ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
Revision: 1.10
Committed: Mon Apr 18 05:18:29 2005 UTC (19 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.9: +1 -1 lines
Log Message:
Copyright year updates

File Contents

# User Rev Content
1 dl 1.1 /*
2     * %W% %E%
3     *
4 jsr166 1.10 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 dl 1.1 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8 dl 1.8 package java.util;
9 dl 1.1
10    
11     /**
12     * Red-Black tree based implementation of the <tt>NavigableMap</tt> interface.
13     * This class guarantees that the map will be in ascending key order, sorted
14 dl 1.6 * according to the <i>natural order</i> for the keys' class (see
15 dl 1.1 * <tt>Comparable</tt>), or by the comparator provided at creation time,
16     * depending on which constructor is used.<p>
17     *
18     * This implementation provides guaranteed log(n) time cost for the
19     * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
20     * operations. Algorithms are adaptations of those in Cormen, Leiserson, and
21     * Rivest's <I>Introduction to Algorithms</I>.<p>
22     *
23     * Note that the ordering maintained by a sorted map (whether or not an
24     * explicit comparator is provided) must be <i>consistent with equals</i> if
25     * this sorted map is to correctly implement the <tt>Map</tt> interface. (See
26     * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
27     * <i>consistent with equals</i>.) This is so because the <tt>Map</tt>
28     * interface is defined in terms of the equals operation, but a map performs
29     * all key comparisons using its <tt>compareTo</tt> (or <tt>compare</tt>)
30     * method, so two keys that are deemed equal by this method are, from the
31     * standpoint of the sorted map, equal. The behavior of a sorted map
32     * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
33     * just fails to obey the general contract of the <tt>Map</tt> interface.<p>
34     *
35     * <b>Note that this implementation is not synchronized.</b> If multiple
36     * threads access a map concurrently, and at least one of the threads modifies
37     * the map structurally, it <i>must</i> be synchronized externally. (A
38     * structural modification is any operation that adds or deletes one or more
39     * mappings; merely changing the value associated with an existing key is not
40     * a structural modification.) This is typically accomplished by
41     * synchronizing on some object that naturally encapsulates the map. If no
42     * such object exists, the map should be "wrapped" using the
43     * <tt>Collections.synchronizedMap</tt> method. This is best done at creation
44     * time, to prevent accidental unsynchronized access to the map:
45     * <pre>
46     * Map m = Collections.synchronizedMap(new TreeMap(...));
47     * </pre><p>
48     *
49     * The iterators returned by all of this class's "collection view methods" are
50     * <i>fail-fast</i>: if the map is structurally modified at any time after the
51     * iterator is created, in any way except through the iterator's own
52     * <tt>remove</tt> or <tt>add</tt> methods, the iterator throws a
53     * <tt>ConcurrentModificationException</tt>. Thus, in the face of concurrent
54     * modification, the iterator fails quickly and cleanly, rather than risking
55     * arbitrary, non-deterministic behavior at an undetermined time in the
56     * future.
57     *
58     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
59     * as it is, generally speaking, impossible to make any hard guarantees in the
60     * presence of unsynchronized concurrent modification. Fail-fast iterators
61     * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
62     * Therefore, it would be wrong to write a program that depended on this
63     * exception for its correctness: <i>the fail-fast behavior of iterators
64 dl 1.5 * should be used only to detect bugs.</i>
65 dl 1.1 *
66     * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
67     * and its views represent snapshots of mappings at the time they were
68     * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
69     * method. (Note however that it is possible to change mappings in the
70     * associated map using <tt>put</tt>.)
71     *
72     * <p>This class is a member of the
73     * <a href="{@docRoot}/../guide/collections/index.html">
74     * Java Collections Framework</a>.
75     *
76     * @author Josh Bloch and Doug Lea
77     * @version %I%, %G%
78     * @see Map
79     * @see HashMap
80     * @see Hashtable
81     * @see Comparable
82     * @see Comparator
83     * @see Collection
84     * @see Collections#synchronizedMap(Map)
85     * @since 1.2
86     */
87    
88     public class TreeMap<K,V>
89     extends AbstractMap<K,V>
90     implements NavigableMap<K,V>, Cloneable, java.io.Serializable
91     {
92     /**
93     * The Comparator used to maintain order in this TreeMap, or
94     * null if this TreeMap uses its elements natural ordering.
95     *
96     * @serial
97     */
98     private Comparator<? super K> comparator = null;
99    
100     private transient Entry<K,V> root = null;
101    
102     /**
103     * The number of entries in the tree
104     */
105     private transient int size = 0;
106    
107     /**
108     * The number of structural modifications to the tree.
109     */
110     private transient int modCount = 0;
111    
112     private void incrementSize() { modCount++; size++; }
113     private void decrementSize() { modCount++; size--; }
114    
115     /**
116     * Constructs a new, empty map, sorted according to the keys' natural
117     * order. All keys inserted into the map must implement the
118     * <tt>Comparable</tt> interface. Furthermore, all such keys must be
119     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw a
120     * ClassCastException for any elements <tt>k1</tt> and <tt>k2</tt> in the
121     * map. If the user attempts to put a key into the map that violates this
122     * constraint (for example, the user attempts to put a string key into a
123     * map whose keys are integers), the <tt>put(Object key, Object
124     * value)</tt> call will throw a <tt>ClassCastException</tt>.
125     *
126     * @see Comparable
127     */
128     public TreeMap() {
129     }
130    
131     /**
132     * Constructs a new, empty map, sorted according to the given comparator.
133     * All keys inserted into the map must be <i>mutually comparable</i> by
134     * the given comparator: <tt>comparator.compare(k1, k2)</tt> must not
135     * throw a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
136     * <tt>k2</tt> in the map. If the user attempts to put a key into the
137     * map that violates this constraint, the <tt>put(Object key, Object
138     * value)</tt> call will throw a <tt>ClassCastException</tt>.
139     *
140     * @param c the comparator that will be used to sort this map. A
141     * <tt>null</tt> value indicates that the keys' <i>natural
142     * ordering</i> should be used.
143     */
144     public TreeMap(Comparator<? super K> c) {
145     this.comparator = c;
146     }
147    
148     /**
149     * Constructs a new map containing the same mappings as the given map,
150     * sorted according to the keys' <i>natural order</i>. All keys inserted
151     * into the new map must implement the <tt>Comparable</tt> interface.
152     * Furthermore, all such keys must be <i>mutually comparable</i>:
153     * <tt>k1.compareTo(k2)</tt> must not throw a <tt>ClassCastException</tt>
154     * for any elements <tt>k1</tt> and <tt>k2</tt> in the map. This method
155     * runs in n*log(n) time.
156     *
157     * @param m the map whose mappings are to be placed in this map.
158     * @throws ClassCastException the keys in t are not Comparable, or
159     * are not mutually comparable.
160     * @throws NullPointerException if the specified map is null.
161     */
162     public TreeMap(Map<? extends K, ? extends V> m) {
163     putAll(m);
164     }
165    
166     /**
167     * Constructs a new map containing the same mappings as the given
168     * <tt>SortedMap</tt>, sorted according to the same ordering. This method
169     * runs in linear time.
170     *
171     * @param m the sorted map whose mappings are to be placed in this map,
172     * and whose comparator is to be used to sort this map.
173     * @throws NullPointerException if the specified sorted map is null.
174     */
175     public TreeMap(SortedMap<K, ? extends V> m) {
176     comparator = m.comparator();
177     try {
178     buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
179     } catch (java.io.IOException cannotHappen) {
180     } catch (ClassNotFoundException cannotHappen) {
181     }
182     }
183    
184    
185     // Query Operations
186    
187     /**
188     * Returns the number of key-value mappings in this map.
189     *
190     * @return the number of key-value mappings in this map.
191     */
192     public int size() {
193     return size;
194     }
195    
196     /**
197     * Returns <tt>true</tt> if this map contains a mapping for the specified
198     * key.
199     *
200     * @param key key whose presence in this map is to be tested.
201     *
202     * @return <tt>true</tt> if this map contains a mapping for the
203     * specified key.
204     * @throws ClassCastException if the key cannot be compared with the keys
205     * currently in the map.
206 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
207 dl 1.1 * natural ordering, or its comparator does not tolerate
208     * <tt>null</tt> keys.
209     */
210     public boolean containsKey(Object key) {
211     return getEntry(key) != null;
212     }
213    
214     /**
215     * Returns <tt>true</tt> if this map maps one or more keys to the
216     * specified value. More formally, returns <tt>true</tt> if and only if
217     * this map contains at least one mapping to a value <tt>v</tt> such
218     * that <tt>(value==null ? v==null : value.equals(v))</tt>. This
219     * operation will probably require time linear in the Map size for most
220     * implementations of Map.
221     *
222     * @param value value whose presence in this Map is to be tested.
223     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
224     * <tt>false</tt> otherwise.
225     * @since 1.2
226     */
227     public boolean containsValue(Object value) {
228     return (root==null ? false :
229     (value==null ? valueSearchNull(root)
230     : valueSearchNonNull(root, value)));
231     }
232    
233     private boolean valueSearchNull(Entry n) {
234     if (n.value == null)
235     return true;
236    
237     // Check left and right subtrees for value
238     return (n.left != null && valueSearchNull(n.left)) ||
239     (n.right != null && valueSearchNull(n.right));
240     }
241    
242     private boolean valueSearchNonNull(Entry n, Object value) {
243     // Check this node for the value
244     if (value.equals(n.value))
245     return true;
246    
247     // Check left and right subtrees for value
248     return (n.left != null && valueSearchNonNull(n.left, value)) ||
249     (n.right != null && valueSearchNonNull(n.right, value));
250     }
251    
252     /**
253     * Returns the value to which this map maps the specified key. Returns
254     * <tt>null</tt> if the map contains no mapping for this key. A return
255     * value of <tt>null</tt> does not <i>necessarily</i> indicate that the
256     * map contains no mapping for the key; it's also possible that the map
257     * explicitly maps the key to <tt>null</tt>. The <tt>containsKey</tt>
258     * operation may be used to distinguish these two cases.
259     *
260     * @param key key whose associated value is to be returned.
261     * @return the value to which this map maps the specified key, or
262     * <tt>null</tt> if the map contains no mapping for the key.
263 dl 1.3 * @throws ClassCastException if key cannot be compared with the keys
264 dl 1.1 * currently in the map.
265 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
266 dl 1.1 * natural ordering, or its comparator does not tolerate
267     * <tt>null</tt> keys.
268     *
269     * @see #containsKey(Object)
270     */
271     public V get(Object key) {
272     Entry<K,V> p = getEntry(key);
273     return (p==null ? null : p.value);
274     }
275    
276     /**
277     * Returns the comparator used to order this map, or <tt>null</tt> if this
278     * map uses its keys' natural order.
279     *
280     * @return the comparator associated with this sorted map, or
281     * <tt>null</tt> if it uses its keys' natural sort method.
282     */
283     public Comparator<? super K> comparator() {
284     return comparator;
285     }
286    
287     /**
288     * Returns the first (lowest) key currently in this sorted map.
289     *
290     * @return the first (lowest) key currently in this sorted map.
291     * @throws NoSuchElementException Map is empty.
292     */
293     public K firstKey() {
294     return key(getFirstEntry());
295     }
296    
297     /**
298     * Returns the last (highest) key currently in this sorted map.
299     *
300     * @return the last (highest) key currently in this sorted map.
301     * @throws NoSuchElementException Map is empty.
302     */
303     public K lastKey() {
304     return key(getLastEntry());
305     }
306    
307     /**
308     * Copies all of the mappings from the specified map to this map. These
309     * mappings replace any mappings that this map had for any of the keys
310     * currently in the specified map.
311     *
312     * @param map mappings to be stored in this map.
313     * @throws ClassCastException class of a key or value in the specified
314     * map prevents it from being stored in this map.
315     *
316     * @throws NullPointerException if the given map is <tt>null</tt> or
317     * this map does not permit <tt>null</tt> keys and a
318     * key in the specified map is <tt>null</tt>.
319     */
320     public void putAll(Map<? extends K, ? extends V> map) {
321     int mapSize = map.size();
322     if (size==0 && mapSize!=0 && map instanceof SortedMap) {
323     Comparator c = ((SortedMap)map).comparator();
324     if (c == comparator || (c != null && c.equals(comparator))) {
325     ++modCount;
326     try {
327     buildFromSorted(mapSize, map.entrySet().iterator(),
328     null, null);
329     } catch (java.io.IOException cannotHappen) {
330     } catch (ClassNotFoundException cannotHappen) {
331     }
332     return;
333     }
334     }
335     super.putAll(map);
336     }
337    
338     /**
339     * Returns this map's entry for the given key, or <tt>null</tt> if the map
340     * does not contain an entry for the key.
341     *
342     * @return this map's entry for the given key, or <tt>null</tt> if the map
343     * does not contain an entry for the key.
344     * @throws ClassCastException if the key cannot be compared with the keys
345     * currently in the map.
346 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
347 dl 1.1 * natural order, or its comparator does not tolerate *
348     * <tt>null</tt> keys.
349     */
350     private Entry<K,V> getEntry(Object key) {
351     // Offload comparator-based version for sake of performance
352     if (comparator != null)
353     return getEntryUsingComparator(key);
354     Comparable<K> k = (Comparable<K>) key;
355     Entry<K,V> p = root;
356     while (p != null) {
357     int cmp = k.compareTo(p.key);
358     if (cmp < 0)
359     p = p.left;
360     else if (cmp > 0)
361     p = p.right;
362     else
363     return p;
364     }
365     return null;
366     }
367    
368     /**
369     * Version of getEntry using comparator. Split off from getEntry
370     * for performance. (This is not worth doing for most methods,
371     * that are less dependent on comparator performance, but is
372     * worthwhile here.)
373     */
374     private Entry<K,V> getEntryUsingComparator(Object key) {
375     K k = (K) key;
376     Comparator<? super K> cpr = comparator;
377     Entry<K,V> p = root;
378     while (p != null) {
379     int cmp = cpr.compare(k, p.key);
380     if (cmp < 0)
381     p = p.left;
382     else if (cmp > 0)
383     p = p.right;
384     else
385     return p;
386     }
387     return null;
388     }
389    
390     /**
391     * Gets the entry corresponding to the specified key; if no such entry
392     * exists, returns the entry for the least key greater than the specified
393     * key; if no such entry exists (i.e., the greatest key in the Tree is less
394     * than the specified key), returns <tt>null</tt>.
395     */
396     private Entry<K,V> getCeilingEntry(K key) {
397     Entry<K,V> p = root;
398     if (p==null)
399     return null;
400    
401     while (true) {
402     int cmp = compare(key, p.key);
403     if (cmp < 0) {
404     if (p.left != null)
405     p = p.left;
406     else
407     return p;
408     } else if (cmp > 0) {
409     if (p.right != null) {
410     p = p.right;
411     } else {
412     Entry<K,V> parent = p.parent;
413     Entry<K,V> ch = p;
414     while (parent != null && ch == parent.right) {
415     ch = parent;
416     parent = parent.parent;
417     }
418     return parent;
419     }
420     } else
421     return p;
422     }
423     }
424    
425     /**
426     * Gets the entry corresponding to the specified key; if no such entry
427     * exists, returns the entry for the greatest key less than the specified
428     * key; if no such entry exists, returns <tt>null</tt>.
429     */
430     private Entry<K,V> getFloorEntry(K key) {
431     Entry<K,V> p = root;
432     if (p==null)
433     return null;
434    
435     while (true) {
436     int cmp = compare(key, p.key);
437     if (cmp > 0) {
438     if (p.right != null)
439     p = p.right;
440     else
441     return p;
442     } else if (cmp < 0) {
443     if (p.left != null) {
444     p = p.left;
445     } else {
446     Entry<K,V> parent = p.parent;
447     Entry<K,V> ch = p;
448     while (parent != null && ch == parent.left) {
449     ch = parent;
450     parent = parent.parent;
451     }
452     return parent;
453     }
454     } else
455     return p;
456    
457     }
458     }
459    
460     /**
461     * Gets the entry for the least key greater than the specified
462     * key; if no such entry exists, returns the entry for the least
463     * key greater than the specified key; if no such entry exists
464     * returns <tt>null</tt>.
465     */
466     private Entry<K,V> getHigherEntry(K key) {
467     Entry<K,V> p = root;
468     if (p==null)
469     return null;
470    
471     while (true) {
472     int cmp = compare(key, p.key);
473     if (cmp < 0) {
474     if (p.left != null)
475     p = p.left;
476     else
477     return p;
478     } else {
479     if (p.right != null) {
480     p = p.right;
481     } else {
482     Entry<K,V> parent = p.parent;
483     Entry<K,V> ch = p;
484     while (parent != null && ch == parent.right) {
485     ch = parent;
486     parent = parent.parent;
487     }
488     return parent;
489     }
490     }
491     }
492     }
493    
494     /**
495     * Returns the entry for the greatest key less than the specified key; if
496     * no such entry exists (i.e., the least key in the Tree is greater than
497     * the specified key), returns <tt>null</tt>.
498     */
499     private Entry<K,V> getLowerEntry(K key) {
500     Entry<K,V> p = root;
501     if (p==null)
502     return null;
503    
504     while (true) {
505     int cmp = compare(key, p.key);
506     if (cmp > 0) {
507     if (p.right != null)
508     p = p.right;
509     else
510     return p;
511     } else {
512     if (p.left != null) {
513     p = p.left;
514     } else {
515     Entry<K,V> parent = p.parent;
516     Entry<K,V> ch = p;
517     while (parent != null && ch == parent.left) {
518     ch = parent;
519     parent = parent.parent;
520     }
521     return parent;
522     }
523     }
524     }
525     }
526    
527     /**
528     * Returns the key corresponding to the specified Entry. Throw
529     * NoSuchElementException if the Entry is <tt>null</tt>.
530     */
531     private static <K> K key(Entry<K,?> e) {
532     if (e==null)
533     throw new NoSuchElementException();
534     return e.key;
535     }
536    
537     /**
538     * Associates the specified value with the specified key in this map.
539     * If the map previously contained a mapping for this key, the old
540     * value is replaced.
541     *
542     * @param key key with which the specified value is to be associated.
543     * @param value value to be associated with the specified key.
544     *
545 dl 1.6 * @return the previous value associated with specified key, or <tt>null</tt>
546 dl 1.1 * if there was no mapping for key. A <tt>null</tt> return can
547     * also indicate that the map previously associated <tt>null</tt>
548     * with the specified key.
549 dl 1.3 * @throws ClassCastException if key cannot be compared with the keys
550 dl 1.1 * currently in the map.
551 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
552 dl 1.1 * natural order, or its comparator does not tolerate
553     * <tt>null</tt> keys.
554     */
555     public V put(K key, V value) {
556     Entry<K,V> t = root;
557    
558     if (t == null) {
559     incrementSize();
560     root = new Entry<K,V>(key, value, null);
561     return null;
562 dl 1.8 }
563 dl 1.1
564     while (true) {
565     int cmp = compare(key, t.key);
566     if (cmp == 0) {
567     return t.setValue(value);
568     } else if (cmp < 0) {
569     if (t.left != null) {
570     t = t.left;
571     } else {
572     incrementSize();
573     t.left = new Entry<K,V>(key, value, t);
574     fixAfterInsertion(t.left);
575     return null;
576     }
577     } else { // cmp > 0
578     if (t.right != null) {
579     t = t.right;
580     } else {
581     incrementSize();
582     t.right = new Entry<K,V>(key, value, t);
583     fixAfterInsertion(t.right);
584     return null;
585     }
586     }
587     }
588     }
589    
590     /**
591     * Removes the mapping for this key from this TreeMap if present.
592     *
593     * @param key key for which mapping should be removed
594 dl 1.6 * @return the previous value associated with specified key, or <tt>null</tt>
595 dl 1.1 * if there was no mapping for key. A <tt>null</tt> return can
596     * also indicate that the map previously associated
597     * <tt>null</tt> with the specified key.
598     *
599 dl 1.3 * @throws ClassCastException if key cannot be compared with the keys
600 dl 1.1 * currently in the map.
601 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
602 dl 1.1 * natural order, or its comparator does not tolerate
603     * <tt>null</tt> keys.
604     */
605     public V remove(Object key) {
606     Entry<K,V> p = getEntry(key);
607     if (p == null)
608     return null;
609    
610     V oldValue = p.value;
611     deleteEntry(p);
612     return oldValue;
613     }
614    
615     /**
616     * Removes all mappings from this TreeMap.
617     */
618     public void clear() {
619     modCount++;
620     size = 0;
621     root = null;
622     }
623    
624     /**
625     * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
626     * values themselves are not cloned.)
627     *
628     * @return a shallow copy of this Map.
629     */
630     public Object clone() {
631     TreeMap<K,V> clone = null;
632     try {
633     clone = (TreeMap<K,V>) super.clone();
634     } catch (CloneNotSupportedException e) {
635     throw new InternalError();
636     }
637    
638     // Put clone into "virgin" state (except for comparator)
639     clone.root = null;
640     clone.size = 0;
641     clone.modCount = 0;
642     clone.entrySet = null;
643     clone.descendingEntrySet = null;
644     clone.descendingKeySet = null;
645    
646     // Initialize clone with our mappings
647     try {
648     clone.buildFromSorted(size, entrySet().iterator(), null, null);
649     } catch (java.io.IOException cannotHappen) {
650     } catch (ClassNotFoundException cannotHappen) {
651     }
652    
653     return clone;
654     }
655    
656     // NavigableMap API methods
657    
658     /**
659     * Returns a key-value mapping associated with the least
660     * key in this map, or <tt>null</tt> if the map is empty.
661 dl 1.8 *
662     * @return an Entry with least key, or <tt>null</tt>
663 dl 1.1 * if the map is empty.
664     */
665     public Map.Entry<K,V> firstEntry() {
666     Entry<K,V> e = getFirstEntry();
667 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
668 dl 1.1 }
669    
670     /**
671     * Returns a key-value mapping associated with the greatest
672     * key in this map, or <tt>null</tt> if the map is empty.
673 dl 1.8 *
674 dl 1.1 * @return an Entry with greatest key, or <tt>null</tt>
675     * if the map is empty.
676     */
677     public Map.Entry<K,V> lastEntry() {
678     Entry<K,V> e = getLastEntry();
679 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
680 dl 1.1 }
681    
682     /**
683     * Removes and returns a key-value mapping associated with
684     * the least key in this map, or <tt>null</tt> if the map is empty.
685 dl 1.8 *
686 dl 1.1 * @return the removed first entry of this map, or <tt>null</tt>
687     * if the map is empty.
688     */
689     public Map.Entry<K,V> pollFirstEntry() {
690     Entry<K,V> p = getFirstEntry();
691 dl 1.8 if (p == null)
692 dl 1.1 return null;
693 dl 1.2 Map.Entry result = new AbstractMap.SimpleImmutableEntry(p);
694 dl 1.1 deleteEntry(p);
695     return result;
696     }
697    
698     /**
699     * Removes and returns a key-value mapping associated with
700     * the greatest key in this map, or <tt>null</tt> if the map is empty.
701 dl 1.8 *
702 dl 1.1 * @return the removed last entry of this map, or <tt>null</tt>
703     * if the map is empty.
704     */
705     public Map.Entry<K,V> pollLastEntry() {
706     Entry<K,V> p = getLastEntry();
707 dl 1.8 if (p == null)
708 dl 1.1 return null;
709 dl 1.2 Map.Entry result = new AbstractMap.SimpleImmutableEntry(p);
710 dl 1.1 deleteEntry(p);
711     return result;
712     }
713    
714     /**
715     * Returns a key-value mapping associated with the least key
716     * greater than or equal to the given key, or <tt>null</tt> if
717 dl 1.8 * there is no such entry.
718     *
719 dl 1.1 * @param key the key.
720     * @return an Entry associated with ceiling of given key, or
721     * <tt>null</tt> if there is no such Entry.
722     * @throws ClassCastException if key cannot be compared with the
723     * keys currently in the map.
724 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
725 dl 1.1 * natural order, or its comparator does not tolerate
726     * <tt>null</tt> keys.
727     */
728     public Map.Entry<K,V> ceilingEntry(K key) {
729     Entry<K,V> e = getCeilingEntry(key);
730 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
731 dl 1.1 }
732    
733    
734     /**
735     * Returns least key greater than or equal to the given key, or
736     * <tt>null</tt> if there is no such key.
737 dl 1.8 *
738 dl 1.1 * @param key the key.
739     * @return the ceiling key, or <tt>null</tt>
740     * if there is no such key.
741     * @throws ClassCastException if key cannot be compared with the keys
742     * currently in the map.
743 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
744 dl 1.1 * natural order, or its comparator does not tolerate
745     * <tt>null</tt> keys.
746     */
747     public K ceilingKey(K key) {
748     Entry<K,V> e = getCeilingEntry(key);
749     return (e == null)? null : e.key;
750     }
751    
752    
753    
754     /**
755     * Returns a key-value mapping associated with the greatest key
756     * less than or equal to the given key, or <tt>null</tt> if there
757 dl 1.8 * is no such entry.
758     *
759 dl 1.1 * @param key the key.
760     * @return an Entry associated with floor of given key, or <tt>null</tt>
761     * if there is no such Entry.
762     * @throws ClassCastException if key cannot be compared with the keys
763     * currently in the map.
764 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
765 dl 1.1 * natural order, or its comparator does not tolerate
766     * <tt>null</tt> keys.
767     */
768     public Map.Entry<K,V> floorEntry(K key) {
769     Entry<K,V> e = getFloorEntry(key);
770 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
771 dl 1.1 }
772    
773     /**
774     * Returns the greatest key
775     * less than or equal to the given key, or <tt>null</tt> if there
776     * is no such key.
777 dl 1.8 *
778 dl 1.1 * @param key the key.
779     * @return the floor of given key, or <tt>null</tt> if there is no
780     * such key.
781     * @throws ClassCastException if key cannot be compared with the keys
782     * currently in the map.
783 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
784 dl 1.1 * natural order, or its comparator does not tolerate
785     * <tt>null</tt> keys.
786     */
787     public K floorKey(K key) {
788     Entry<K,V> e = getFloorEntry(key);
789     return (e == null)? null : e.key;
790     }
791    
792     /**
793     * Returns a key-value mapping associated with the least key
794     * strictly greater than the given key, or <tt>null</tt> if there
795 dl 1.8 * is no such entry.
796     *
797 dl 1.1 * @param key the key.
798     * @return an Entry with least key greater than the given key, or
799     * <tt>null</tt> if there is no such Entry.
800     * @throws ClassCastException if key cannot be compared with the keys
801     * currently in the map.
802 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
803 dl 1.1 * natural order, or its comparator does not tolerate
804     * <tt>null</tt> keys.
805     */
806     public Map.Entry<K,V> higherEntry(K key) {
807     Entry<K,V> e = getHigherEntry(key);
808 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
809 dl 1.1 }
810    
811     /**
812     * Returns the least key strictly greater than the given key, or
813     * <tt>null</tt> if there is no such key.
814 dl 1.8 *
815 dl 1.1 * @param key the key.
816     * @return the least key greater than the given key, or
817     * <tt>null</tt> if there is no such key.
818     * @throws ClassCastException if key cannot be compared with the keys
819     * currently in the map.
820 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
821 dl 1.1 * natural order, or its comparator does not tolerate
822     * <tt>null</tt> keys.
823     */
824     public K higherKey(K key) {
825     Entry<K,V> e = getHigherEntry(key);
826     return (e == null)? null : e.key;
827     }
828    
829     /**
830     * Returns a key-value mapping associated with the greatest
831     * key strictly less than the given key, or <tt>null</tt> if there is no
832 dl 1.8 * such entry.
833     *
834 dl 1.1 * @param key the key.
835     * @return an Entry with greatest key less than the given
836     * key, or <tt>null</tt> if there is no such Entry.
837     * @throws ClassCastException if key cannot be compared with the keys
838     * currently in the map.
839 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
840 dl 1.1 * natural order, or its comparator does not tolerate
841     * <tt>null</tt> keys.
842     */
843     public Map.Entry<K,V> lowerEntry(K key) {
844     Entry<K,V> e = getLowerEntry(key);
845 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
846 dl 1.1 }
847    
848     /**
849     * Returns the greatest key strictly less than the given key, or
850     * <tt>null</tt> if there is no such key.
851 dl 1.8 *
852 dl 1.1 * @param key the key.
853     * @return the greatest key less than the given
854     * key, or <tt>null</tt> if there is no such key.
855     * @throws ClassCastException if key cannot be compared with the keys
856     * currently in the map.
857 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
858 dl 1.1 * natural order, or its comparator does not tolerate
859     * <tt>null</tt> keys.
860     */
861     public K lowerKey(K key) {
862     Entry<K,V> e = getLowerEntry(key);
863     return (e == null)? null : e.key;
864     }
865    
866     // Views
867    
868     /**
869     * Fields initialized to contain an instance of the entry set view
870     * the first time this view is requested. Views are stateless, so
871     * there's no reason to create more than one.
872     */
873     private transient Set<Map.Entry<K,V>> entrySet = null;
874     private transient Set<Map.Entry<K,V>> descendingEntrySet = null;
875 dl 1.8 private transient Set<K> descendingKeySet = null;
876 dl 1.1
877     /**
878     * Returns a Set view of the keys contained in this map. The set's
879     * iterator will return the keys in ascending order. The set is backed by
880     * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
881     * the Set, and vice-versa. The Set supports element removal, which
882     * removes the corresponding mapping from the map, via the
883     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>,
884     * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not support
885     * the <tt>add</tt> or <tt>addAll</tt> operations.
886     *
887     * @return a set view of the keys contained in this TreeMap.
888     */
889     public Set<K> keySet() {
890     Set<K> ks = keySet;
891     return (ks != null) ? ks : (keySet = new KeySet());
892     }
893    
894     class KeySet extends AbstractSet<K> {
895     public Iterator<K> iterator() {
896     return new KeyIterator(getFirstEntry());
897     }
898 dl 1.8
899 dl 1.1 public int size() {
900     return TreeMap.this.size();
901     }
902 dl 1.8
903 dl 1.1 public boolean contains(Object o) {
904     return containsKey(o);
905     }
906 dl 1.8
907 dl 1.1 public boolean remove(Object o) {
908     int oldSize = size;
909     TreeMap.this.remove(o);
910     return size != oldSize;
911     }
912 dl 1.8
913 dl 1.1 public void clear() {
914     TreeMap.this.clear();
915     }
916     }
917    
918     /**
919     * Returns a collection view of the values contained in this map. The
920     * collection's iterator will return the values in the order that their
921     * corresponding keys appear in the tree. The collection is backed by
922     * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
923     * the collection, and vice-versa. The collection supports element
924     * removal, which removes the corresponding mapping from the map through
925     * the <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
926     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
927     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
928     *
929     * @return a collection view of the values contained in this map.
930     */
931     public Collection<V> values() {
932     Collection<V> vs = values;
933     return (vs != null) ? vs : (values = new Values());
934     }
935    
936     class Values extends AbstractCollection<V> {
937     public Iterator<V> iterator() {
938     return new ValueIterator(getFirstEntry());
939     }
940 dl 1.8
941 dl 1.1 public int size() {
942     return TreeMap.this.size();
943     }
944 dl 1.8
945 dl 1.1 public boolean contains(Object o) {
946     for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
947     if (valEquals(e.getValue(), o))
948     return true;
949     return false;
950     }
951 dl 1.8
952 dl 1.1 public boolean remove(Object o) {
953     for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
954     if (valEquals(e.getValue(), o)) {
955     deleteEntry(e);
956     return true;
957     }
958     }
959     return false;
960     }
961 dl 1.8
962 dl 1.1 public void clear() {
963     TreeMap.this.clear();
964     }
965     }
966    
967     /**
968     * Returns a set view of the mappings contained in this map. The set's
969     * iterator returns the mappings in ascending key order. Each element in
970     * the returned set is a <tt>Map.Entry</tt>. The set is backed by this
971     * map, so changes to this map are reflected in the set, and vice-versa.
972     * The set supports element removal, which removes the corresponding
973     * mapping from the TreeMap, through the <tt>Iterator.remove</tt>,
974     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
975     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
976     * <tt>addAll</tt> operations.
977     *
978     * @return a set view of the mappings contained in this map.
979     * @see Map.Entry
980     */
981     public Set<Map.Entry<K,V>> entrySet() {
982     Set<Map.Entry<K,V>> es = entrySet;
983     return (es != null) ? es : (entrySet = new EntrySet());
984     }
985    
986     class EntrySet extends AbstractSet<Map.Entry<K,V>> {
987     public Iterator<Map.Entry<K,V>> iterator() {
988     return new EntryIterator(getFirstEntry());
989     }
990 dl 1.8
991 dl 1.1 public boolean contains(Object o) {
992     if (!(o instanceof Map.Entry))
993     return false;
994     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
995     V value = entry.getValue();
996     Entry<K,V> p = getEntry(entry.getKey());
997     return p != null && valEquals(p.getValue(), value);
998     }
999 dl 1.8
1000 dl 1.1 public boolean remove(Object o) {
1001     if (!(o instanceof Map.Entry))
1002     return false;
1003     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1004     V value = entry.getValue();
1005     Entry<K,V> p = getEntry(entry.getKey());
1006     if (p != null && valEquals(p.getValue(), value)) {
1007     deleteEntry(p);
1008     return true;
1009     }
1010     return false;
1011     }
1012 dl 1.8
1013 dl 1.1 public int size() {
1014     return TreeMap.this.size();
1015     }
1016 dl 1.8
1017 dl 1.1 public void clear() {
1018     TreeMap.this.clear();
1019     }
1020     }
1021    
1022     /**
1023     * Returns a set view of the mappings contained in this map. The
1024 dl 1.3 * set's iterator returns the mappings in descending key order.
1025 dl 1.1 * Each element in the returned set is a <tt>Map.Entry</tt>. The
1026     * set is backed by this map, so changes to this map are reflected
1027     * in the set, and vice-versa. The set supports element removal,
1028     * which removes the corresponding mapping from the TreeMap,
1029     * through the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1030     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1031     * operations. It does not support the <tt>add</tt> or
1032     * <tt>addAll</tt> operations.
1033     *
1034 dl 1.8 * @return a set view of the mappings contained in this map, in
1035 dl 1.1 * descending key order
1036     * @see Map.Entry
1037     */
1038     public Set<Map.Entry<K,V>> descendingEntrySet() {
1039     Set<Map.Entry<K,V>> es = descendingEntrySet;
1040     return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
1041     }
1042    
1043     class DescendingEntrySet extends EntrySet {
1044     public Iterator<Map.Entry<K,V>> iterator() {
1045     return new DescendingEntryIterator(getLastEntry());
1046     }
1047     }
1048    
1049     /**
1050     * Returns a Set view of the keys contained in this map. The
1051     * set's iterator will return the keys in descending order. The
1052     * map is backed by this <tt>TreeMap</tt> instance, so changes to
1053     * this map are reflected in the Set, and vice-versa. The Set
1054     * supports element removal, which removes the corresponding
1055     * mapping from the map, via the <tt>Iterator.remove</tt>,
1056     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>,
1057     * and <tt>clear</tt> operations. It does not support the
1058     * <tt>add</tt> or <tt>addAll</tt> operations.
1059     *
1060     * @return a set view of the keys contained in this TreeMap.
1061     */
1062     public Set<K> descendingKeySet() {
1063     Set<K> ks = descendingKeySet;
1064     return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1065     }
1066    
1067     class DescendingKeySet extends KeySet {
1068     public Iterator<K> iterator() {
1069     return new DescendingKeyIterator(getLastEntry());
1070     }
1071     }
1072    
1073     /**
1074     * Returns a view of the portion of this map whose keys range from
1075     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive. (If
1076 dl 1.4 * <tt>fromKey</tt> and <tt>toKey</tt> are equal, the returned
1077     * navigable map is empty.) The returned navigable map is backed
1078     * by this map, so changes in the returned navigable map are
1079     * reflected in this map, and vice-versa. The returned navigable
1080     * map supports all optional map operations.<p>
1081 dl 1.1 *
1082 dl 1.4 * The navigable map returned by this method will throw an
1083 dl 1.1 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1084     * less than <tt>fromKey</tt> or greater than or equal to
1085     * <tt>toKey</tt>.<p>
1086     *
1087     * Note: this method always returns a <i>half-open range</i> (which
1088     * includes its low endpoint but not its high endpoint). If you need a
1089     * <i>closed range</i> (which includes both endpoints), and the key type
1090 dl 1.4 * allows for calculation of the successor of a given key, merely request the
1091 dl 1.1 * subrange from <tt>lowEndpoint</tt> to <tt>successor(highEndpoint)</tt>.
1092 dl 1.4 * For example, suppose that <tt>m</tt> is a navigable map whose keys are
1093 dl 1.1 * strings. The following idiom obtains a view containing all of the
1094     * key-value mappings in <tt>m</tt> whose keys are between <tt>low</tt>
1095     * and <tt>high</tt>, inclusive:
1096 dl 1.4 * <pre> NavigableMap sub = m.navigableSubMap(low, high+"\0");</pre>
1097 dl 1.1 * A similar technique can be used to generate an <i>open range</i> (which
1098     * contains neither endpoint). The following idiom obtains a view
1099     * containing all of the key-value mappings in <tt>m</tt> whose keys are
1100     * between <tt>low</tt> and <tt>high</tt>, exclusive:
1101 dl 1.4 * <pre> NavigableMap sub = m.navigableSubMap(low+"\0", high);</pre>
1102 dl 1.1 *
1103     * @param fromKey low endpoint (inclusive) of the subMap.
1104     * @param toKey high endpoint (exclusive) of the subMap.
1105     *
1106     * @return a view of the portion of this map whose keys range from
1107     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
1108     *
1109     * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
1110     * cannot be compared to one another using this map's comparator
1111     * (or, if the map has no comparator, using natural ordering).
1112     * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
1113     * <tt>toKey</tt>.
1114     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
1115     * <tt>null</tt> and this map uses natural order, or its
1116     * comparator does not tolerate <tt>null</tt> keys.
1117     */
1118 dl 1.4 public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1119 dl 1.1 return new SubMap(fromKey, toKey);
1120     }
1121    
1122 dl 1.4
1123 dl 1.1 /**
1124     * Returns a view of the portion of this map whose keys are strictly less
1125 dl 1.4 * than <tt>toKey</tt>. The returned navigable map is backed by this map, so
1126     * changes in the returned navigable map are reflected in this map, and
1127     * vice-versa. The returned navigable map supports all optional map
1128 dl 1.1 * operations.<p>
1129     *
1130 dl 1.4 * The navigable map returned by this method will throw an
1131 dl 1.1 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1132     * greater than or equal to <tt>toKey</tt>.<p>
1133     *
1134     * Note: this method always returns a view that does not contain its
1135     * (high) endpoint. If you need a view that does contain this endpoint,
1136 dl 1.4 * and the key type allows for calculation of the successor of a given key,
1137 dl 1.1 * merely request a headMap bounded by <tt>successor(highEndpoint)</tt>.
1138 dl 1.4 * For example, suppose that suppose that <tt>m</tt> is a navigable map whose
1139 dl 1.1 * keys are strings. The following idiom obtains a view containing all of
1140     * the key-value mappings in <tt>m</tt> whose keys are less than or equal
1141     * to <tt>high</tt>:
1142     * <pre>
1143 dl 1.6 * NavigableMap head = m.navigableHeadMap(high+"\0");
1144 dl 1.1 * </pre>
1145     *
1146     * @param toKey high endpoint (exclusive) of the headMap.
1147     * @return a view of the portion of this map whose keys are strictly
1148     * less than <tt>toKey</tt>.
1149     *
1150     * @throws ClassCastException if <tt>toKey</tt> is not compatible
1151     * with this map's comparator (or, if the map has no comparator,
1152     * if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
1153     * @throws IllegalArgumentException if this map is itself a subMap,
1154     * headMap, or tailMap, and <tt>toKey</tt> is not within the
1155     * specified range of the subMap, headMap, or tailMap.
1156     * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt> and
1157     * this map uses natural order, or its comparator does not
1158     * tolerate <tt>null</tt> keys.
1159     */
1160 dl 1.4 public NavigableMap<K,V> navigableHeadMap(K toKey) {
1161 dl 1.1 return new SubMap(toKey, true);
1162     }
1163    
1164     /**
1165     * Returns a view of the portion of this map whose keys are greater than
1166 dl 1.4 * or equal to <tt>fromKey</tt>. The returned navigable map is backed by
1167     * this map, so changes in the returned navigable map are reflected in this
1168     * map, and vice-versa. The returned navigable map supports all optional map
1169 dl 1.1 * operations.<p>
1170     *
1171 dl 1.4 * The navigable map returned by this method will throw an
1172 dl 1.1 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1173     * less than <tt>fromKey</tt>.<p>
1174     *
1175     * Note: this method always returns a view that contains its (low)
1176     * endpoint. If you need a view that does not contain this endpoint, and
1177 dl 1.4 * the element type allows for calculation of the successor of a given value,
1178 dl 1.1 * merely request a tailMap bounded by <tt>successor(lowEndpoint)</tt>.
1179 dl 1.4 * For example, suppose that <tt>m</tt> is a navigable map whose keys
1180 dl 1.1 * are strings. The following idiom obtains a view containing
1181     * all of the key-value mappings in <tt>m</tt> whose keys are strictly
1182     * greater than <tt>low</tt>: <pre>
1183 dl 1.6 * NavigableMap tail = m.navigableTailMap(low+"\0");
1184 dl 1.1 * </pre>
1185     *
1186     * @param fromKey low endpoint (inclusive) of the tailMap.
1187     * @return a view of the portion of this map whose keys are greater
1188     * than or equal to <tt>fromKey</tt>.
1189     * @throws ClassCastException if <tt>fromKey</tt> is not compatible
1190     * with this map's comparator (or, if the map has no comparator,
1191     * if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
1192     * @throws IllegalArgumentException if this map is itself a subMap,
1193     * headMap, or tailMap, and <tt>fromKey</tt> is not within the
1194     * specified range of the subMap, headMap, or tailMap.
1195     * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt> and
1196     * this map uses natural order, or its comparator does not
1197     * tolerate <tt>null</tt> keys.
1198     */
1199 dl 1.4 public NavigableMap<K,V> navigableTailMap(K fromKey) {
1200     return new SubMap(fromKey, false);
1201     }
1202    
1203     /**
1204     * Equivalent to <tt>navigableSubMap</tt> but with a return
1205     * type conforming to the <tt>SortedMap</tt> interface.
1206     * @param fromKey low endpoint (inclusive) of the subMap.
1207     * @param toKey high endpoint (exclusive) of the subMap.
1208     *
1209     * @return a view of the portion of this map whose keys range from
1210     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
1211     *
1212     * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
1213     * cannot be compared to one another using this map's comparator
1214     * (or, if the map has no comparator, using natural ordering).
1215     * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
1216     * <tt>toKey</tt>.
1217     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
1218     * <tt>null</tt> and this map uses natural order, or its
1219     * comparator does not tolerate <tt>null</tt> keys.
1220     */
1221     public SortedMap<K,V> subMap(K fromKey, K toKey) {
1222     return new SubMap(fromKey, toKey);
1223     }
1224    
1225    
1226     /**
1227     * Equivalent to <tt>navigableHeadMap</tt> but with a return
1228     * type conforming to the <tt>SortedMap</tt> interface.
1229     *
1230     * @param toKey high endpoint (exclusive) of the headMap.
1231     * @return a view of the portion of this map whose keys are strictly
1232     * less than <tt>toKey</tt>.
1233     *
1234     * @throws ClassCastException if <tt>toKey</tt> is not compatible
1235     * with this map's comparator (or, if the map has no comparator,
1236     * if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
1237     * @throws IllegalArgumentException if this map is itself a subMap,
1238     * headMap, or tailMap, and <tt>toKey</tt> is not within the
1239     * specified range of the subMap, headMap, or tailMap.
1240     * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt> and
1241     * this map uses natural order, or its comparator does not
1242     * tolerate <tt>null</tt> keys.
1243     */
1244     public SortedMap<K,V> headMap(K toKey) {
1245     return new SubMap(toKey, true);
1246     }
1247    
1248     /**
1249     * Equivalent to <tt>navigableTailMap</tt> but with a return
1250     * type conforming to the <tt>SortedMap</tt> interface.
1251     *
1252     * @param fromKey low endpoint (inclusive) of the tailMap.
1253     * @return a view of the portion of this map whose keys are greater
1254     * than or equal to <tt>fromKey</tt>.
1255     * @throws ClassCastException if <tt>fromKey</tt> is not compatible
1256     * with this map's comparator (or, if the map has no comparator,
1257     * if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
1258     * @throws IllegalArgumentException if this map is itself a subMap,
1259     * headMap, or tailMap, and <tt>fromKey</tt> is not within the
1260     * specified range of the subMap, headMap, or tailMap.
1261     * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt> and
1262     * this map uses natural order, or its comparator does not
1263     * tolerate <tt>null</tt> keys.
1264     */
1265     public SortedMap<K,V> tailMap(K fromKey) {
1266 dl 1.1 return new SubMap(fromKey, false);
1267     }
1268    
1269     private class SubMap
1270     extends AbstractMap<K,V>
1271     implements NavigableMap<K,V>, java.io.Serializable {
1272     private static final long serialVersionUID = -6520786458950516097L;
1273    
1274     /**
1275     * fromKey is significant only if fromStart is false. Similarly,
1276     * toKey is significant only if toStart is false.
1277     */
1278     private boolean fromStart = false, toEnd = false;
1279     private K fromKey, toKey;
1280    
1281     SubMap(K fromKey, K toKey) {
1282     if (compare(fromKey, toKey) > 0)
1283     throw new IllegalArgumentException("fromKey > toKey");
1284     this.fromKey = fromKey;
1285     this.toKey = toKey;
1286     }
1287    
1288     SubMap(K key, boolean headMap) {
1289     compare(key, key); // Type-check key
1290    
1291     if (headMap) {
1292     fromStart = true;
1293     toKey = key;
1294     } else {
1295     toEnd = true;
1296     fromKey = key;
1297     }
1298     }
1299    
1300     SubMap(boolean fromStart, K fromKey, boolean toEnd, K toKey) {
1301     this.fromStart = fromStart;
1302     this.fromKey= fromKey;
1303     this.toEnd = toEnd;
1304     this.toKey = toKey;
1305     }
1306    
1307     public boolean isEmpty() {
1308 dl 1.7 return entrySet().isEmpty();
1309 dl 1.1 }
1310    
1311     public boolean containsKey(Object key) {
1312     return inRange((K) key) && TreeMap.this.containsKey(key);
1313     }
1314    
1315     public V get(Object key) {
1316     if (!inRange((K) key))
1317     return null;
1318     return TreeMap.this.get(key);
1319     }
1320    
1321     public V put(K key, V value) {
1322     if (!inRange(key))
1323     throw new IllegalArgumentException("key out of range");
1324     return TreeMap.this.put(key, value);
1325     }
1326    
1327     public V remove(Object key) {
1328     if (!inRange((K) key))
1329     return null;
1330     return TreeMap.this.remove(key);
1331     }
1332    
1333     public Comparator<? super K> comparator() {
1334     return comparator;
1335     }
1336    
1337     public K firstKey() {
1338     TreeMap.Entry<K,V> e = fromStart ? getFirstEntry() : getCeilingEntry(fromKey);
1339     K first = key(e);
1340     if (!toEnd && compare(first, toKey) >= 0)
1341     throw(new NoSuchElementException());
1342     return first;
1343     }
1344    
1345     public K lastKey() {
1346     TreeMap.Entry<K,V> e = toEnd ? getLastEntry() : getLowerEntry(toKey);
1347     K last = key(e);
1348     if (!fromStart && compare(last, fromKey) < 0)
1349     throw(new NoSuchElementException());
1350     return last;
1351     }
1352    
1353     public Map.Entry<K,V> firstEntry() {
1354 dl 1.8 TreeMap.Entry<K,V> e = fromStart ?
1355 dl 1.1 getFirstEntry() : getCeilingEntry(fromKey);
1356     if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1357     return null;
1358     return e;
1359     }
1360    
1361     public Map.Entry<K,V> lastEntry() {
1362 dl 1.8 TreeMap.Entry<K,V> e = toEnd ?
1363 dl 1.1 getLastEntry() : getLowerEntry(toKey);
1364     if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1365     return null;
1366     return e;
1367     }
1368    
1369     public Map.Entry<K,V> pollFirstEntry() {
1370 dl 1.8 TreeMap.Entry<K,V> e = fromStart ?
1371 dl 1.1 getFirstEntry() : getCeilingEntry(fromKey);
1372 dl 1.7 if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1373 dl 1.1 return null;
1374 dl 1.2 Map.Entry result = new AbstractMap.SimpleImmutableEntry(e);
1375 dl 1.1 deleteEntry(e);
1376     return result;
1377     }
1378    
1379     public Map.Entry<K,V> pollLastEntry() {
1380 dl 1.8 TreeMap.Entry<K,V> e = toEnd ?
1381 dl 1.1 getLastEntry() : getLowerEntry(toKey);
1382 dl 1.7 if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1383 dl 1.1 return null;
1384 dl 1.2 Map.Entry result = new AbstractMap.SimpleImmutableEntry(e);
1385 dl 1.1 deleteEntry(e);
1386     return result;
1387     }
1388    
1389     private TreeMap.Entry<K,V> subceiling(K key) {
1390     TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1391     getCeilingEntry(fromKey) : getCeilingEntry(key);
1392     if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1393     return null;
1394     return e;
1395     }
1396    
1397     public Map.Entry<K,V> ceilingEntry(K key) {
1398     TreeMap.Entry<K,V> e = subceiling(key);
1399 dl 1.2 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1400 dl 1.1 }
1401    
1402     public K ceilingKey(K key) {
1403     TreeMap.Entry<K,V> e = subceiling(key);
1404     return e == null? null : e.key;
1405     }
1406    
1407    
1408     private TreeMap.Entry<K,V> subhigher(K key) {
1409     TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1410     getCeilingEntry(fromKey) : getHigherEntry(key);
1411     if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1412     return null;
1413     return e;
1414     }
1415    
1416     public Map.Entry<K,V> higherEntry(K key) {
1417     TreeMap.Entry<K,V> e = subhigher(key);
1418 dl 1.2 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1419 dl 1.1 }
1420    
1421     public K higherKey(K key) {
1422     TreeMap.Entry<K,V> e = subhigher(key);
1423     return e == null? null : e.key;
1424     }
1425    
1426     private TreeMap.Entry<K,V> subfloor(K key) {
1427     TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1428     getLowerEntry(toKey) : getFloorEntry(key);
1429     if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1430     return null;
1431     return e;
1432     }
1433    
1434     public Map.Entry<K,V> floorEntry(K key) {
1435     TreeMap.Entry<K,V> e = subfloor(key);
1436 dl 1.2 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1437 dl 1.1 }
1438    
1439     public K floorKey(K key) {
1440     TreeMap.Entry<K,V> e = subfloor(key);
1441     return e == null? null : e.key;
1442     }
1443    
1444     private TreeMap.Entry<K,V> sublower(K key) {
1445     TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1446     getLowerEntry(toKey) : getLowerEntry(key);
1447     if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1448     return null;
1449     return e;
1450     }
1451    
1452     public Map.Entry<K,V> lowerEntry(K key) {
1453     TreeMap.Entry<K,V> e = sublower(key);
1454 dl 1.2 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1455 dl 1.1 }
1456    
1457     public K lowerKey(K key) {
1458     TreeMap.Entry<K,V> e = sublower(key);
1459     return e == null? null : e.key;
1460     }
1461    
1462 dl 1.7 private transient Set<Map.Entry<K,V>> entrySet = null;
1463 dl 1.1
1464     public Set<Map.Entry<K,V>> entrySet() {
1465 dl 1.7 Set<Map.Entry<K,V>> es = entrySet;
1466     return (es != null)? es : (entrySet = new EntrySetView());
1467 dl 1.1 }
1468    
1469     private class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1470     private transient int size = -1, sizeModCount;
1471    
1472     public int size() {
1473     if (size == -1 || sizeModCount != TreeMap.this.modCount) {
1474     size = 0; sizeModCount = TreeMap.this.modCount;
1475     Iterator i = iterator();
1476     while (i.hasNext()) {
1477     size++;
1478     i.next();
1479     }
1480     }
1481     return size;
1482     }
1483    
1484     public boolean isEmpty() {
1485     return !iterator().hasNext();
1486     }
1487    
1488     public boolean contains(Object o) {
1489     if (!(o instanceof Map.Entry))
1490     return false;
1491     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1492     K key = entry.getKey();
1493     if (!inRange(key))
1494     return false;
1495     TreeMap.Entry node = getEntry(key);
1496     return node != null &&
1497     valEquals(node.getValue(), entry.getValue());
1498     }
1499    
1500     public boolean remove(Object o) {
1501     if (!(o instanceof Map.Entry))
1502     return false;
1503     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1504     K key = entry.getKey();
1505     if (!inRange(key))
1506     return false;
1507     TreeMap.Entry<K,V> node = getEntry(key);
1508     if (node!=null && valEquals(node.getValue(),entry.getValue())){
1509     deleteEntry(node);
1510     return true;
1511     }
1512     return false;
1513     }
1514    
1515     public Iterator<Map.Entry<K,V>> iterator() {
1516     return new SubMapEntryIterator(
1517     (fromStart ? getFirstEntry() : getCeilingEntry(fromKey)),
1518     (toEnd ? null : getCeilingEntry(toKey)));
1519     }
1520     }
1521    
1522     private transient Set<Map.Entry<K,V>> descendingEntrySetView = null;
1523 dl 1.8 private transient Set<K> descendingKeySetView = null;
1524 dl 1.1
1525     public Set<Map.Entry<K,V>> descendingEntrySet() {
1526     Set<Map.Entry<K,V>> es = descendingEntrySetView;
1527     return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
1528     }
1529    
1530     public Set<K> descendingKeySet() {
1531     Set<K> ks = descendingKeySetView;
1532     return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
1533     }
1534    
1535     private class DescendingEntrySetView extends EntrySetView {
1536     public Iterator<Map.Entry<K,V>> iterator() {
1537     return new DescendingSubMapEntryIterator
1538     ((toEnd ? getLastEntry() : getLowerEntry(toKey)),
1539     (fromStart ? null : getLowerEntry(fromKey)));
1540     }
1541     }
1542    
1543     private class DescendingKeySetView extends AbstractSet<K> {
1544     public Iterator<K> iterator() {
1545     return new Iterator<K>() {
1546     private Iterator<Entry<K,V>> i = descendingEntrySet().iterator();
1547 dl 1.8
1548 dl 1.1 public boolean hasNext() { return i.hasNext(); }
1549     public K next() { return i.next().getKey(); }
1550     public void remove() { i.remove(); }
1551     };
1552     }
1553 dl 1.8
1554 dl 1.1 public int size() {
1555     return SubMap.this.size();
1556     }
1557 dl 1.8
1558 dl 1.1 public boolean contains(Object k) {
1559     return SubMap.this.containsKey(k);
1560     }
1561     }
1562    
1563    
1564 dl 1.4 public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1565 dl 1.1 if (!inRange2(fromKey))
1566     throw new IllegalArgumentException("fromKey out of range");
1567     if (!inRange2(toKey))
1568     throw new IllegalArgumentException("toKey out of range");
1569     return new SubMap(fromKey, toKey);
1570     }
1571    
1572 dl 1.4 public NavigableMap<K,V> navigableHeadMap(K toKey) {
1573 dl 1.1 if (!inRange2(toKey))
1574     throw new IllegalArgumentException("toKey out of range");
1575     return new SubMap(fromStart, fromKey, false, toKey);
1576     }
1577    
1578 dl 1.4 public NavigableMap<K,V> navigableTailMap(K fromKey) {
1579 dl 1.1 if (!inRange2(fromKey))
1580     throw new IllegalArgumentException("fromKey out of range");
1581     return new SubMap(false, fromKey, toEnd, toKey);
1582     }
1583    
1584 dl 1.4
1585     public SortedMap<K,V> subMap(K fromKey, K toKey) {
1586     return navigableSubMap(fromKey, toKey);
1587     }
1588    
1589     public SortedMap<K,V> headMap(K toKey) {
1590     return navigableHeadMap(toKey);
1591     }
1592    
1593     public SortedMap<K,V> tailMap(K fromKey) {
1594     return navigableTailMap(fromKey);
1595     }
1596    
1597 dl 1.1 private boolean inRange(K key) {
1598     return (fromStart || compare(key, fromKey) >= 0) &&
1599     (toEnd || compare(key, toKey) < 0);
1600     }
1601    
1602     // This form allows the high endpoint (as well as all legit keys)
1603     private boolean inRange2(K key) {
1604     return (fromStart || compare(key, fromKey) >= 0) &&
1605     (toEnd || compare(key, toKey) <= 0);
1606     }
1607     }
1608    
1609     /**
1610     * TreeMap Iterator.
1611     */
1612     abstract class PrivateEntryIterator<T> implements Iterator<T> {
1613     int expectedModCount = TreeMap.this.modCount;
1614     Entry<K,V> lastReturned = null;
1615     Entry<K,V> next;
1616    
1617     PrivateEntryIterator(Entry<K,V> first) {
1618     next = first;
1619     }
1620    
1621     public boolean hasNext() {
1622     return next != null;
1623     }
1624    
1625     Entry<K,V> nextEntry() {
1626     if (next == null)
1627     throw new NoSuchElementException();
1628     if (modCount != expectedModCount)
1629     throw new ConcurrentModificationException();
1630     lastReturned = next;
1631     next = successor(next);
1632     return lastReturned;
1633     }
1634    
1635     public void remove() {
1636     if (lastReturned == null)
1637     throw new IllegalStateException();
1638     if (modCount != expectedModCount)
1639     throw new ConcurrentModificationException();
1640     if (lastReturned.left != null && lastReturned.right != null)
1641     next = lastReturned;
1642     deleteEntry(lastReturned);
1643     expectedModCount++;
1644     lastReturned = null;
1645     }
1646     }
1647    
1648     class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1649     EntryIterator(Entry<K,V> first) {
1650     super(first);
1651     }
1652    
1653     public Map.Entry<K,V> next() {
1654     return nextEntry();
1655     }
1656     }
1657    
1658     class KeyIterator extends PrivateEntryIterator<K> {
1659     KeyIterator(Entry<K,V> first) {
1660     super(first);
1661     }
1662     public K next() {
1663     return nextEntry().key;
1664     }
1665     }
1666    
1667     class ValueIterator extends PrivateEntryIterator<V> {
1668     ValueIterator(Entry<K,V> first) {
1669     super(first);
1670     }
1671     public V next() {
1672     return nextEntry().value;
1673     }
1674     }
1675    
1676     class SubMapEntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1677     private final K firstExcludedKey;
1678    
1679     SubMapEntryIterator(Entry<K,V> first, Entry<K,V> firstExcluded) {
1680     super(first);
1681     firstExcludedKey = (firstExcluded == null
1682     ? null
1683     : firstExcluded.key);
1684     }
1685    
1686     public boolean hasNext() {
1687     return next != null && next.key != firstExcludedKey;
1688     }
1689    
1690     public Map.Entry<K,V> next() {
1691     if (next == null || next.key == firstExcludedKey)
1692     throw new NoSuchElementException();
1693     return nextEntry();
1694     }
1695     }
1696    
1697    
1698     /**
1699     * Base for Descending Iterators.
1700     */
1701     abstract class DescendingPrivateEntryIterator<T> extends PrivateEntryIterator<T> {
1702     DescendingPrivateEntryIterator(Entry<K,V> first) {
1703     super(first);
1704     }
1705    
1706     Entry<K,V> nextEntry() {
1707     if (next == null)
1708     throw new NoSuchElementException();
1709     if (modCount != expectedModCount)
1710     throw new ConcurrentModificationException();
1711     lastReturned = next;
1712     next = predecessor(next);
1713     return lastReturned;
1714     }
1715     }
1716    
1717     class DescendingEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1718     DescendingEntryIterator(Entry<K,V> first) {
1719     super(first);
1720     }
1721     public Map.Entry<K,V> next() {
1722     return nextEntry();
1723     }
1724     }
1725    
1726     class DescendingKeyIterator extends DescendingPrivateEntryIterator<K> {
1727     DescendingKeyIterator(Entry<K,V> first) {
1728     super(first);
1729     }
1730     public K next() {
1731     return nextEntry().key;
1732     }
1733     }
1734    
1735    
1736     class DescendingSubMapEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1737     private final K lastExcludedKey;
1738    
1739     DescendingSubMapEntryIterator(Entry<K,V> last, Entry<K,V> lastExcluded) {
1740     super(last);
1741     lastExcludedKey = (lastExcluded == null
1742     ? null
1743     : lastExcluded.key);
1744     }
1745    
1746     public boolean hasNext() {
1747     return next != null && next.key != lastExcludedKey;
1748     }
1749    
1750     public Map.Entry<K,V> next() {
1751     if (next == null || next.key == lastExcludedKey)
1752     throw new NoSuchElementException();
1753     return nextEntry();
1754     }
1755    
1756     }
1757    
1758    
1759     /**
1760     * Compares two keys using the correct comparison method for this TreeMap.
1761     */
1762     private int compare(K k1, K k2) {
1763     return (comparator==null ? ((Comparable</*-*/K>)k1).compareTo(k2)
1764     : comparator.compare((K)k1, (K)k2));
1765     }
1766    
1767     /**
1768     * Test two values for equality. Differs from o1.equals(o2) only in
1769     * that it copes with <tt>null</tt> o1 properly.
1770     */
1771     private static boolean valEquals(Object o1, Object o2) {
1772     return (o1==null ? o2==null : o1.equals(o2));
1773     }
1774    
1775     private static final boolean RED = false;
1776     private static final boolean BLACK = true;
1777    
1778     /**
1779     * Node in the Tree. Doubles as a means to pass key-value pairs back to
1780     * user (see Map.Entry).
1781     */
1782    
1783     static class Entry<K,V> implements Map.Entry<K,V> {
1784     K key;
1785     V value;
1786     Entry<K,V> left = null;
1787     Entry<K,V> right = null;
1788     Entry<K,V> parent;
1789     boolean color = BLACK;
1790    
1791     /**
1792     * Make a new cell with given key, value, and parent, and with
1793     * <tt>null</tt> child links, and BLACK color.
1794     */
1795     Entry(K key, V value, Entry<K,V> parent) {
1796     this.key = key;
1797     this.value = value;
1798     this.parent = parent;
1799     }
1800    
1801     /**
1802     * Returns the key.
1803     *
1804     * @return the key.
1805     */
1806     public K getKey() {
1807     return key;
1808     }
1809    
1810     /**
1811     * Returns the value associated with the key.
1812     *
1813     * @return the value associated with the key.
1814     */
1815     public V getValue() {
1816     return value;
1817     }
1818    
1819     /**
1820     * Replaces the value currently associated with the key with the given
1821     * value.
1822     *
1823     * @return the value associated with the key before this method was
1824     * called.
1825     */
1826     public V setValue(V value) {
1827     V oldValue = this.value;
1828     this.value = value;
1829     return oldValue;
1830     }
1831    
1832     public boolean equals(Object o) {
1833     if (!(o instanceof Map.Entry))
1834     return false;
1835     Map.Entry e = (Map.Entry)o;
1836    
1837     return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1838     }
1839    
1840     public int hashCode() {
1841     int keyHash = (key==null ? 0 : key.hashCode());
1842     int valueHash = (value==null ? 0 : value.hashCode());
1843     return keyHash ^ valueHash;
1844     }
1845    
1846     public String toString() {
1847     return key + "=" + value;
1848     }
1849     }
1850    
1851     /**
1852     * Returns the first Entry in the TreeMap (according to the TreeMap's
1853     * key-sort function). Returns null if the TreeMap is empty.
1854     */
1855     private Entry<K,V> getFirstEntry() {
1856     Entry<K,V> p = root;
1857     if (p != null)
1858     while (p.left != null)
1859     p = p.left;
1860     return p;
1861     }
1862    
1863     /**
1864     * Returns the last Entry in the TreeMap (according to the TreeMap's
1865     * key-sort function). Returns null if the TreeMap is empty.
1866     */
1867     private Entry<K,V> getLastEntry() {
1868     Entry<K,V> p = root;
1869     if (p != null)
1870     while (p.right != null)
1871     p = p.right;
1872     return p;
1873     }
1874    
1875     /**
1876     * Returns the successor of the specified Entry, or null if no such.
1877     */
1878     private Entry<K,V> successor(Entry<K,V> t) {
1879     if (t == null)
1880     return null;
1881     else if (t.right != null) {
1882     Entry<K,V> p = t.right;
1883     while (p.left != null)
1884     p = p.left;
1885     return p;
1886     } else {
1887     Entry<K,V> p = t.parent;
1888     Entry<K,V> ch = t;
1889     while (p != null && ch == p.right) {
1890     ch = p;
1891     p = p.parent;
1892     }
1893     return p;
1894     }
1895     }
1896    
1897     /**
1898     * Returns the predecessor of the specified Entry, or null if no such.
1899     */
1900     private Entry<K,V> predecessor(Entry<K,V> t) {
1901     if (t == null)
1902     return null;
1903     else if (t.left != null) {
1904     Entry<K,V> p = t.left;
1905     while (p.right != null)
1906     p = p.right;
1907     return p;
1908     } else {
1909     Entry<K,V> p = t.parent;
1910     Entry<K,V> ch = t;
1911     while (p != null && ch == p.left) {
1912     ch = p;
1913     p = p.parent;
1914     }
1915     return p;
1916     }
1917     }
1918    
1919     /**
1920     * Balancing operations.
1921     *
1922     * Implementations of rebalancings during insertion and deletion are
1923     * slightly different than the CLR version. Rather than using dummy
1924     * nilnodes, we use a set of accessors that deal properly with null. They
1925     * are used to avoid messiness surrounding nullness checks in the main
1926     * algorithms.
1927     */
1928    
1929     private static <K,V> boolean colorOf(Entry<K,V> p) {
1930     return (p == null ? BLACK : p.color);
1931     }
1932    
1933     private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
1934     return (p == null ? null: p.parent);
1935     }
1936    
1937     private static <K,V> void setColor(Entry<K,V> p, boolean c) {
1938     if (p != null)
1939     p.color = c;
1940     }
1941    
1942     private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
1943     return (p == null) ? null: p.left;
1944     }
1945    
1946     private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
1947     return (p == null) ? null: p.right;
1948     }
1949    
1950     /** From CLR **/
1951     private void rotateLeft(Entry<K,V> p) {
1952     Entry<K,V> r = p.right;
1953     p.right = r.left;
1954     if (r.left != null)
1955     r.left.parent = p;
1956     r.parent = p.parent;
1957     if (p.parent == null)
1958     root = r;
1959     else if (p.parent.left == p)
1960     p.parent.left = r;
1961     else
1962     p.parent.right = r;
1963     r.left = p;
1964     p.parent = r;
1965     }
1966    
1967     /** From CLR **/
1968     private void rotateRight(Entry<K,V> p) {
1969     Entry<K,V> l = p.left;
1970     p.left = l.right;
1971     if (l.right != null) l.right.parent = p;
1972     l.parent = p.parent;
1973     if (p.parent == null)
1974     root = l;
1975     else if (p.parent.right == p)
1976     p.parent.right = l;
1977     else p.parent.left = l;
1978     l.right = p;
1979     p.parent = l;
1980     }
1981    
1982    
1983     /** From CLR **/
1984     private void fixAfterInsertion(Entry<K,V> x) {
1985     x.color = RED;
1986    
1987     while (x != null && x != root && x.parent.color == RED) {
1988     if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
1989     Entry<K,V> y = rightOf(parentOf(parentOf(x)));
1990     if (colorOf(y) == RED) {
1991     setColor(parentOf(x), BLACK);
1992     setColor(y, BLACK);
1993     setColor(parentOf(parentOf(x)), RED);
1994     x = parentOf(parentOf(x));
1995     } else {
1996     if (x == rightOf(parentOf(x))) {
1997     x = parentOf(x);
1998     rotateLeft(x);
1999     }
2000     setColor(parentOf(x), BLACK);
2001     setColor(parentOf(parentOf(x)), RED);
2002     if (parentOf(parentOf(x)) != null)
2003     rotateRight(parentOf(parentOf(x)));
2004     }
2005     } else {
2006     Entry<K,V> y = leftOf(parentOf(parentOf(x)));
2007     if (colorOf(y) == RED) {
2008     setColor(parentOf(x), BLACK);
2009     setColor(y, BLACK);
2010     setColor(parentOf(parentOf(x)), RED);
2011     x = parentOf(parentOf(x));
2012     } else {
2013     if (x == leftOf(parentOf(x))) {
2014     x = parentOf(x);
2015     rotateRight(x);
2016     }
2017     setColor(parentOf(x), BLACK);
2018     setColor(parentOf(parentOf(x)), RED);
2019     if (parentOf(parentOf(x)) != null)
2020     rotateLeft(parentOf(parentOf(x)));
2021     }
2022     }
2023     }
2024     root.color = BLACK;
2025     }
2026    
2027     /**
2028     * Delete node p, and then rebalance the tree.
2029     */
2030    
2031     private void deleteEntry(Entry<K,V> p) {
2032     decrementSize();
2033    
2034     // If strictly internal, copy successor's element to p and then make p
2035     // point to successor.
2036     if (p.left != null && p.right != null) {
2037     Entry<K,V> s = successor (p);
2038     p.key = s.key;
2039     p.value = s.value;
2040     p = s;
2041     } // p has 2 children
2042    
2043     // Start fixup at replacement node, if it exists.
2044     Entry<K,V> replacement = (p.left != null ? p.left : p.right);
2045    
2046     if (replacement != null) {
2047     // Link replacement to parent
2048     replacement.parent = p.parent;
2049     if (p.parent == null)
2050     root = replacement;
2051     else if (p == p.parent.left)
2052     p.parent.left = replacement;
2053     else
2054     p.parent.right = replacement;
2055    
2056     // Null out links so they are OK to use by fixAfterDeletion.
2057     p.left = p.right = p.parent = null;
2058    
2059     // Fix replacement
2060     if (p.color == BLACK)
2061     fixAfterDeletion(replacement);
2062     } else if (p.parent == null) { // return if we are the only node.
2063     root = null;
2064     } else { // No children. Use self as phantom replacement and unlink.
2065     if (p.color == BLACK)
2066     fixAfterDeletion(p);
2067    
2068     if (p.parent != null) {
2069     if (p == p.parent.left)
2070     p.parent.left = null;
2071     else if (p == p.parent.right)
2072     p.parent.right = null;
2073     p.parent = null;
2074     }
2075     }
2076     }
2077    
2078     /** From CLR **/
2079     private void fixAfterDeletion(Entry<K,V> x) {
2080     while (x != root && colorOf(x) == BLACK) {
2081     if (x == leftOf(parentOf(x))) {
2082     Entry<K,V> sib = rightOf(parentOf(x));
2083    
2084     if (colorOf(sib) == RED) {
2085     setColor(sib, BLACK);
2086     setColor(parentOf(x), RED);
2087     rotateLeft(parentOf(x));
2088     sib = rightOf(parentOf(x));
2089     }
2090    
2091     if (colorOf(leftOf(sib)) == BLACK &&
2092     colorOf(rightOf(sib)) == BLACK) {
2093     setColor(sib, RED);
2094     x = parentOf(x);
2095     } else {
2096     if (colorOf(rightOf(sib)) == BLACK) {
2097     setColor(leftOf(sib), BLACK);
2098     setColor(sib, RED);
2099     rotateRight(sib);
2100     sib = rightOf(parentOf(x));
2101     }
2102     setColor(sib, colorOf(parentOf(x)));
2103     setColor(parentOf(x), BLACK);
2104     setColor(rightOf(sib), BLACK);
2105     rotateLeft(parentOf(x));
2106     x = root;
2107     }
2108     } else { // symmetric
2109     Entry<K,V> sib = leftOf(parentOf(x));
2110    
2111     if (colorOf(sib) == RED) {
2112     setColor(sib, BLACK);
2113     setColor(parentOf(x), RED);
2114     rotateRight(parentOf(x));
2115     sib = leftOf(parentOf(x));
2116     }
2117    
2118     if (colorOf(rightOf(sib)) == BLACK &&
2119     colorOf(leftOf(sib)) == BLACK) {
2120     setColor(sib, RED);
2121     x = parentOf(x);
2122     } else {
2123     if (colorOf(leftOf(sib)) == BLACK) {
2124     setColor(rightOf(sib), BLACK);
2125     setColor(sib, RED);
2126     rotateLeft(sib);
2127     sib = leftOf(parentOf(x));
2128     }
2129     setColor(sib, colorOf(parentOf(x)));
2130     setColor(parentOf(x), BLACK);
2131     setColor(leftOf(sib), BLACK);
2132     rotateRight(parentOf(x));
2133     x = root;
2134     }
2135     }
2136     }
2137    
2138     setColor(x, BLACK);
2139     }
2140    
2141     private static final long serialVersionUID = 919286545866124006L;
2142    
2143     /**
2144     * Save the state of the <tt>TreeMap</tt> instance to a stream (i.e.,
2145     * serialize it).
2146     *
2147     * @serialData The <i>size</i> of the TreeMap (the number of key-value
2148     * mappings) is emitted (int), followed by the key (Object)
2149     * and value (Object) for each key-value mapping represented
2150     * by the TreeMap. The key-value mappings are emitted in
2151     * key-order (as determined by the TreeMap's Comparator,
2152     * or by the keys' natural ordering if the TreeMap has no
2153     * Comparator).
2154     */
2155     private void writeObject(java.io.ObjectOutputStream s)
2156     throws java.io.IOException {
2157     // Write out the Comparator and any hidden stuff
2158     s.defaultWriteObject();
2159    
2160     // Write out size (number of Mappings)
2161     s.writeInt(size);
2162    
2163 dl 1.7 Set<Map.Entry<K,V>> es = entrySet();
2164 dl 1.1 // Write out keys and values (alternating)
2165 dl 1.7 for (Iterator<Map.Entry<K,V>> i = es.iterator(); i.hasNext(); ) {
2166 dl 1.1 Map.Entry<K,V> e = i.next();
2167     s.writeObject(e.getKey());
2168     s.writeObject(e.getValue());
2169     }
2170     }
2171    
2172    
2173    
2174     /**
2175     * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2176     * deserialize it).
2177     */
2178     private void readObject(final java.io.ObjectInputStream s)
2179     throws java.io.IOException, ClassNotFoundException {
2180     // Read in the Comparator and any hidden stuff
2181     s.defaultReadObject();
2182    
2183     // Read in size
2184     int size = s.readInt();
2185    
2186     buildFromSorted(size, null, s, null);
2187     }
2188    
2189     /** Intended to be called only from TreeSet.readObject **/
2190     void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2191     throws java.io.IOException, ClassNotFoundException {
2192     buildFromSorted(size, null, s, defaultVal);
2193     }
2194    
2195     /** Intended to be called only from TreeSet.addAll **/
2196     void addAllForTreeSet(SortedSet<Map.Entry<K,V>> set, V defaultVal) {
2197     try {
2198     buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2199     } catch (java.io.IOException cannotHappen) {
2200     } catch (ClassNotFoundException cannotHappen) {
2201     }
2202     }
2203    
2204    
2205     /**
2206     * Linear time tree building algorithm from sorted data. Can accept keys
2207     * and/or values from iterator or stream. This leads to too many
2208     * parameters, but seems better than alternatives. The four formats
2209     * that this method accepts are:
2210     *
2211     * 1) An iterator of Map.Entries. (it != null, defaultVal == null).
2212     * 2) An iterator of keys. (it != null, defaultVal != null).
2213     * 3) A stream of alternating serialized keys and values.
2214     * (it == null, defaultVal == null).
2215     * 4) A stream of serialized keys. (it == null, defaultVal != null).
2216     *
2217     * It is assumed that the comparator of the TreeMap is already set prior
2218     * to calling this method.
2219     *
2220     * @param size the number of keys (or key-value pairs) to be read from
2221     * the iterator or stream.
2222     * @param it If non-null, new entries are created from entries
2223     * or keys read from this iterator.
2224     * @param str If non-null, new entries are created from keys and
2225     * possibly values read from this stream in serialized form.
2226     * Exactly one of it and str should be non-null.
2227     * @param defaultVal if non-null, this default value is used for
2228     * each value in the map. If null, each value is read from
2229     * iterator or stream, as described above.
2230     * @throws IOException propagated from stream reads. This cannot
2231     * occur if str is null.
2232     * @throws ClassNotFoundException propagated from readObject.
2233     * This cannot occur if str is null.
2234     */
2235     private
2236     void buildFromSorted(int size, Iterator it,
2237     java.io.ObjectInputStream str,
2238     V defaultVal)
2239     throws java.io.IOException, ClassNotFoundException {
2240     this.size = size;
2241     root =
2242     buildFromSorted(0, 0, size-1, computeRedLevel(size),
2243     it, str, defaultVal);
2244     }
2245    
2246     /**
2247     * Recursive "helper method" that does the real work of the
2248     * of the previous method. Identically named parameters have
2249     * identical definitions. Additional parameters are documented below.
2250     * It is assumed that the comparator and size fields of the TreeMap are
2251     * already set prior to calling this method. (It ignores both fields.)
2252     *
2253     * @param level the current level of tree. Initial call should be 0.
2254     * @param lo the first element index of this subtree. Initial should be 0.
2255     * @param hi the last element index of this subtree. Initial should be
2256     * size-1.
2257     * @param redLevel the level at which nodes should be red.
2258     * Must be equal to computeRedLevel for tree of this size.
2259     */
2260     private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2261     int redLevel,
2262     Iterator it,
2263     java.io.ObjectInputStream str,
2264     V defaultVal)
2265     throws java.io.IOException, ClassNotFoundException {
2266     /*
2267     * Strategy: The root is the middlemost element. To get to it, we
2268     * have to first recursively construct the entire left subtree,
2269     * so as to grab all of its elements. We can then proceed with right
2270     * subtree.
2271     *
2272     * The lo and hi arguments are the minimum and maximum
2273     * indices to pull out of the iterator or stream for current subtree.
2274     * They are not actually indexed, we just proceed sequentially,
2275     * ensuring that items are extracted in corresponding order.
2276     */
2277    
2278     if (hi < lo) return null;
2279    
2280     int mid = (lo + hi) / 2;
2281    
2282     Entry<K,V> left = null;
2283     if (lo < mid)
2284     left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2285     it, str, defaultVal);
2286    
2287     // extract key and/or value from iterator or stream
2288     K key;
2289     V value;
2290     if (it != null) {
2291     if (defaultVal==null) {
2292     Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
2293     key = entry.getKey();
2294     value = entry.getValue();
2295     } else {
2296     key = (K)it.next();
2297     value = defaultVal;
2298     }
2299     } else { // use stream
2300     key = (K) str.readObject();
2301     value = (defaultVal != null ? defaultVal : (V) str.readObject());
2302     }
2303    
2304     Entry<K,V> middle = new Entry<K,V>(key, value, null);
2305    
2306     // color nodes in non-full bottommost level red
2307     if (level == redLevel)
2308     middle.color = RED;
2309    
2310     if (left != null) {
2311     middle.left = left;
2312     left.parent = middle;
2313     }
2314    
2315     if (mid < hi) {
2316     Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2317     it, str, defaultVal);
2318     middle.right = right;
2319     right.parent = middle;
2320     }
2321    
2322     return middle;
2323     }
2324    
2325     /**
2326     * Find the level down to which to assign all nodes BLACK. This is the
2327     * last `full' level of the complete binary tree produced by
2328     * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2329     * set of color assignments wrt future insertions.) This level number is
2330     * computed by finding the number of splits needed to reach the zeroeth
2331     * node. (The answer is ~lg(N), but in any case must be computed by same
2332     * quick O(lg(N)) loop.)
2333     */
2334     private static int computeRedLevel(int sz) {
2335     int level = 0;
2336     for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2337     level++;
2338     return level;
2339     }
2340    
2341     }