ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TimSort.java
Revision: 1.2
Committed: Tue Sep 1 22:17:49 2009 UTC (14 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.1: +1 -1 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Copyright (C) 2008 The Android Open Source Project
3     *
4     * Licensed under the Apache License, Version 2.0 (the "License");
5     * you may not use this file except in compliance with the License.
6     * You may obtain a copy of the License at
7     *
8     * http://www.apache.org/licenses/LICENSE-2.0
9     *
10     * Unless required by applicable law or agreed to in writing, software
11     * distributed under the License is distributed on an "AS IS" BASIS,
12     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13     * See the License for the specific language governing permissions and
14     * limitations under the License.
15     */
16    
17     import java.util.*;
18    
19     /**
20     * A stable, adaptive, iterative mergesort that requires far fewer than
21     * n lg(n) comparisons when running on partially sorted arrays, while
22     * offering performance comparable to a traditional mergesort when run
23     * on random arrays. Like all proper mergesorts, this sort is stable and
24     * runs O(n log n) time (worst case). In the worst case, this sort requires
25     * temporary storage space for n/2 object references; in the best case,
26     * it requires only a small constant amount of space.
27     *
28     * This implementation was adapted from Tim Peters's list sort for
29     * Python, which is described in detail here:
30     *
31     * http://svn.python.org/projects/python/trunk/Objects/listsort.txt
32     *
33     * Tim's C code may be found here:
34     *
35     * http://svn.python.org/projects/python/trunk/Objects/listobject.c
36     *
37     * The underlying techniques are described in this paper (and may have
38     * even earlier origins):
39     *
40     * "Optimistic Sorting and Information Theoretic Complexity"
41     * Peter McIlroy
42     * SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
43     * pp 467-474, Austin, Texas, 25-27 January 1993.
44     *
45     * While the API to this class consists solely of static methods, it is
46     * (privately) instantiable; a TimSort instance holds the state of an ongoing
47     * sort, assuming the input array is large enough to warrant the full-blown
48     * TimSort. Small arrays are sorted in place, using a binary insertion sort.
49     */
50     class TimSort<T> {
51     /**
52     * This is the minimum sized sequence that will be merged. Shorter
53     * sequences will be lengthened by calling binarySort. If the entire
54     * array is less than this length, no merges will be performed.
55     *
56     * This constant should be a power of two. It was 64 in Tim Peter's C
57     * implementation, but 32 was empirically determined to work better in
58     * this implementation. In the unlikely event that you set this constant
59     * to be a number that's not a power of two, you'll need to change the
60     * {@link #minRunLength} computation.
61     *
62     * If you decrease this constant, you must change the stackLen
63     * computation in the TimSort constructor, or you risk an
64     * ArrayOutOfBounds exception. See listsort.txt for a discussion
65     * of the minimum stack length required as a function of the length
66     * of the array being sorted and the minimum merge sequence length.
67     */
68     private static final int MIN_MERGE = 32;
69    
70     /**
71     * The array being sorted.
72     */
73     private final T[] a;
74    
75     /**
76     * The comparator for this sort.
77     */
78     private final Comparator<? super T> c;
79    
80     /**
81     * When we get into galloping mode, we stay there until both runs win less
82     * often than MIN_GALLOP consecutive times.
83     */
84     private static final int MIN_GALLOP = 7;
85    
86     /**
87     * This controls when we get *into* galloping mode. It is initialized
88     * to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
89     * random data, and lower for highly structured data.
90     */
91     private int minGallop = MIN_GALLOP;
92    
93     /**
94     * Maximum initial size of tmp array, which is used for merging. The array
95     * can grow to accommodate demand.
96     *
97     * Unlike Tim's original C version, we do not allocate this much storage
98     * when sorting smaller arrays. This change was required for performance.
99     */
100     private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
101    
102     /**
103     * Temp storage for merges.
104     */
105     private T[] tmp; // Actual runtime type will be Object[], regardless of T
106    
107     /**
108     * A stack of pending runs yet to be merged. Run i starts at
109     * address base[i] and extends for len[i] elements. It's always
110     * true (so long as the indices are in bounds) that:
111     *
112     * runBase[i] + runLen[i] == runBase[i + 1]
113     *
114     * so we could cut the storage for this, but it's a minor amount,
115     * and keeping all the info explicit simplifies the code.
116     */
117     private int stackSize = 0; // Number of pending runs on stack
118     private final int[] runBase;
119     private final int[] runLen;
120    
121     /**
122     * Creates a TimSort instance to maintain the state of an ongoing sort.
123     *
124     * @param a the array to be sorted
125     * @param c the comparator to determine the order of the sort
126     */
127     private TimSort(T[] a, Comparator<? super T> c) {
128     this.a = a;
129     this.c = c;
130    
131     // Allocate temp storage (which may be increased later if necessary)
132     int len = a.length;
133     @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
134     T[] newArray = (T[]) new Object[len < 2 * INITIAL_TMP_STORAGE_LENGTH ?
135     len >>> 1 : INITIAL_TMP_STORAGE_LENGTH];
136     tmp = newArray;
137    
138     /*
139     * Allocate runs-to-be-merged stack (which cannot be expanded). The
140     * stack length requirements are described in listsort.txt. The C
141     * version always uses the same stack length (85), but this was
142     * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
143     * 100 elements) in Java. Therefore, we use smaller (but sufficiently
144     * large) stack lengths for smaller arrays. The "magic numbers" in the
145     * computation below must be changed if MIN_MERGE is decreased. See
146     * the MIN_MERGE declaration above for more information.
147     */
148     int stackLen = (len < 120 ? 5 :
149     len < 1542 ? 10 :
150     len < 119151 ? 19 : 40);
151     runBase = new int[stackLen];
152     runLen = new int[stackLen];
153     }
154    
155     /*
156     * The next two methods (which are package private and static) constitute
157     * the entire API of this class. Each of these methods obeys the contract
158     * of the public method with the same signature in java.util.Arrays.
159     */
160    
161     static <T> void sort(T[] a, Comparator<? super T> c) {
162     sort(a, 0, a.length, c);
163     }
164    
165     static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c) {
166     if (c == null) {
167     Arrays.sort(a, lo, hi);
168     return;
169     }
170    
171     rangeCheck(a.length, lo, hi);
172     int nRemaining = hi - lo;
173     if (nRemaining < 2)
174     return; // Arrays of size 0 and 1 are always sorted
175    
176     // If array is small, do a "mini-TimSort" with no merges
177     if (nRemaining < MIN_MERGE) {
178     int initRunLen = countRunAndMakeAscending(a, lo, nRemaining, c);
179     binarySort(a, lo, hi, lo + initRunLen, c);
180     return;
181     }
182    
183     /**
184     * March over the array once, left to right, finding natural runs,
185     * extending short natural runs to minRun elements, and merging runs
186     * to maintain stack invariant.
187     */
188     TimSort<T> ts = new TimSort<T>(a, c);
189     int minRun = minRunLength(nRemaining);
190     do {
191     // Identify next run
192     int runLen = countRunAndMakeAscending(a, lo, hi, c);
193    
194     // If run is short, extend to min(minRun, nRemaining)
195     if (runLen < minRun) {
196     int force = nRemaining <= minRun ? nRemaining : minRun;
197     binarySort(a, lo, lo + force, lo + runLen, c);
198     runLen = force;
199     }
200    
201     // Push run onto pending-run stack, and maybe merge
202     ts.pushRun(lo, runLen);
203     ts.mergeCollapse();
204    
205     // Advance to find next run
206     lo += runLen;
207     nRemaining -= runLen;
208     } while (nRemaining != 0);
209    
210     // Merge all remaining runs to complete sort
211     assert lo == hi;
212     ts.mergeForceCollapse();
213     assert ts.stackSize == 1;
214     }
215    
216     /**
217     * Sorts the specified portion of the specified array using a binary
218     * insertion sort. This is the best method for sorting small numbers
219     * of elements. It requires O(n log n) compares, but O(n^2) data
220     * movement (worst case).
221     *
222     * If the initial part of the specified range is already sorted,
223     * this method can take advantage of it: the method assumes that the
224     * elements from index {@code lo}, inclusive, to {@code start},
225     * exclusive are already sorted.
226     *
227     * @param a the array in which a range is to be sorted
228     * @param lo the index of the first element in the range to be sorted
229     * @param hi the index after the last element in the range to be sorted
230     * @param start the index of the first element in the range that is
231     * not already known to be sorted (@code lo <= start <= hi}
232     * @param c comparator to used for the sort
233     */
234     @SuppressWarnings("fallthrough")
235     private static <T> void binarySort(T[] a, int lo, int hi, int start,
236     Comparator<? super T> c) {
237     assert lo <= start && start <= hi;
238     if (start == lo)
239     start++;
240     for ( ; start < hi; start++) {
241     T pivot = a[start];
242    
243     // Set left (and right) to the index where a[start] (pivot) belongs
244     int left = lo;
245     int right = start;
246     assert left <= right;
247     /*
248     * Invariants:
249     * pivot >= all in [lo, left).
250     * pivot < all in [right, start).
251     */
252     while (left < right) {
253     int mid = (left + right) >>> 1;
254     if (c.compare(pivot, a[mid]) < 0)
255     right = mid;
256     else
257     left = mid + 1;
258     }
259     assert left == right;
260    
261     /*
262     * The invariants still hold: pivot >= all in [lo, left) and
263     * pivot < all in [left, start), so pivot belongs at left. Note
264     * that if there are elements equal to pivot, left points to the
265     * first slot after them -- that's why this sort is stable.
266     * Slide elements over to make room to make room for pivot.
267     */
268     int n = start - left; // The number of elements to move
269     // Switch is just an optimization for arraycopy in default case
270     switch(n) {
271     case 2: a[left + 2] = a[left + 1];
272     case 1: a[left + 1] = a[left];
273     break;
274     default: System.arraycopy(a, left, a, left + 1, n);
275     }
276     a[left] = pivot;
277     }
278     }
279    
280     /**
281     * Returns the length of the run beginning at the specified position in
282     * the specified array and reverses the run if it is descending (ensuring
283     * that the run will always be ascending when the method returns).
284     *
285     * A run is the longest ascending sequence with:
286     *
287     * a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
288     *
289     * or the longest descending sequence with:
290     *
291     * a[lo] > a[lo + 1] > a[lo + 2] > ...
292     *
293     * For its intended use in a stable mergesort, the strictness of the
294     * definition of "descending" is needed so that the call can safely
295     * reverse a descending sequence without violating stability.
296     *
297     * @param a the array in which a run is to be counted and possibly reversed
298     * @param lo index of the first element in the run
299     * @param hi index after the last element that may be contained in the run.
300     It is required that @code{lo < hi}.
301     * @param c the comparator to used for the sort
302     * @return the length of the run beginning at the specified position in
303     * the specified array
304     */
305     private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,
306     Comparator<? super T> c) {
307     assert lo < hi;
308     int runHi = lo + 1;
309     if (runHi == hi)
310     return 1;
311    
312     // Find end of run, and reverse range if descending
313     if (c.compare(a[runHi++], a[lo]) < 0) { // Descending
314     while(runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
315     runHi++;
316     reverseRange(a, lo, runHi);
317     } else { // Ascending
318     while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
319     runHi++;
320     }
321    
322     return runHi - lo;
323     }
324    
325     /**
326     * Reverse the specified range of the specified array.
327     *
328     * @param a the array in which a range is to be reversed
329     * @param lo the index of the first element in the range to be reversed
330     * @param hi the index after the last element in the range to be reversed
331     */
332     private static void reverseRange(Object[] a, int lo, int hi) {
333     hi--;
334     while (lo < hi) {
335     Object t = a[lo];
336     a[lo++] = a[hi];
337 jsr166 1.2 a[hi--] = t;
338 jsr166 1.1 }
339     }
340    
341     /**
342     * Returns the minimum acceptable run length for an array of the specified
343     * length. Natural runs shorter than this will be extended with
344     * {@link #binarySort}.
345     *
346     * Roughly speaking, the computation is:
347     *
348     * If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
349     * Else if n is an exact power of 2, return MIN_MERGE/2.
350     * Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
351     * is close to, but strictly less than, an exact power of 2.
352     *
353     * For the rationale, see listsort.txt.
354     *
355     * @param n the length of the array to be sorted
356     * @return the length of the minimum run to be merged
357     */
358     private static int minRunLength(int n) {
359     assert n >= 0;
360     int r = 0; // Becomes 1 if any 1 bits are shifted off
361     while (n >= MIN_MERGE) {
362     r |= (n & 1);
363     n >>= 1;
364     }
365     return n + r;
366     }
367    
368     /**
369     * Pushes the specified run onto the pending-run stack.
370     *
371     * @param runBase index of the first element in the run
372     * @param runLen the number of elements in the run
373     */
374     private void pushRun(int runBase, int runLen) {
375     this.runBase[stackSize] = runBase;
376     this.runLen[stackSize] = runLen;
377     stackSize++;
378     }
379    
380     /**
381     * Examines the stack of runs waiting to be merged and merges adjacent runs
382     * until the stack invariants are reestablished:
383     *
384     * 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
385     * 2. runLen[i - 2] > runLen[i - 1]
386     *
387     * This method is called each time a new run is pushed onto the stack,
388     * so the invariants are guaranteed to hold for i < stackSize upon
389     * entry to the method.
390     */
391     private void mergeCollapse() {
392     while (stackSize > 1) {
393     int n = stackSize - 2;
394     if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
395     if (runLen[n - 1] < runLen[n + 1])
396     n--;
397     mergeAt(n);
398     } else if (runLen[n] <= runLen[n + 1]) {
399     mergeAt(n);
400     } else {
401     break; // Invariant is established
402     }
403     }
404     }
405    
406     /**
407     * Merges all runs on the stack until only one remains. This method is
408     * called once, to complete the sort.
409     */
410     private void mergeForceCollapse() {
411     while (stackSize > 1) {
412     int n = stackSize - 2;
413     if (n > 0 && runLen[n - 1] < runLen[n + 1])
414     n--;
415     mergeAt(n);
416     }
417     }
418    
419     /**
420     * Merges the two runs at stack indices i and i+1. Run i must be
421     * the penultimate or antepenultimate run on the stack. In other words,
422     * i must be equal to stackSize-2 or stackSize-3.
423     *
424     * @param i stack index of the first of the two runs to merge
425     */
426     private void mergeAt(int i) {
427     assert stackSize >= 2;
428     assert i >= 0;
429     assert i == stackSize - 2 || i == stackSize - 3;
430    
431     int base1 = runBase[i];
432     int len1 = runLen[i];
433     int base2 = runBase[i + 1];
434     int len2 = runLen[i + 1];
435     assert len1 > 0 && len2 > 0;
436     assert base1 + len1 == base2;
437    
438     /*
439     * Record the length of the combined runs; if i is the 3rd-last
440     * run now, also slide over the last run (which isn't involved
441     * in this merge). The current run (i+1) goes away in any case.
442     */
443     runLen[i] = len1 + len2;
444     if (i == stackSize - 3) {
445     runBase[i + 1] = runBase[i + 2];
446     runLen[i + 1] = runLen[i + 2];
447     }
448     stackSize--;
449    
450     /*
451     * Find where the first element of run2 goes in run1. Prior elements
452     * in run1 can be ignored (because they're already in place).
453     */
454     int k = gallopRight(a[base2], a, base1, len1, 0, c);
455     assert k >= 0;
456     base1 += k;
457     len1 -= k;
458     if (len1 == 0)
459     return;
460    
461     /*
462     * Find where the last element of run1 goes in run2. Subsequent elements
463     * in run2 can be ignored (because they're already in place).
464     */
465     len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);
466     assert len2 >= 0;
467     if (len2 == 0)
468     return;
469    
470     // Merge remaining runs, using tmp array with min(len1, len2) elements
471     if (len1 <= len2)
472     mergeLo(base1, len1, base2, len2);
473     else
474     mergeHi(base1, len1, base2, len2);
475     }
476    
477     /**
478     * Locates the position at which to insert the specified key into the
479     * specified sorted range; if the range contains an element equal to key,
480     * returns the index of the leftmost equal element.
481     *
482     * @param key the key whose insertion point to search for
483     * @param a the array in which to search
484     * @param base the index of the first element in the range
485     * @param len the length of the range; must be > 0
486     * @param hint the index at which to begin the search, 0 <= hint < n.
487     * The closer hint is to the result, the faster this method will run.
488     * @param c the comparator used to order the range, and to search
489     * @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
490     * pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
491     * In other words, key belongs at index b + k; or in other words,
492     * the first k elements of a should precede key, and the last n - k
493     * should follow it.
494     */
495     private static <T> int gallopLeft(T key, T[] a, int base, int len, int hint,
496     Comparator<? super T> c) {
497     assert len > 0 && hint >= 0 && hint < len;
498     int lastOfs = 0;
499     int ofs = 1;
500     if (c.compare(key, a[base + hint]) > 0) {
501     // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
502     int maxOfs = len - hint;
503     while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) > 0) {
504     lastOfs = ofs;
505     ofs = (ofs << 1) + 1;
506     if (ofs <= 0) // int overflow
507     ofs = maxOfs;
508     }
509     if (ofs > maxOfs)
510     ofs = maxOfs;
511    
512     // Make offsets relative to base
513     lastOfs += hint;
514     ofs += hint;
515     } else { // key <= a[base + hint]
516     // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
517     final int maxOfs = hint + 1;
518     while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) <= 0) {
519     lastOfs = ofs;
520     ofs = (ofs << 1) + 1;
521     if (ofs <= 0) // int overflow
522     ofs = maxOfs;
523     }
524     if (ofs > maxOfs)
525     ofs = maxOfs;
526    
527     // Make offsets relative to base
528     int tmp = lastOfs;
529     lastOfs = hint - ofs;
530     ofs = hint - tmp;
531     }
532     assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
533    
534     /*
535     * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
536     * to the right of lastOfs but no farther right than ofs. Do a binary
537     * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
538     */
539     lastOfs++;
540     while (lastOfs < ofs) {
541     int m = lastOfs + ((ofs - lastOfs) >>> 1);
542    
543     if (c.compare(key, a[base + m]) > 0)
544     lastOfs = m + 1; // a[base + m] < key
545     else
546     ofs = m; // key <= a[base + m]
547     }
548     assert lastOfs == ofs; // so a[base + ofs - 1] < key <= a[base + ofs]
549     return ofs;
550     }
551    
552     /**
553     * Like gallopLeft, except that if the range contains an element equal to
554     * key, gallopRight returns the index after the rightmost equal element.
555     *
556     * @param key the key whose insertion point to search for
557     * @param a the array in which to search
558     * @param base the index of the first element in the range
559     * @param len the length of the range; must be > 0
560     * @param hint the index at which to begin the search, 0 <= hint < n.
561     * The closer hint is to the result, the faster this method will run.
562     * @param c the comparator used to order the range, and to search
563     * @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
564     */
565     private static <T> int gallopRight(T key, T[] a, int base, int len,
566     int hint, Comparator<? super T> c) {
567     assert len > 0 && hint >= 0 && hint < len;
568    
569     int ofs = 1;
570     int lastOfs = 0;
571     if (c.compare(key, a[base + hint]) < 0) {
572     // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
573     int maxOfs = hint + 1;
574     while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) < 0) {
575     lastOfs = ofs;
576     ofs = (ofs << 1) + 1;
577     if (ofs <= 0) // int overflow
578     ofs = maxOfs;
579     }
580     if (ofs > maxOfs)
581     ofs = maxOfs;
582    
583     // Make offsets relative to b
584     int tmp = lastOfs;
585     lastOfs = hint - ofs;
586     ofs = hint - tmp;
587     } else { // a[b + hint] <= key
588     // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
589     int maxOfs = len - hint;
590     while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) >= 0) {
591     lastOfs = ofs;
592     ofs = (ofs << 1) + 1;
593     if (ofs <= 0) // int overflow
594     ofs = maxOfs;
595     }
596     if (ofs > maxOfs)
597     ofs = maxOfs;
598    
599     // Make offsets relative to b
600     lastOfs += hint;
601     ofs += hint;
602     }
603     assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
604    
605     /*
606     * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
607     * the right of lastOfs but no farther right than ofs. Do a binary
608     * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
609     */
610     lastOfs++;
611     while (lastOfs < ofs) {
612     int m = lastOfs + ((ofs - lastOfs) >>> 1);
613    
614     if (c.compare(key, a[base + m]) < 0)
615     ofs = m; // key < a[b + m]
616     else
617     lastOfs = m + 1; // a[b + m] <= key
618     }
619     assert lastOfs == ofs; // so a[b + ofs - 1] <= key < a[b + ofs]
620     return ofs;
621     }
622    
623     /**
624     * Merges two adjacent runs in place, in a stable fashion. The first
625     * element of the first run must be greater than the first element of the
626     * second run (a[base1] > a[base2]), and the last element of the first run
627     * (a[base1 + len1-1]) must be greater than all elements of the second run.
628     *
629     * For performance, this method should be called only when len1 <= len2;
630     * its twin, mergeHi should be called if len1 >= len2. (Either method
631     * may be called if len1 == len2.)
632     *
633     * @param base1 index of first element in first run to be merged
634     * @param len1 length of first run to be merged (must be > 0)
635     * @param base2 index of first element in second run to be merged
636     * (must be aBase + aLen)
637     * @param len2 length of second run to be merged (must be > 0)
638     */
639     private void mergeLo(int base1, int len1, int base2, int len2) {
640     assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
641    
642     // Copy first run into temp array
643     T[] a = this.a; // For performance
644     T[] tmp = ensureCapacity(len1);
645     System.arraycopy(a, base1, tmp, 0, len1);
646    
647     int cursor1 = 0; // Indexes into tmp array
648     int cursor2 = base2; // Indexes int a
649     int dest = base1; // Indexes int a
650    
651     // Move first element of second run and deal with degenerate cases
652     a[dest++] = a[cursor2++];
653     if (--len2 == 0) {
654     System.arraycopy(tmp, cursor1, a, dest, len1);
655     return;
656     }
657     if (len1 == 1) {
658     System.arraycopy(a, cursor2, a, dest, len2);
659     a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
660     return;
661     }
662    
663     Comparator<? super T> c = this.c; // Use local variable for performance
664     int minGallop = this.minGallop; // " " " " "
665     outer:
666     while (true) {
667     int count1 = 0; // Number of times in a row that first run won
668     int count2 = 0; // Number of times in a row that second run won
669    
670     /*
671     * Do the straightforward thing until (if ever) one run starts
672     * winning consistently.
673     */
674     do {
675     assert len1 > 1 && len2 > 0;
676     if (c.compare(a[cursor2], tmp[cursor1]) < 0) {
677     a[dest++] = a[cursor2++];
678     count2++;
679     count1 = 0;
680     if (--len2 == 0)
681     break outer;
682     } else {
683     a[dest++] = tmp[cursor1++];
684     count1++;
685     count2 = 0;
686     if (--len1 == 1)
687     break outer;
688     }
689     } while ((count1 | count2) < minGallop);
690    
691     /*
692     * One run is winning so consistently that galloping may be a
693     * huge win. So try that, and continue galloping until (if ever)
694     * neither run appears to be winning consistently anymore.
695     */
696     do {
697     assert len1 > 1 && len2 > 0;
698     count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);
699     if (count1 != 0) {
700     System.arraycopy(tmp, cursor1, a, dest, count1);
701     dest += count1;
702     cursor1 += count1;
703     len1 -= count1;
704     if (len1 <= 1) // len1 == 1 || len1 == 0
705     break outer;
706     }
707     a[dest++] = a[cursor2++];
708     if (--len2 == 0)
709     break outer;
710    
711     count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);
712     if (count2 != 0) {
713     System.arraycopy(a, cursor2, a, dest, count2);
714     dest += count2;
715     cursor2 += count2;
716     len2 -= count2;
717     if (len2 == 0)
718     break outer;
719     }
720     a[dest++] = tmp[cursor1++];
721     if (--len1 == 1)
722     break outer;
723     minGallop--;
724     } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
725     if (minGallop < 0)
726     minGallop = 0;
727     minGallop += 2; // Penalize for leaving gallop mode
728     } // End of "outer" loop
729     this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
730    
731     if (len1 == 1) {
732     assert len2 > 0;
733     System.arraycopy(a, cursor2, a, dest, len2);
734     a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
735     } else if (len1 == 0) {
736     throw new IllegalArgumentException(
737     "Comparison method violates its general contract!");
738     } else {
739     assert len2 == 0;
740     assert len1 > 1;
741     System.arraycopy(tmp, cursor1, a, dest, len1);
742     }
743     }
744    
745     /**
746     * Like mergeLo, except that this method should be called only if
747     * len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
748     * may be called if len1 == len2.)
749     *
750     * @param base1 index of first element in first run to be merged
751     * @param len1 length of first run to be merged (must be > 0)
752     * @param base2 index of first element in second run to be merged
753     * (must be aBase + aLen)
754     * @param len2 length of second run to be merged (must be > 0)
755     */
756     private void mergeHi(int base1, int len1, int base2, int len2) {
757     assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
758    
759     // Copy second run into temp array
760     T[] a = this.a; // For performance
761     T[] tmp = ensureCapacity(len2);
762     System.arraycopy(a, base2, tmp, 0, len2);
763    
764     int cursor1 = base1 + len1 - 1; // Indexes into a
765     int cursor2 = len2 - 1; // Indexes into tmp array
766     int dest = base2 + len2 - 1; // Indexes into a
767    
768     // Move last element of first run and deal with degenerate cases
769     a[dest--] = a[cursor1--];
770     if (--len1 == 0) {
771     System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2);
772     return;
773     }
774     if (len2 == 1) {
775     dest -= len1;
776     cursor1 -= len1;
777     System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
778     a[dest] = tmp[cursor2];
779     return;
780     }
781    
782     Comparator<? super T> c = this.c; // Use local variable for performance
783     int minGallop = this.minGallop; // " " " " "
784     outer:
785     while (true) {
786     int count1 = 0; // Number of times in a row that first run won
787     int count2 = 0; // Number of times in a row that second run won
788    
789     /*
790     * Do the straightforward thing until (if ever) one run
791     * appears to win consistently.
792     */
793     do {
794     assert len1 > 0 && len2 > 1;
795     if (c.compare(tmp[cursor2], a[cursor1]) < 0) {
796     a[dest--] = a[cursor1--];
797     count1++;
798     count2 = 0;
799     if (--len1 == 0)
800     break outer;
801     } else {
802     a[dest--] = tmp[cursor2--];
803     count2++;
804     count1 = 0;
805     if (--len2 == 1)
806     break outer;
807     }
808     } while ((count1 | count2) < minGallop);
809    
810     /*
811     * One run is winning so consistently that galloping may be a
812     * huge win. So try that, and continue galloping until (if ever)
813     * neither run appears to be winning consistently anymore.
814     */
815     do {
816     assert len1 > 0 && len2 > 1;
817     count1 = len1 - gallopRight(tmp[cursor2], a, base1, len1, len1 - 1, c);
818     if (count1 != 0) {
819     dest -= count1;
820     cursor1 -= count1;
821     len1 -= count1;
822     System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
823     if (len1 == 0)
824     break outer;
825     }
826     a[dest--] = tmp[cursor2--];
827     if (--len2 == 1)
828     break outer;
829    
830     count2 = len2 - gallopLeft(a[cursor1], tmp, 0, len2, len2 - 1, c);
831     if (count2 != 0) {
832     dest -= count2;
833     cursor2 -= count2;
834     len2 -= count2;
835     System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
836     if (len2 <= 1) // len2 == 1 || len2 == 0
837     break outer;
838     }
839     a[dest--] = a[cursor1--];
840     if (--len1 == 0)
841     break outer;
842     minGallop--;
843     } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
844     if (minGallop < 0)
845     minGallop = 0;
846     minGallop += 2; // Penalize for leaving gallop mode
847     } // End of "outer" loop
848     this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
849    
850     if (len2 == 1) {
851     assert len1 > 0;
852     dest -= len1;
853     cursor1 -= len1;
854     System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
855     a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge
856     } else if (len2 == 0) {
857     throw new IllegalArgumentException(
858     "Comparison method violates its general contract!");
859     } else {
860     assert len1 == 0;
861     assert len2 > 0;
862     System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2);
863     }
864     }
865    
866     /**
867     * Ensures that the external array tmp has at least the specified
868     * number of elements, increasing its size if necessary. The size
869     * increases exponentially to ensure amortized linear time complexity.
870     *
871     * @param minCapacity the minimum required capacity of the tmp array
872     * @return tmp, whether or not it grew
873     */
874     private T[] ensureCapacity(int minCapacity) {
875     if (tmp.length < minCapacity) {
876     // Compute smallest power of 2 > minCapacity
877     int newSize = minCapacity;
878     newSize |= newSize >> 1;
879     newSize |= newSize >> 2;
880     newSize |= newSize >> 4;
881     newSize |= newSize >> 8;
882     newSize |= newSize >> 16;
883     newSize++;
884    
885     if (newSize < 0) // Not bloody likely!
886     newSize = minCapacity;
887     else
888     newSize = Math.min(newSize, a.length >>> 1);
889    
890     @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
891     T[] newArray = (T[]) new Object[newSize];
892     tmp = newArray;
893     }
894     return tmp;
895     }
896    
897     /**
898     * Checks that fromIndex and toIndex are in range, and throws an
899     * appropriate exception if they aren't.
900     *
901     * @param arrayLen the length of the array
902     * @param fromIndex the index of the first element of the range
903     * @param toIndex the index after the last element of the range
904     * @throws IllegalArgumentException if fromIndex > toIndex
905     * @throws ArrayIndexOutOfBoundsException if fromIndex < 0
906     * or toIndex > arrayLen
907     */
908     private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) {
909     if (fromIndex > toIndex)
910     throw new IllegalArgumentException("fromIndex(" + fromIndex +
911     ") > toIndex(" + toIndex+")");
912     if (fromIndex < 0)
913     throw new ArrayIndexOutOfBoundsException(fromIndex);
914     if (toIndex > arrayLen)
915     throw new ArrayIndexOutOfBoundsException(toIndex);
916     }
917     }