX(origin, bound) methods. These exist mainly to
295 * avoid the need for multiple versions of stream spliterators
296 * across the different exported forms of streams.
297 */
298
299 /**
300 * The form of nextLong used by LongStream Spliterators. If
301 * origin is greater than bound, acts as unbounded form of
302 * nextLong, else as bounded form.
303 *
304 * @param origin the least value, unless greater than bound
305 * @param bound the upper bound (exclusive), must not equal origin
306 * @return a pseudorandom value
307 */
308 final long internalNextLong(long origin, long bound) {
309 /*
310 * Four Cases:
311 *
312 * 1. If the arguments indicate unbounded form, act as
313 * nextLong().
314 *
315 * 2. If the range is an exact power of two, apply the
316 * associated bit mask.
317 *
318 * 3. If the range is positive, loop to avoid potential bias
319 * when the implicit nextLong() bound (2<sup>64</sup>) is not
320 * evenly divisible by the range. The loop rejects candidates
321 * computed from otherwise over-represented values. The
322 * expected number of iterations under an ideal generator
323 * varies from 1 to 2, depending on the bound. The loop itself
324 * takes an unlovable form. Because the first candidate is
325 * already available, we need a break-in-the-middle
326 * construction, which is concisely but cryptically performed
327 * within the while-condition of a body-less for loop.
328 *
329 * 4. Otherwise, the range cannot be represented as a positive
330 * long. The loop repeatedly generates unbounded longs until
331 * obtaining a candidate meeting constraints (with an expected
332 * number of iterations of less than two).
333 */
334
335 long r = mix64(nextSeed());
336 if (origin < bound) {
337 long n = bound - origin, m = n - 1;
338 if ((n & m) == 0L) // power of two
339 r = (r & m) + origin;
340 else if (n > 0L) { // reject over-represented candidates
341 for (long u = r >>> 1; // ensure nonnegative
342 u + m - (r = u % n) < 0L; // rejection check
343 u = mix64(nextSeed()) >>> 1) // retry
344 ;
345 r += origin;
346 }
347 else { // range not representable as long
348 while (r < origin || r >= bound)
349 r = mix64(nextSeed());
350 }
351 }
352 return r;
353 }
354
355 /**
356 * The form of nextInt used by IntStream Spliterators.
357 * Exactly the same as long version, except for types.
358 *
359 * @param origin the least value, unless greater than bound
360 * @param bound the upper bound (exclusive), must not equal origin
361 * @return a pseudorandom value
362 */
363 final int internalNextInt(int origin, int bound) {
364 int r = mix32(nextSeed());
365 if (origin < bound) {
366 int n = bound - origin, m = n - 1;
367 if ((n & m) == 0L)
368 r = (r & m) + origin;
369 else if (n > 0) {
370 for (int u = r >>> 1;
371 u + m - (r = u % n) < 0;
372 u = mix32(nextSeed()) >>> 1)
373 ;
374 r += origin;
375 }
376 else {
377 while (r < origin || r >= bound)
378 r = mix32(nextSeed());
379 }
380 }
381 return r;
382 }
383
384 /**
385 * The form of nextDouble used by DoubleStream Spliterators.
386 *
387 * @param origin the least value, unless greater than bound
388 * @param bound the upper bound (exclusive), must not equal origin
389 * @return a pseudorandom value
390 */
391 final double internalNextDouble(double origin, double bound) {
392 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
393 if (origin < bound) {
394 r = r * (bound - origin) + origin;
395 if (r >= bound) // correct for rounding
396 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
397 }
398 return r;
399 }
400
401 /* ---------------- public methods ---------------- */
402
403 /**
404 * Creates a new SplittableRandom instance using the specified
405 * initial seed. SplittableRandom instances created with the same
406 * seed generate identical sequences of values.
407 *
408 * @param seed the initial seed
409 */
410 public SplittableRandom(long seed) {
411 this(seed, 0);
412 }
413
414 /**
415 * Creates a new SplittableRandom instance that is likely to
416 * generate sequences of values that are statistically independent
417 * of those of any other instances in the current program; and
418 * may, and typically does, vary across program invocations.
419 */
420 public SplittableRandom() {
421 this(nextDefaultSeed(), GAMMA_GAMMA);
422 }
423
424 /**
425 * Constructs and returns a new SplittableRandom instance that
426 * shares no mutable state with this instance. However, with very
427 * high probability, the set of values collectively generated by
428 * the two objects has the same statistical properties as if the
429 * same quantity of values were generated by a single thread using
430 * a single SplittableRandom object. Either or both of the two
431 * objects may be further split using the {@code split()} method,
432 * and the same expected statistical properties apply to the
433 * entire set of generators constructed by such recursive
434 * splitting.
435 *
436 * @return the new SplittableRandom instance
437 */
438 public SplittableRandom split() {
439 return new SplittableRandom(nextSeed(), nextSplit);
440 }
441
442 /**
443 * Returns a pseudorandom {@code int} value.
444 *
445 * @return a pseudorandom {@code int} value
446 */
447 public int nextInt() {
448 return mix32(nextSeed());
449 }
450
451 /**
452 * Returns a pseudorandom {@code int} value between zero (inclusive)
453 * and the specified bound (exclusive).
454 *
455 * @param bound the bound on the random number to be returned. Must be
456 * positive.
457 * @return a pseudorandom {@code int} value between zero
458 * (inclusive) and the bound (exclusive).
459 * @throws IllegalArgumentException if the bound is less than zero
460 */
461 public int nextInt(int bound) {
462 if (bound <= 0)
463 throw new IllegalArgumentException("bound must be positive");
464 // Specialize internalNextInt for origin 0
465 int r = mix32(nextSeed());
466 int m = bound - 1;
467 if ((bound & m) == 0L) // power of two
468 r &= m;
469 else { // reject over-represented candidates
470 for (int u = r >>> 1;
471 u + m - (r = u % bound) < 0;
472 u = mix32(nextSeed()) >>> 1)
473 ;
474 }
475 return r;
476 }
477
478 /**
479 * Returns a pseudorandom {@code int} value between the specified
480 * origin (inclusive) and the specified bound (exclusive).
481 *
482 * @param origin the least value returned
483 * @param bound the upper bound (exclusive)
484 * @return a pseudorandom {@code int} value between the origin
485 * (inclusive) and the bound (exclusive).
486 * @throws IllegalArgumentException if {@code origin} is greater than
487 * or equal to {@code bound}
488 */
489 public int nextInt(int origin, int bound) {
490 if (origin >= bound)
491 throw new IllegalArgumentException("bound must be greater than origin");
492 return internalNextInt(origin, bound);
493 }
494
495 /**
496 * Returns a pseudorandom {@code long} value.
497 *
498 * @return a pseudorandom {@code long} value
499 */
500 public long nextLong() {
501 return mix64(nextSeed());
502 }
503
504 /**
505 * Returns a pseudorandom {@code long} value between zero (inclusive)
506 * and the specified bound (exclusive).
507 *
508 * @param bound the bound on the random number to be returned. Must be
509 * positive.
510 * @return a pseudorandom {@code long} value between zero
511 * (inclusive) and the bound (exclusive).
512 * @throws IllegalArgumentException if {@code bound} is less than zero
513 */
514 public long nextLong(long bound) {
515 if (bound <= 0)
516 throw new IllegalArgumentException("bound must be positive");
517 // Specialize internalNextLong for origin 0
518 long r = mix64(nextSeed());
519 long m = bound - 1;
520 if ((bound & m) == 0L) // power of two
521 r &= m;
522 else { // reject over-represented candidates
523 for (long u = r >>> 1;
524 u + m - (r = u % bound) < 0L;
525 u = mix64(nextSeed()) >>> 1)
526 ;
527 }
528 return r;
529 }
530
531 /**
532 * Returns a pseudorandom {@code long} value between the specified
533 * origin (inclusive) and the specified bound (exclusive).
534 *
535 * @param origin the least value returned
536 * @param bound the upper bound (exclusive)
537 * @return a pseudorandom {@code long} value between the origin
538 * (inclusive) and the bound (exclusive).
539 * @throws IllegalArgumentException if {@code origin} is greater than
540 * or equal to {@code bound}
541 */
542 public long nextLong(long origin, long bound) {
543 if (origin >= bound)
544 throw new IllegalArgumentException("bound must be greater than origin");
545 return internalNextLong(origin, bound);
546 }
547
548 /**
549 * Returns a pseudorandom {@code double} value between zero
550 * (inclusive) and one (exclusive).
551 *
552 * @return a pseudorandom {@code double} value between zero
553 * (inclusive) and one (exclusive)
554 */
555 public double nextDouble() {
556 return (nextLong() >>> 11) * DOUBLE_UNIT;
557 }
558
559 /**
560 * Returns a pseudorandom {@code double} value between 0.0
561 * (inclusive) and the specified bound (exclusive).
562 *
563 * @param bound the bound on the random number to be returned. Must be
564 * positive.
565 * @return a pseudorandom {@code double} value between zero
566 * (inclusive) and the bound (exclusive).
567 * @throws IllegalArgumentException if {@code bound} is less than zero
568 */
569 public double nextDouble(double bound) {
570 if (!(bound > 0.0))
571 throw new IllegalArgumentException("bound must be positive");
572 double result = nextDouble() * bound;
573 return (result < bound) ? result : // correct for rounding
574 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
575 }
576
577 /**
578 * Returns a pseudorandom {@code double} value between the specified
579 * origin (inclusive) and bound (exclusive).
580 *
581 * @param origin the least value returned
582 * @param bound the upper bound
583 * @return a pseudorandom {@code double} value between the origin
584 * (inclusive) and the bound (exclusive).
585 * @throws IllegalArgumentException if {@code origin} is greater than
586 * or equal to {@code bound}
587 */
588 public double nextDouble(double origin, double bound) {
589 if (!(origin < bound))
590 throw new IllegalArgumentException("bound must be greater than origin");
591 return internalNextDouble(origin, bound);
592 }
593
594 // stream methods, coded in a way intended to better isolate for
595 // maintenance purposes the small differences across forms.
596
597 /**
598 * Returns a stream producing the given {@code streamSize} number of
599 * pseudorandom {@code int} values.
600 *
601 * @param streamSize the number of values to generate
602 * @return a stream of pseudorandom {@code int} values
603 * @throws IllegalArgumentException if {@code streamSize} is
604 * less than zero
605 */
606 public IntStream ints(long streamSize) {
607 if (streamSize < 0L)
608 throw new IllegalArgumentException("negative Stream size");
609 return StreamSupport.intStream
610 (new RandomIntsSpliterator
611 (this, 0L, streamSize, Integer.MAX_VALUE, 0),
612 false);
613 }
614
615 /**
616 * Returns an effectively unlimited stream of pseudorandom {@code int}
617 * values
618 *
619 * @implNote This method is implemented to be equivalent to {@code
620 * ints(Long.MAX_VALUE)}.
621 *
622 * @return a stream of pseudorandom {@code int} values
623 */
624 public IntStream ints() {
625 return StreamSupport.intStream
626 (new RandomIntsSpliterator
627 (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
628 false);
629 }
630
631 /**
632 * Returns a stream producing the given {@code streamSize} number of
633 * pseudorandom {@code int} values, each conforming to the given
634 * origin and bound.
635 *
636 * @param streamSize the number of values to generate
637 * @param randomNumberOrigin the origin of each random value
638 * @param randomNumberBound the bound of each random value
639 * @return a stream of pseudorandom {@code int} values,
640 * each with the given origin and bound.
641 * @throws IllegalArgumentException if {@code streamSize} is
642 * less than zero, or {@code randomNumberOrigin}
643 * is greater than or equal to {@code randomNumberBound}
644 */
645 public IntStream ints(long streamSize, int randomNumberOrigin,
646 int randomNumberBound) {
647 if (streamSize < 0L)
648 throw new IllegalArgumentException("negative Stream size");
649 if (randomNumberOrigin >= randomNumberBound)
650 throw new IllegalArgumentException("bound must be greater than origin");
651 return StreamSupport.intStream
652 (new RandomIntsSpliterator
653 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
654 false);
655 }
656
657 /**
658 * Returns an effectively unlimited stream of pseudorandom {@code
659 * int} values, each conforming to the given origin and bound.
660 *
661 * @implNote This method is implemented to be equivalent to {@code
662 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
663 *
664 * @param randomNumberOrigin the origin of each random value
665 * @param randomNumberBound the bound of each random value
666 * @return a stream of pseudorandom {@code int} values,
667 * each with the given origin and bound.
668 * @throws IllegalArgumentException if {@code randomNumberOrigin}
669 * is greater than or equal to {@code randomNumberBound}
670 */
671 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
672 if (randomNumberOrigin >= randomNumberBound)
673 throw new IllegalArgumentException("bound must be greater than origin");
674 return StreamSupport.intStream
675 (new RandomIntsSpliterator
676 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
677 false);
678 }
679
680 /**
681 * Returns a stream producing the given {@code streamSize} number of
682 * pseudorandom {@code long} values.
683 *
684 * @param streamSize the number of values to generate
685 * @return a stream of pseudorandom {@code long} values
686 * @throws IllegalArgumentException if {@code streamSize} is
687 * less than zero
688 */
689 public LongStream longs(long streamSize) {
690 if (streamSize < 0L)
691 throw new IllegalArgumentException("negative Stream size");
692 return StreamSupport.longStream
693 (new RandomLongsSpliterator
694 (this, 0L, streamSize, Long.MAX_VALUE, 0L),
695 false);
696 }
697
698 /**
699 * Returns an effectively unlimited stream of pseudorandom {@code long}
700 * values.
701 *
702 * @implNote This method is implemented to be equivalent to {@code
703 * longs(Long.MAX_VALUE)}.
704 *
705 * @return a stream of pseudorandom {@code long} values
706 */
707 public LongStream longs() {
708 return StreamSupport.longStream
709 (new RandomLongsSpliterator
710 (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
711 false);
712 }
713
714 /**
715 * Returns a stream producing the given {@code streamSize} number of
716 * pseudorandom {@code long} values, each conforming to the
717 * given origin and bound.
718 *
719 * @param streamSize the number of values to generate
720 * @param randomNumberOrigin the origin of each random value
721 * @param randomNumberBound the bound of each random value
722 * @return a stream of pseudorandom {@code long} values,
723 * each with the given origin and bound.
724 * @throws IllegalArgumentException if {@code streamSize} is
725 * less than zero, or {@code randomNumberOrigin}
726 * is greater than or equal to {@code randomNumberBound}
727 */
728 public LongStream longs(long streamSize, long randomNumberOrigin,
729 long randomNumberBound) {
730 if (streamSize < 0L)
731 throw new IllegalArgumentException("negative Stream size");
732 if (randomNumberOrigin >= randomNumberBound)
733 throw new IllegalArgumentException("bound must be greater than origin");
734 return StreamSupport.longStream
735 (new RandomLongsSpliterator
736 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
737 false);
738 }
739
740 /**
741 * Returns an effectively unlimited stream of pseudorandom {@code
742 * long} values, each conforming to the given origin and bound.
743 *
744 * @implNote This method is implemented to be equivalent to {@code
745 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
746 *
747 * @param randomNumberOrigin the origin of each random value
748 * @param randomNumberBound the bound of each random value
749 * @return a stream of pseudorandom {@code long} values,
750 * each with the given origin and bound.
751 * @throws IllegalArgumentException if {@code randomNumberOrigin}
752 * is greater than or equal to {@code randomNumberBound}
753 */
754 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
755 if (randomNumberOrigin >= randomNumberBound)
756 throw new IllegalArgumentException("bound must be greater than origin");
757 return StreamSupport.longStream
758 (new RandomLongsSpliterator
759 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
760 false);
761 }
762
763 /**
764 * Returns a stream producing the given {@code streamSize} number of
765 * pseudorandom {@code double} values, each between zero
766 * (inclusive) and one (exclusive).
767 *
768 * @param streamSize the number of values to generate
769 * @return a stream of {@code double} values
770 * @throws IllegalArgumentException if {@code streamSize} is
771 * less than zero
772 */
773 public DoubleStream doubles(long streamSize) {
774 if (streamSize < 0L)
775 throw new IllegalArgumentException("negative Stream size");
776 return StreamSupport.doubleStream
777 (new RandomDoublesSpliterator
778 (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
779 false);
780 }
781
782 /**
783 * Returns an effectively unlimited stream of pseudorandom {@code
784 * double} values, each between zero (inclusive) and one
785 * (exclusive).
786 *
787 * @implNote This method is implemented to be equivalent to {@code
788 * doubles(Long.MAX_VALUE)}.
789 *
790 * @return a stream of pseudorandom {@code double} values
791 */
792 public DoubleStream doubles() {
793 return StreamSupport.doubleStream
794 (new RandomDoublesSpliterator
795 (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
796 false);
797 }
798
799 /**
800 * Returns a stream producing the given {@code streamSize} number of
801 * pseudorandom {@code double} values, each conforming to the
802 * given origin and bound.
803 *
804 * @param streamSize the number of values to generate
805 * @param randomNumberOrigin the origin of each random value
806 * @param randomNumberBound the bound of each random value
807 * @return a stream of pseudorandom {@code double} values,
808 * each with the given origin and bound.
809 * @throws IllegalArgumentException if {@code streamSize} is
810 * less than zero.
811 * @throws IllegalArgumentException if {@code randomNumberOrigin}
812 * is greater than or equal to {@code randomNumberBound}
813 */
814 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
815 double randomNumberBound) {
816 if (streamSize < 0L)
817 throw new IllegalArgumentException("negative Stream size");
818 if (!(randomNumberOrigin < randomNumberBound))
819 throw new IllegalArgumentException("bound must be greater than origin");
820 return StreamSupport.doubleStream
821 (new RandomDoublesSpliterator
822 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
823 false);
824 }
825
826 /**
827 * Returns an effectively unlimited stream of pseudorandom {@code
828 * double} values, each conforming to the given origin and bound.
829 *
830 * @implNote This method is implemented to be equivalent to {@code
831 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
832 *
833 * @param randomNumberOrigin the origin of each random value
834 * @param randomNumberBound the bound of each random value
835 * @return a stream of pseudorandom {@code double} values,
836 * each with the given origin and bound.
837 * @throws IllegalArgumentException if {@code randomNumberOrigin}
838 * is greater than or equal to {@code randomNumberBound}
839 */
840 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
841 if (!(randomNumberOrigin < randomNumberBound))
842 throw new IllegalArgumentException("bound must be greater than origin");
843 return StreamSupport.doubleStream
844 (new RandomDoublesSpliterator
845 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
846 false);
847 }
848
849 /**
850 * Spliterator for int streams. We multiplex the four int
851 * versions into one class by treating a bound less than origin as
852 * unbounded, and also by treating "infinite" as equivalent to
853 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
854 * approach. The long and double versions of this class are
855 * identical except for types.
856 */
857 static class RandomIntsSpliterator implements Spliterator.OfInt {
858 final SplittableRandom rng;
859 long index;
860 final long fence;
861 final int origin;
862 final int bound;
863 RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
864 int origin, int bound) {
865 this.rng = rng; this.index = index; this.fence = fence;
866 this.origin = origin; this.bound = bound;
867 }
868
869 public RandomIntsSpliterator trySplit() {
870 long i = index, m = (i + fence) >>> 1;
871 return (m <= i) ? null :
872 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
873 }
874
875 public long estimateSize() {
876 return fence - index;
877 }
878
879 public int characteristics() {
880 return (Spliterator.SIZED | Spliterator.SUBSIZED |
881 Spliterator.NONNULL | Spliterator.IMMUTABLE);
882 }
883
884 public boolean tryAdvance(IntConsumer consumer) {
885 if (consumer == null) throw new NullPointerException();
886 long i = index, f = fence;
887 if (i < f) {
888 consumer.accept(rng.internalNextInt(origin, bound));
889 index = i + 1;
890 return true;
891 }
892 return false;
893 }
894
895 public void forEachRemaining(IntConsumer consumer) {
896 if (consumer == null) throw new NullPointerException();
897 long i = index, f = fence;
898 if (i < f) {
899 index = f;
900 int o = origin, b = bound;
901 do {
902 consumer.accept(rng.internalNextInt(o, b));
903 } while (++i < f);
904 }
905 }
906 }
907
908 /**
909 * Spliterator for long streams.
910 */
911 static class RandomLongsSpliterator implements Spliterator.OfLong {
912 final SplittableRandom rng;
913 long index;
914 final long fence;
915 final long origin;
916 final long bound;
917 RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
918 long origin, long bound) {
919 this.rng = rng; this.index = index; this.fence = fence;
920 this.origin = origin; this.bound = bound;
921 }
922
923 public RandomLongsSpliterator trySplit() {
924 long i = index, m = (i + fence) >>> 1;
925 return (m <= i) ? null :
926 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
927 }
928
929 public long estimateSize() {
930 return fence - index;
931 }
932
933 public int characteristics() {
934 return (Spliterator.SIZED | Spliterator.SUBSIZED |
935 Spliterator.NONNULL | Spliterator.IMMUTABLE);
936 }
937
938 public boolean tryAdvance(LongConsumer consumer) {
939 if (consumer == null) throw new NullPointerException();
940 long i = index, f = fence;
941 if (i < f) {
942 consumer.accept(rng.internalNextLong(origin, bound));
943 index = i + 1;
944 return true;
945 }
946 return false;
947 }
948
949 public void forEachRemaining(LongConsumer consumer) {
950 if (consumer == null) throw new NullPointerException();
951 long i = index, f = fence;
952 if (i < f) {
953 index = f;
954 long o = origin, b = bound;
955 do {
956 consumer.accept(rng.internalNextLong(o, b));
957 } while (++i < f);
958 }
959 }
960
961 }
962
963 /**
964 * Spliterator for double streams.
965 */
966 static class RandomDoublesSpliterator implements Spliterator.OfDouble {
967 final SplittableRandom rng;
968 long index;
969 final long fence;
970 final double origin;
971 final double bound;
972 RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
973 double origin, double bound) {
974 this.rng = rng; this.index = index; this.fence = fence;
975 this.origin = origin; this.bound = bound;
976 }
977
978 public RandomDoublesSpliterator trySplit() {
979 long i = index, m = (i + fence) >>> 1;
980 return (m <= i) ? null :
981 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
982 }
983
984 public long estimateSize() {
985 return fence - index;
986 }
987
988 public int characteristics() {
989 return (Spliterator.SIZED | Spliterator.SUBSIZED |
990 Spliterator.NONNULL | Spliterator.IMMUTABLE);
991 }
992
993 public boolean tryAdvance(DoubleConsumer consumer) {
994 if (consumer == null) throw new NullPointerException();
995 long i = index, f = fence;
996 if (i < f) {
997 consumer.accept(rng.internalNextDouble(origin, bound));
998 index = i + 1;
999 return true;
1000 }
1001 return false;
1002 }
1003
1004 public void forEachRemaining(DoubleConsumer consumer) {
1005 if (consumer == null) throw new NullPointerException();
1006 long i = index, f = fence;
1007 if (i < f) {
1008 index = f;
1009 double o = origin, b = bound;
1010 do {
1011 consumer.accept(rng.internalNextDouble(o, b));
1012 } while (++i < f);
1013 }
1014 }
1015 }
1016
1017 }