ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TimSort.java
Revision: 1.8
Committed: Fri Jun 1 14:57:28 2018 UTC (5 years, 10 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.7: +1 -1 lines
Log Message:
fix javadoc formatting

File Contents

# Content
1 /*
2 * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2009 Google Inc. All Rights Reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation. Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27 package java.util;
28
29 /**
30 * A stable, adaptive, iterative mergesort that requires far fewer than
31 * n lg(n) comparisons when running on partially sorted arrays, while
32 * offering performance comparable to a traditional mergesort when run
33 * on random arrays. Like all proper mergesorts, this sort is stable and
34 * runs O(n log n) time (worst case). In the worst case, this sort requires
35 * temporary storage space for n/2 object references; in the best case,
36 * it requires only a small constant amount of space.
37 *
38 * This implementation was adapted from Tim Peters's list sort for
39 * Python, which is described in detail here:
40 *
41 * http://svn.python.org/projects/python/trunk/Objects/listsort.txt
42 *
43 * Tim's C code may be found here:
44 *
45 * http://svn.python.org/projects/python/trunk/Objects/listobject.c
46 *
47 * The underlying techniques are described in this paper (and may have
48 * even earlier origins):
49 *
50 * "Optimistic Sorting and Information Theoretic Complexity"
51 * Peter McIlroy
52 * SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
53 * pp 467-474, Austin, Texas, 25-27 January 1993.
54 *
55 * While the API to this class consists solely of static methods, it is
56 * (privately) instantiable; a TimSort instance holds the state of an ongoing
57 * sort, assuming the input array is large enough to warrant the full-blown
58 * TimSort. Small arrays are sorted in place, using a binary insertion sort.
59 *
60 * @author Josh Bloch
61 */
62 class TimSort<T> {
63 /**
64 * This is the minimum sized sequence that will be merged. Shorter
65 * sequences will be lengthened by calling binarySort. If the entire
66 * array is less than this length, no merges will be performed.
67 *
68 * This constant should be a power of two. It was 64 in Tim Peter's C
69 * implementation, but 32 was empirically determined to work better in
70 * this implementation. In the unlikely event that you set this constant
71 * to be a number that's not a power of two, you'll need to change the
72 * {@link #minRunLength} computation.
73 *
74 * If you decrease this constant, you must change the stackLen
75 * computation in the TimSort constructor, or you risk an
76 * ArrayOutOfBounds exception. See listsort.txt for a discussion
77 * of the minimum stack length required as a function of the length
78 * of the array being sorted and the minimum merge sequence length.
79 */
80 private static final int MIN_MERGE = 32;
81
82 /**
83 * The array being sorted.
84 */
85 private final T[] a;
86
87 /**
88 * The comparator for this sort.
89 */
90 private final Comparator<? super T> c;
91
92 /**
93 * When we get into galloping mode, we stay there until both runs win less
94 * often than MIN_GALLOP consecutive times.
95 */
96 private static final int MIN_GALLOP = 7;
97
98 /**
99 * This controls when we get *into* galloping mode. It is initialized
100 * to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
101 * random data, and lower for highly structured data.
102 */
103 private int minGallop = MIN_GALLOP;
104
105 /**
106 * Maximum initial size of tmp array, which is used for merging. The array
107 * can grow to accommodate demand.
108 *
109 * Unlike Tim's original C version, we do not allocate this much storage
110 * when sorting smaller arrays. This change was required for performance.
111 */
112 private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
113
114 /**
115 * Temp storage for merges. A workspace array may optionally be
116 * provided in constructor, and if so will be used as long as it
117 * is big enough.
118 */
119 private T[] tmp;
120 private int tmpBase; // base of tmp array slice
121 private int tmpLen; // length of tmp array slice
122
123 /**
124 * A stack of pending runs yet to be merged. Run i starts at
125 * address base[i] and extends for len[i] elements. It's always
126 * true (so long as the indices are in bounds) that:
127 *
128 * runBase[i] + runLen[i] == runBase[i + 1]
129 *
130 * so we could cut the storage for this, but it's a minor amount,
131 * and keeping all the info explicit simplifies the code.
132 */
133 private int stackSize = 0; // Number of pending runs on stack
134 private final int[] runBase;
135 private final int[] runLen;
136
137 /**
138 * Creates a TimSort instance to maintain the state of an ongoing sort.
139 *
140 * @param a the array to be sorted
141 * @param c the comparator to determine the order of the sort
142 * @param work a workspace array (slice)
143 * @param workBase origin of usable space in work array
144 * @param workLen usable size of work array
145 */
146 private TimSort(T[] a, Comparator<? super T> c, T[] work, int workBase, int workLen) {
147 this.a = a;
148 this.c = c;
149
150 // Allocate temp storage (which may be increased later if necessary)
151 int len = a.length;
152 int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
153 len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
154 if (work == null || workLen < tlen || workBase + tlen > work.length) {
155 @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
156 T[] newArray = (T[])java.lang.reflect.Array.newInstance
157 (a.getClass().getComponentType(), tlen);
158 tmp = newArray;
159 tmpBase = 0;
160 tmpLen = tlen;
161 }
162 else {
163 tmp = work;
164 tmpBase = workBase;
165 tmpLen = workLen;
166 }
167
168 /*
169 * Allocate runs-to-be-merged stack (which cannot be expanded). The
170 * stack length requirements are described in listsort.txt. The C
171 * version always uses the same stack length (85), but this was
172 * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
173 * 100 elements) in Java. Therefore, we use smaller (but sufficiently
174 * large) stack lengths for smaller arrays. The "magic numbers" in the
175 * computation below must be changed if MIN_MERGE is decreased. See
176 * the MIN_MERGE declaration above for more information.
177 * The maximum value of 49 allows for an array up to length
178 * Integer.MAX_VALUE-4, if array is filled by the worst case stack size
179 * increasing scenario. More explanations are given in section 4 of:
180 * http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
181 */
182 int stackLen = (len < 120 ? 5 :
183 len < 1542 ? 10 :
184 len < 119151 ? 24 : 49);
185 runBase = new int[stackLen];
186 runLen = new int[stackLen];
187 }
188
189 /*
190 * The next method (package private and static) constitutes the
191 * entire API of this class.
192 */
193
194 /**
195 * Sorts the given range, using the given workspace array slice
196 * for temp storage when possible. This method is designed to be
197 * invoked from public methods (in class Arrays) after performing
198 * any necessary array bounds checks and expanding parameters into
199 * the required forms.
200 *
201 * @param a the array to be sorted
202 * @param lo the index of the first element, inclusive, to be sorted
203 * @param hi the index of the last element, exclusive, to be sorted
204 * @param c the comparator to use
205 * @param work a workspace array (slice)
206 * @param workBase origin of usable space in work array
207 * @param workLen usable size of work array
208 * @since 1.8
209 */
210 static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
211 T[] work, int workBase, int workLen) {
212 assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;
213
214 int nRemaining = hi - lo;
215 if (nRemaining < 2)
216 return; // Arrays of size 0 and 1 are always sorted
217
218 // If array is small, do a "mini-TimSort" with no merges
219 if (nRemaining < MIN_MERGE) {
220 int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
221 binarySort(a, lo, hi, lo + initRunLen, c);
222 return;
223 }
224
225 /**
226 * March over the array once, left to right, finding natural runs,
227 * extending short natural runs to minRun elements, and merging runs
228 * to maintain stack invariant.
229 */
230 TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen);
231 int minRun = minRunLength(nRemaining);
232 do {
233 // Identify next run
234 int runLen = countRunAndMakeAscending(a, lo, hi, c);
235
236 // If run is short, extend to min(minRun, nRemaining)
237 if (runLen < minRun) {
238 int force = nRemaining <= minRun ? nRemaining : minRun;
239 binarySort(a, lo, lo + force, lo + runLen, c);
240 runLen = force;
241 }
242
243 // Push run onto pending-run stack, and maybe merge
244 ts.pushRun(lo, runLen);
245 ts.mergeCollapse();
246
247 // Advance to find next run
248 lo += runLen;
249 nRemaining -= runLen;
250 } while (nRemaining != 0);
251
252 // Merge all remaining runs to complete sort
253 assert lo == hi;
254 ts.mergeForceCollapse();
255 assert ts.stackSize == 1;
256 }
257
258 /**
259 * Sorts the specified portion of the specified array using a binary
260 * insertion sort. This is the best method for sorting small numbers
261 * of elements. It requires O(n log n) compares, but O(n^2) data
262 * movement (worst case).
263 *
264 * If the initial part of the specified range is already sorted,
265 * this method can take advantage of it: the method assumes that the
266 * elements from index {@code lo}, inclusive, to {@code start},
267 * exclusive are already sorted.
268 *
269 * @param a the array in which a range is to be sorted
270 * @param lo the index of the first element in the range to be sorted
271 * @param hi the index after the last element in the range to be sorted
272 * @param start the index of the first element in the range that is
273 * not already known to be sorted ({@code lo <= start <= hi})
274 * @param c comparator to used for the sort
275 */
276 @SuppressWarnings("fallthrough")
277 private static <T> void binarySort(T[] a, int lo, int hi, int start,
278 Comparator<? super T> c) {
279 assert lo <= start && start <= hi;
280 if (start == lo)
281 start++;
282 for ( ; start < hi; start++) {
283 T pivot = a[start];
284
285 // Set left (and right) to the index where a[start] (pivot) belongs
286 int left = lo;
287 int right = start;
288 assert left <= right;
289 /*
290 * Invariants:
291 * pivot >= all in [lo, left).
292 * pivot < all in [right, start).
293 */
294 while (left < right) {
295 int mid = (left + right) >>> 1;
296 if (c.compare(pivot, a[mid]) < 0)
297 right = mid;
298 else
299 left = mid + 1;
300 }
301 assert left == right;
302
303 /*
304 * The invariants still hold: pivot >= all in [lo, left) and
305 * pivot < all in [left, start), so pivot belongs at left. Note
306 * that if there are elements equal to pivot, left points to the
307 * first slot after them -- that's why this sort is stable.
308 * Slide elements over to make room for pivot.
309 */
310 int n = start - left; // The number of elements to move
311 // Switch is just an optimization for arraycopy in default case
312 switch (n) {
313 case 2: a[left + 2] = a[left + 1];
314 case 1: a[left + 1] = a[left];
315 break;
316 default: System.arraycopy(a, left, a, left + 1, n);
317 }
318 a[left] = pivot;
319 }
320 }
321
322 /**
323 * Returns the length of the run beginning at the specified position in
324 * the specified array and reverses the run if it is descending (ensuring
325 * that the run will always be ascending when the method returns).
326 *
327 * A run is the longest ascending sequence with:
328 *
329 * a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
330 *
331 * or the longest descending sequence with:
332 *
333 * a[lo] > a[lo + 1] > a[lo + 2] > ...
334 *
335 * For its intended use in a stable mergesort, the strictness of the
336 * definition of "descending" is needed so that the call can safely
337 * reverse a descending sequence without violating stability.
338 *
339 * @param a the array in which a run is to be counted and possibly reversed
340 * @param lo index of the first element in the run
341 * @param hi index after the last element that may be contained in the run.
342 * It is required that {@code lo < hi}.
343 * @param c the comparator to used for the sort
344 * @return the length of the run beginning at the specified position in
345 * the specified array
346 */
347 private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,
348 Comparator<? super T> c) {
349 assert lo < hi;
350 int runHi = lo + 1;
351 if (runHi == hi)
352 return 1;
353
354 // Find end of run, and reverse range if descending
355 if (c.compare(a[runHi++], a[lo]) < 0) { // Descending
356 while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
357 runHi++;
358 reverseRange(a, lo, runHi);
359 } else { // Ascending
360 while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
361 runHi++;
362 }
363
364 return runHi - lo;
365 }
366
367 /**
368 * Reverse the specified range of the specified array.
369 *
370 * @param a the array in which a range is to be reversed
371 * @param lo the index of the first element in the range to be reversed
372 * @param hi the index after the last element in the range to be reversed
373 */
374 private static void reverseRange(Object[] a, int lo, int hi) {
375 hi--;
376 while (lo < hi) {
377 Object t = a[lo];
378 a[lo++] = a[hi];
379 a[hi--] = t;
380 }
381 }
382
383 /**
384 * Returns the minimum acceptable run length for an array of the specified
385 * length. Natural runs shorter than this will be extended with
386 * {@link #binarySort}.
387 *
388 * Roughly speaking, the computation is:
389 *
390 * If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
391 * Else if n is an exact power of 2, return MIN_MERGE/2.
392 * Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
393 * is close to, but strictly less than, an exact power of 2.
394 *
395 * For the rationale, see listsort.txt.
396 *
397 * @param n the length of the array to be sorted
398 * @return the length of the minimum run to be merged
399 */
400 private static int minRunLength(int n) {
401 assert n >= 0;
402 int r = 0; // Becomes 1 if any 1 bits are shifted off
403 while (n >= MIN_MERGE) {
404 r |= (n & 1);
405 n >>= 1;
406 }
407 return n + r;
408 }
409
410 /**
411 * Pushes the specified run onto the pending-run stack.
412 *
413 * @param runBase index of the first element in the run
414 * @param runLen the number of elements in the run
415 */
416 private void pushRun(int runBase, int runLen) {
417 this.runBase[stackSize] = runBase;
418 this.runLen[stackSize] = runLen;
419 stackSize++;
420 }
421
422 /**
423 * Examines the stack of runs waiting to be merged and merges adjacent runs
424 * until the stack invariants are reestablished:
425 *
426 * 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
427 * 2. runLen[i - 2] > runLen[i - 1]
428 *
429 * This method is called each time a new run is pushed onto the stack,
430 * so the invariants are guaranteed to hold for i < stackSize upon
431 * entry to the method.
432 *
433 * Thanks to Stijn de Gouw, Jurriaan Rot, Frank S. de Boer,
434 * Richard Bubel and Reiner Hahnle, this is fixed with respect to
435 * the analysis in "On the Worst-Case Complexity of TimSort" by
436 * Nicolas Auger, Vincent Jug, Cyril Nicaud, and Carine Pivoteau.
437 */
438 private void mergeCollapse() {
439 while (stackSize > 1) {
440 int n = stackSize - 2;
441 if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1] ||
442 n > 1 && runLen[n-2] <= runLen[n] + runLen[n-1]) {
443 if (runLen[n - 1] < runLen[n + 1])
444 n--;
445 } else if (n < 0 || runLen[n] > runLen[n + 1]) {
446 break; // Invariant is established
447 }
448 mergeAt(n);
449 }
450 }
451
452 /**
453 * Merges all runs on the stack until only one remains. This method is
454 * called once, to complete the sort.
455 */
456 private void mergeForceCollapse() {
457 while (stackSize > 1) {
458 int n = stackSize - 2;
459 if (n > 0 && runLen[n - 1] < runLen[n + 1])
460 n--;
461 mergeAt(n);
462 }
463 }
464
465 /**
466 * Merges the two runs at stack indices i and i+1. Run i must be
467 * the penultimate or antepenultimate run on the stack. In other words,
468 * i must be equal to stackSize-2 or stackSize-3.
469 *
470 * @param i stack index of the first of the two runs to merge
471 */
472 private void mergeAt(int i) {
473 assert stackSize >= 2;
474 assert i >= 0;
475 assert i == stackSize - 2 || i == stackSize - 3;
476
477 int base1 = runBase[i];
478 int len1 = runLen[i];
479 int base2 = runBase[i + 1];
480 int len2 = runLen[i + 1];
481 assert len1 > 0 && len2 > 0;
482 assert base1 + len1 == base2;
483
484 /*
485 * Record the length of the combined runs; if i is the 3rd-last
486 * run now, also slide over the last run (which isn't involved
487 * in this merge). The current run (i+1) goes away in any case.
488 */
489 runLen[i] = len1 + len2;
490 if (i == stackSize - 3) {
491 runBase[i + 1] = runBase[i + 2];
492 runLen[i + 1] = runLen[i + 2];
493 }
494 stackSize--;
495
496 /*
497 * Find where the first element of run2 goes in run1. Prior elements
498 * in run1 can be ignored (because they're already in place).
499 */
500 int k = gallopRight(a[base2], a, base1, len1, 0, c);
501 assert k >= 0;
502 base1 += k;
503 len1 -= k;
504 if (len1 == 0)
505 return;
506
507 /*
508 * Find where the last element of run1 goes in run2. Subsequent elements
509 * in run2 can be ignored (because they're already in place).
510 */
511 len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);
512 assert len2 >= 0;
513 if (len2 == 0)
514 return;
515
516 // Merge remaining runs, using tmp array with min(len1, len2) elements
517 if (len1 <= len2)
518 mergeLo(base1, len1, base2, len2);
519 else
520 mergeHi(base1, len1, base2, len2);
521 }
522
523 /**
524 * Locates the position at which to insert the specified key into the
525 * specified sorted range; if the range contains an element equal to key,
526 * returns the index of the leftmost equal element.
527 *
528 * @param key the key whose insertion point to search for
529 * @param a the array in which to search
530 * @param base the index of the first element in the range
531 * @param len the length of the range; must be > 0
532 * @param hint the index at which to begin the search, 0 <= hint < n.
533 * The closer hint is to the result, the faster this method will run.
534 * @param c the comparator used to order the range, and to search
535 * @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
536 * pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
537 * In other words, key belongs at index b + k; or in other words,
538 * the first k elements of a should precede key, and the last n - k
539 * should follow it.
540 */
541 private static <T> int gallopLeft(T key, T[] a, int base, int len, int hint,
542 Comparator<? super T> c) {
543 assert len > 0 && hint >= 0 && hint < len;
544 int lastOfs = 0;
545 int ofs = 1;
546 if (c.compare(key, a[base + hint]) > 0) {
547 // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
548 int maxOfs = len - hint;
549 while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) > 0) {
550 lastOfs = ofs;
551 ofs = (ofs << 1) + 1;
552 if (ofs <= 0) // int overflow
553 ofs = maxOfs;
554 }
555 if (ofs > maxOfs)
556 ofs = maxOfs;
557
558 // Make offsets relative to base
559 lastOfs += hint;
560 ofs += hint;
561 } else { // key <= a[base + hint]
562 // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
563 final int maxOfs = hint + 1;
564 while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) <= 0) {
565 lastOfs = ofs;
566 ofs = (ofs << 1) + 1;
567 if (ofs <= 0) // int overflow
568 ofs = maxOfs;
569 }
570 if (ofs > maxOfs)
571 ofs = maxOfs;
572
573 // Make offsets relative to base
574 int tmp = lastOfs;
575 lastOfs = hint - ofs;
576 ofs = hint - tmp;
577 }
578 assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
579
580 /*
581 * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
582 * to the right of lastOfs but no farther right than ofs. Do a binary
583 * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
584 */
585 lastOfs++;
586 while (lastOfs < ofs) {
587 int m = lastOfs + ((ofs - lastOfs) >>> 1);
588
589 if (c.compare(key, a[base + m]) > 0)
590 lastOfs = m + 1; // a[base + m] < key
591 else
592 ofs = m; // key <= a[base + m]
593 }
594 assert lastOfs == ofs; // so a[base + ofs - 1] < key <= a[base + ofs]
595 return ofs;
596 }
597
598 /**
599 * Like gallopLeft, except that if the range contains an element equal to
600 * key, gallopRight returns the index after the rightmost equal element.
601 *
602 * @param key the key whose insertion point to search for
603 * @param a the array in which to search
604 * @param base the index of the first element in the range
605 * @param len the length of the range; must be > 0
606 * @param hint the index at which to begin the search, 0 <= hint < n.
607 * The closer hint is to the result, the faster this method will run.
608 * @param c the comparator used to order the range, and to search
609 * @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
610 */
611 private static <T> int gallopRight(T key, T[] a, int base, int len,
612 int hint, Comparator<? super T> c) {
613 assert len > 0 && hint >= 0 && hint < len;
614
615 int ofs = 1;
616 int lastOfs = 0;
617 if (c.compare(key, a[base + hint]) < 0) {
618 // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
619 int maxOfs = hint + 1;
620 while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) < 0) {
621 lastOfs = ofs;
622 ofs = (ofs << 1) + 1;
623 if (ofs <= 0) // int overflow
624 ofs = maxOfs;
625 }
626 if (ofs > maxOfs)
627 ofs = maxOfs;
628
629 // Make offsets relative to b
630 int tmp = lastOfs;
631 lastOfs = hint - ofs;
632 ofs = hint - tmp;
633 } else { // a[b + hint] <= key
634 // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
635 int maxOfs = len - hint;
636 while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) >= 0) {
637 lastOfs = ofs;
638 ofs = (ofs << 1) + 1;
639 if (ofs <= 0) // int overflow
640 ofs = maxOfs;
641 }
642 if (ofs > maxOfs)
643 ofs = maxOfs;
644
645 // Make offsets relative to b
646 lastOfs += hint;
647 ofs += hint;
648 }
649 assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
650
651 /*
652 * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
653 * the right of lastOfs but no farther right than ofs. Do a binary
654 * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
655 */
656 lastOfs++;
657 while (lastOfs < ofs) {
658 int m = lastOfs + ((ofs - lastOfs) >>> 1);
659
660 if (c.compare(key, a[base + m]) < 0)
661 ofs = m; // key < a[b + m]
662 else
663 lastOfs = m + 1; // a[b + m] <= key
664 }
665 assert lastOfs == ofs; // so a[b + ofs - 1] <= key < a[b + ofs]
666 return ofs;
667 }
668
669 /**
670 * Merges two adjacent runs in place, in a stable fashion. The first
671 * element of the first run must be greater than the first element of the
672 * second run (a[base1] > a[base2]), and the last element of the first run
673 * (a[base1 + len1-1]) must be greater than all elements of the second run.
674 *
675 * For performance, this method should be called only when len1 <= len2;
676 * its twin, mergeHi should be called if len1 >= len2. (Either method
677 * may be called if len1 == len2.)
678 *
679 * @param base1 index of first element in first run to be merged
680 * @param len1 length of first run to be merged (must be > 0)
681 * @param base2 index of first element in second run to be merged
682 * (must be aBase + aLen)
683 * @param len2 length of second run to be merged (must be > 0)
684 */
685 private void mergeLo(int base1, int len1, int base2, int len2) {
686 assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
687
688 // Copy first run into temp array
689 T[] a = this.a; // For performance
690 T[] tmp = ensureCapacity(len1);
691 int cursor1 = tmpBase; // Indexes into tmp array
692 int cursor2 = base2; // Indexes int a
693 int dest = base1; // Indexes int a
694 System.arraycopy(a, base1, tmp, cursor1, len1);
695
696 // Move first element of second run and deal with degenerate cases
697 a[dest++] = a[cursor2++];
698 if (--len2 == 0) {
699 System.arraycopy(tmp, cursor1, a, dest, len1);
700 return;
701 }
702 if (len1 == 1) {
703 System.arraycopy(a, cursor2, a, dest, len2);
704 a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
705 return;
706 }
707
708 Comparator<? super T> c = this.c; // Use local variable for performance
709 int minGallop = this.minGallop; // " " " " "
710 outer:
711 while (true) {
712 int count1 = 0; // Number of times in a row that first run won
713 int count2 = 0; // Number of times in a row that second run won
714
715 /*
716 * Do the straightforward thing until (if ever) one run starts
717 * winning consistently.
718 */
719 do {
720 assert len1 > 1 && len2 > 0;
721 if (c.compare(a[cursor2], tmp[cursor1]) < 0) {
722 a[dest++] = a[cursor2++];
723 count2++;
724 count1 = 0;
725 if (--len2 == 0)
726 break outer;
727 } else {
728 a[dest++] = tmp[cursor1++];
729 count1++;
730 count2 = 0;
731 if (--len1 == 1)
732 break outer;
733 }
734 } while ((count1 | count2) < minGallop);
735
736 /*
737 * One run is winning so consistently that galloping may be a
738 * huge win. So try that, and continue galloping until (if ever)
739 * neither run appears to be winning consistently anymore.
740 */
741 do {
742 assert len1 > 1 && len2 > 0;
743 count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);
744 if (count1 != 0) {
745 System.arraycopy(tmp, cursor1, a, dest, count1);
746 dest += count1;
747 cursor1 += count1;
748 len1 -= count1;
749 if (len1 <= 1) // len1 == 1 || len1 == 0
750 break outer;
751 }
752 a[dest++] = a[cursor2++];
753 if (--len2 == 0)
754 break outer;
755
756 count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);
757 if (count2 != 0) {
758 System.arraycopy(a, cursor2, a, dest, count2);
759 dest += count2;
760 cursor2 += count2;
761 len2 -= count2;
762 if (len2 == 0)
763 break outer;
764 }
765 a[dest++] = tmp[cursor1++];
766 if (--len1 == 1)
767 break outer;
768 minGallop--;
769 } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
770 if (minGallop < 0)
771 minGallop = 0;
772 minGallop += 2; // Penalize for leaving gallop mode
773 } // End of "outer" loop
774 this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
775
776 if (len1 == 1) {
777 assert len2 > 0;
778 System.arraycopy(a, cursor2, a, dest, len2);
779 a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
780 } else if (len1 == 0) {
781 throw new IllegalArgumentException(
782 "Comparison method violates its general contract!");
783 } else {
784 assert len2 == 0;
785 assert len1 > 1;
786 System.arraycopy(tmp, cursor1, a, dest, len1);
787 }
788 }
789
790 /**
791 * Like mergeLo, except that this method should be called only if
792 * len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
793 * may be called if len1 == len2.)
794 *
795 * @param base1 index of first element in first run to be merged
796 * @param len1 length of first run to be merged (must be > 0)
797 * @param base2 index of first element in second run to be merged
798 * (must be aBase + aLen)
799 * @param len2 length of second run to be merged (must be > 0)
800 */
801 private void mergeHi(int base1, int len1, int base2, int len2) {
802 assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
803
804 // Copy second run into temp array
805 T[] a = this.a; // For performance
806 T[] tmp = ensureCapacity(len2);
807 int tmpBase = this.tmpBase;
808 System.arraycopy(a, base2, tmp, tmpBase, len2);
809
810 int cursor1 = base1 + len1 - 1; // Indexes into a
811 int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
812 int dest = base2 + len2 - 1; // Indexes into a
813
814 // Move last element of first run and deal with degenerate cases
815 a[dest--] = a[cursor1--];
816 if (--len1 == 0) {
817 System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
818 return;
819 }
820 if (len2 == 1) {
821 dest -= len1;
822 cursor1 -= len1;
823 System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
824 a[dest] = tmp[cursor2];
825 return;
826 }
827
828 Comparator<? super T> c = this.c; // Use local variable for performance
829 int minGallop = this.minGallop; // " " " " "
830 outer:
831 while (true) {
832 int count1 = 0; // Number of times in a row that first run won
833 int count2 = 0; // Number of times in a row that second run won
834
835 /*
836 * Do the straightforward thing until (if ever) one run
837 * appears to win consistently.
838 */
839 do {
840 assert len1 > 0 && len2 > 1;
841 if (c.compare(tmp[cursor2], a[cursor1]) < 0) {
842 a[dest--] = a[cursor1--];
843 count1++;
844 count2 = 0;
845 if (--len1 == 0)
846 break outer;
847 } else {
848 a[dest--] = tmp[cursor2--];
849 count2++;
850 count1 = 0;
851 if (--len2 == 1)
852 break outer;
853 }
854 } while ((count1 | count2) < minGallop);
855
856 /*
857 * One run is winning so consistently that galloping may be a
858 * huge win. So try that, and continue galloping until (if ever)
859 * neither run appears to be winning consistently anymore.
860 */
861 do {
862 assert len1 > 0 && len2 > 1;
863 count1 = len1 - gallopRight(tmp[cursor2], a, base1, len1, len1 - 1, c);
864 if (count1 != 0) {
865 dest -= count1;
866 cursor1 -= count1;
867 len1 -= count1;
868 System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
869 if (len1 == 0)
870 break outer;
871 }
872 a[dest--] = tmp[cursor2--];
873 if (--len2 == 1)
874 break outer;
875
876 count2 = len2 - gallopLeft(a[cursor1], tmp, tmpBase, len2, len2 - 1, c);
877 if (count2 != 0) {
878 dest -= count2;
879 cursor2 -= count2;
880 len2 -= count2;
881 System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
882 if (len2 <= 1) // len2 == 1 || len2 == 0
883 break outer;
884 }
885 a[dest--] = a[cursor1--];
886 if (--len1 == 0)
887 break outer;
888 minGallop--;
889 } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
890 if (minGallop < 0)
891 minGallop = 0;
892 minGallop += 2; // Penalize for leaving gallop mode
893 } // End of "outer" loop
894 this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
895
896 if (len2 == 1) {
897 assert len1 > 0;
898 dest -= len1;
899 cursor1 -= len1;
900 System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
901 a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge
902 } else if (len2 == 0) {
903 throw new IllegalArgumentException(
904 "Comparison method violates its general contract!");
905 } else {
906 assert len1 == 0;
907 assert len2 > 0;
908 System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
909 }
910 }
911
912 /**
913 * Ensures that the external array tmp has at least the specified
914 * number of elements, increasing its size if necessary. The size
915 * increases exponentially to ensure amortized linear time complexity.
916 *
917 * @param minCapacity the minimum required capacity of the tmp array
918 * @return tmp, whether or not it grew
919 */
920 private T[] ensureCapacity(int minCapacity) {
921 if (tmpLen < minCapacity) {
922 // Compute smallest power of 2 > minCapacity
923 int newSize = -1 >>> Integer.numberOfLeadingZeros(minCapacity);
924 newSize++;
925
926 if (newSize < 0) // Not bloody likely!
927 newSize = minCapacity;
928 else
929 newSize = Math.min(newSize, a.length >>> 1);
930
931 @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
932 T[] newArray = (T[])java.lang.reflect.Array.newInstance
933 (a.getClass().getComponentType(), newSize);
934 tmp = newArray;
935 tmpLen = newSize;
936 tmpBase = 0;
937 }
938 return tmp;
939 }
940 }