ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
Revision: 1.21
Committed: Fri Jun 24 00:26:57 2005 UTC (18 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.20: +2 -2 lines
Log Message:
doc fixes

File Contents

# User Rev Content
1 dl 1.1 /*
2     * %W% %E%
3     *
4 jsr166 1.10 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 dl 1.1 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8 dl 1.8 package java.util;
9 jsr166 1.19 import java.util.*; // for javadoc (till 6280605 is fixed)
10 dl 1.1
11     /**
12 jsr166 1.14 * A Red-Black tree based {@link NavigableMap} implementation.
13     * The map is sorted according to the {@linkplain Comparable natural
14     * ordering} of its keys, or by a {@link Comparator} provided at map
15     * creation time, depending on which constructor is used.
16 dl 1.1 *
17 jsr166 1.14 * <p>This implementation provides guaranteed log(n) time cost for the
18 dl 1.1 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
19     * operations. Algorithms are adaptations of those in Cormen, Leiserson, and
20 jsr166 1.14 * Rivest's <I>Introduction to Algorithms</I>.
21 dl 1.1 *
22 jsr166 1.14 * <p>Note that the ordering maintained by a sorted map (whether or not an
23 dl 1.1 * explicit comparator is provided) must be <i>consistent with equals</i> if
24     * this sorted map is to correctly implement the <tt>Map</tt> interface. (See
25     * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
26     * <i>consistent with equals</i>.) This is so because the <tt>Map</tt>
27     * interface is defined in terms of the equals operation, but a map performs
28     * all key comparisons using its <tt>compareTo</tt> (or <tt>compare</tt>)
29     * method, so two keys that are deemed equal by this method are, from the
30     * standpoint of the sorted map, equal. The behavior of a sorted map
31     * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
32 jsr166 1.14 * just fails to obey the general contract of the <tt>Map</tt> interface.
33 dl 1.1 *
34 jsr166 1.14 * <p><b>Note that this implementation is not synchronized.</b> If multiple
35 dl 1.1 * threads access a map concurrently, and at least one of the threads modifies
36     * the map structurally, it <i>must</i> be synchronized externally. (A
37     * structural modification is any operation that adds or deletes one or more
38     * mappings; merely changing the value associated with an existing key is not
39     * a structural modification.) This is typically accomplished by
40     * synchronizing on some object that naturally encapsulates the map. If no
41     * such object exists, the map should be "wrapped" using the
42     * <tt>Collections.synchronizedMap</tt> method. This is best done at creation
43     * time, to prevent accidental unsynchronized access to the map:
44     * <pre>
45     * Map m = Collections.synchronizedMap(new TreeMap(...));
46 jsr166 1.14 * </pre>
47 dl 1.1 *
48 jsr166 1.14 * <p>The iterators returned by the <tt>iterator</tt> method of the collections
49     * returned by all of this class's "collection view methods" are
50 dl 1.1 * <i>fail-fast</i>: if the map is structurally modified at any time after the
51     * iterator is created, in any way except through the iterator's own
52 jsr166 1.14 * <tt>remove</tt> method, the iterator will throw a {@link
53     * ConcurrentModificationException}. Thus, in the face of concurrent
54 dl 1.1 * modification, the iterator fails quickly and cleanly, rather than risking
55 jsr166 1.14 * arbitrary, non-deterministic behavior at an undetermined time in the future.
56 dl 1.1 *
57     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
58     * as it is, generally speaking, impossible to make any hard guarantees in the
59     * presence of unsynchronized concurrent modification. Fail-fast iterators
60     * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
61     * Therefore, it would be wrong to write a program that depended on this
62     * exception for its correctness: <i>the fail-fast behavior of iterators
63 dl 1.5 * should be used only to detect bugs.</i>
64 dl 1.1 *
65     * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
66     * and its views represent snapshots of mappings at the time they were
67     * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
68     * method. (Note however that it is possible to change mappings in the
69     * associated map using <tt>put</tt>.)
70     *
71     * <p>This class is a member of the
72     * <a href="{@docRoot}/../guide/collections/index.html">
73     * Java Collections Framework</a>.
74     *
75 jsr166 1.14 * @param <K> the type of keys maintained by this map
76     * @param <V> the type of mapped values
77     *
78 dl 1.1 * @author Josh Bloch and Doug Lea
79     * @version %I%, %G%
80     * @see Map
81     * @see HashMap
82     * @see Hashtable
83     * @see Comparable
84     * @see Comparator
85     * @see Collection
86     * @see Collections#synchronizedMap(Map)
87     * @since 1.2
88     */
89    
90     public class TreeMap<K,V>
91     extends AbstractMap<K,V>
92     implements NavigableMap<K,V>, Cloneable, java.io.Serializable
93     {
94     /**
95 jsr166 1.14 * The comparator used to maintain order in this tree map, or
96     * null if it uses the natural ordering of its keys.
97 dl 1.1 *
98     * @serial
99     */
100     private Comparator<? super K> comparator = null;
101    
102     private transient Entry<K,V> root = null;
103    
104     /**
105     * The number of entries in the tree
106     */
107     private transient int size = 0;
108    
109     /**
110     * The number of structural modifications to the tree.
111     */
112     private transient int modCount = 0;
113    
114     private void incrementSize() { modCount++; size++; }
115     private void decrementSize() { modCount++; size--; }
116    
117     /**
118 jsr166 1.14 * Constructs a new, empty tree map, using the natural ordering of its
119     * keys. All keys inserted into the map must implement the {@link
120     * Comparable} interface. Furthermore, all such keys must be
121     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
122     * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
123     * <tt>k2</tt> in the map. If the user attempts to put a key into the
124     * map that violates this constraint (for example, the user attempts to
125     * put a string key into a map whose keys are integers), the
126     * <tt>put(Object key, Object value)</tt> call will throw a
127     * <tt>ClassCastException</tt>.
128 dl 1.1 */
129     public TreeMap() {
130     }
131    
132     /**
133 jsr166 1.14 * Constructs a new, empty tree map, ordered according to the given
134     * comparator. All keys inserted into the map must be <i>mutually
135     * comparable</i> by the given comparator: <tt>comparator.compare(k1,
136     * k2)</tt> must not throw a <tt>ClassCastException</tt> for any keys
137     * <tt>k1</tt> and <tt>k2</tt> in the map. If the user attempts to put
138     * a key into the map that violates this constraint, the <tt>put(Object
139     * key, Object value)</tt> call will throw a
140     * <tt>ClassCastException</tt>.
141     *
142     * @param comparator the comparator that will be used to order this map.
143     * If <tt>null</tt>, the {@linkplain Comparable natural
144     * ordering} of the keys will be used.
145     */
146     public TreeMap(Comparator<? super K> comparator) {
147     this.comparator = comparator;
148 dl 1.1 }
149    
150     /**
151 jsr166 1.14 * Constructs a new tree map containing the same mappings as the given
152     * map, ordered according to the <i>natural ordering</i> of its keys.
153     * All keys inserted into the new map must implement the {@link
154     * Comparable} interface. Furthermore, all such keys must be
155     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
156     * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
157     * <tt>k2</tt> in the map. This method runs in n*log(n) time.
158     *
159     * @param m the map whose mappings are to be placed in this map
160     * @throws ClassCastException if the keys in m are not {@link Comparable},
161     * or are not mutually comparable
162     * @throws NullPointerException if the specified map is null
163 dl 1.1 */
164     public TreeMap(Map<? extends K, ? extends V> m) {
165     putAll(m);
166     }
167    
168     /**
169 jsr166 1.14 * Constructs a new tree map containing the same mappings and
170     * using the same ordering as the specified sorted map. This
171     * method runs in linear time.
172 dl 1.1 *
173     * @param m the sorted map whose mappings are to be placed in this map,
174 jsr166 1.14 * and whose comparator is to be used to sort this map
175     * @throws NullPointerException if the specified map is null
176 dl 1.1 */
177     public TreeMap(SortedMap<K, ? extends V> m) {
178     comparator = m.comparator();
179     try {
180     buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
181     } catch (java.io.IOException cannotHappen) {
182     } catch (ClassNotFoundException cannotHappen) {
183     }
184     }
185    
186    
187     // Query Operations
188    
189     /**
190     * Returns the number of key-value mappings in this map.
191     *
192 jsr166 1.14 * @return the number of key-value mappings in this map
193 dl 1.1 */
194     public int size() {
195     return size;
196     }
197    
198     /**
199     * Returns <tt>true</tt> if this map contains a mapping for the specified
200     * key.
201     *
202 jsr166 1.14 * @param key key whose presence in this map is to be tested
203 dl 1.1 * @return <tt>true</tt> if this map contains a mapping for the
204 jsr166 1.14 * specified key
205     * @throws ClassCastException if the specified key cannot be compared
206     * with the keys currently in the map
207     * @throws NullPointerException if the specified key is null
208     * and this map uses natural ordering, or its comparator
209     * does not permit null keys
210 dl 1.1 */
211     public boolean containsKey(Object key) {
212     return getEntry(key) != null;
213     }
214    
215     /**
216     * Returns <tt>true</tt> if this map maps one or more keys to the
217     * specified value. More formally, returns <tt>true</tt> if and only if
218     * this map contains at least one mapping to a value <tt>v</tt> such
219     * that <tt>(value==null ? v==null : value.equals(v))</tt>. This
220 jsr166 1.19 * operation will probably require time linear in the map size for
221     * most implementations.
222 dl 1.1 *
223 jsr166 1.14 * @param value value whose presence in this map is to be tested
224     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
225     * <tt>false</tt> otherwise
226 dl 1.1 * @since 1.2
227     */
228     public boolean containsValue(Object value) {
229     return (root==null ? false :
230     (value==null ? valueSearchNull(root)
231     : valueSearchNonNull(root, value)));
232     }
233    
234     private boolean valueSearchNull(Entry n) {
235     if (n.value == null)
236     return true;
237    
238     // Check left and right subtrees for value
239     return (n.left != null && valueSearchNull(n.left)) ||
240     (n.right != null && valueSearchNull(n.right));
241     }
242    
243     private boolean valueSearchNonNull(Entry n, Object value) {
244     // Check this node for the value
245     if (value.equals(n.value))
246     return true;
247    
248     // Check left and right subtrees for value
249     return (n.left != null && valueSearchNonNull(n.left, value)) ||
250     (n.right != null && valueSearchNonNull(n.right, value));
251     }
252    
253     /**
254 jsr166 1.14 * Returns the value to which this map maps the specified key, or
255     * <tt>null</tt> if the map contains no mapping for the key. A return
256 dl 1.1 * value of <tt>null</tt> does not <i>necessarily</i> indicate that the
257     * map contains no mapping for the key; it's also possible that the map
258 jsr166 1.21 * explicitly maps the key to <tt>null</tt>. The {@link #containsKey
259     * containsKey} operation may be used to distinguish these two cases.
260 dl 1.1 *
261 jsr166 1.14 * @param key key whose associated value is to be returned
262 dl 1.1 * @return the value to which this map maps the specified key, or
263 jsr166 1.14 * <tt>null</tt> if the map contains no mapping for the key
264     * @throws ClassCastException if the specified key cannot be compared
265     * with the keys currently in the map
266     * @throws NullPointerException if the specified key is null
267     * and this map uses natural ordering, or its comparator
268     * does not permit null keys
269 dl 1.1 */
270     public V get(Object key) {
271     Entry<K,V> p = getEntry(key);
272     return (p==null ? null : p.value);
273     }
274    
275     public Comparator<? super K> comparator() {
276     return comparator;
277     }
278    
279     /**
280 jsr166 1.14 * @throws NoSuchElementException {@inheritDoc}
281 dl 1.1 */
282     public K firstKey() {
283     return key(getFirstEntry());
284     }
285    
286     /**
287 jsr166 1.14 * @throws NoSuchElementException {@inheritDoc}
288 dl 1.1 */
289     public K lastKey() {
290     return key(getLastEntry());
291     }
292    
293     /**
294 jsr166 1.14 * Copies all of the mappings from the specified map to this map.
295     * These mappings replace any mappings that this map had for any
296     * of the keys currently in the specified map.
297     *
298     * @param map mappings to be stored in this map
299     * @throws ClassCastException if the class of a key or value in
300     * the specified map prevents it from being stored in this map
301     * @throws NullPointerException if the specified map is null or
302     * the specified map contains a null key and this map does not
303     * permit null keys
304 dl 1.1 */
305     public void putAll(Map<? extends K, ? extends V> map) {
306     int mapSize = map.size();
307     if (size==0 && mapSize!=0 && map instanceof SortedMap) {
308     Comparator c = ((SortedMap)map).comparator();
309     if (c == comparator || (c != null && c.equals(comparator))) {
310     ++modCount;
311     try {
312     buildFromSorted(mapSize, map.entrySet().iterator(),
313     null, null);
314     } catch (java.io.IOException cannotHappen) {
315     } catch (ClassNotFoundException cannotHappen) {
316     }
317     return;
318     }
319     }
320     super.putAll(map);
321     }
322    
323     /**
324     * Returns this map's entry for the given key, or <tt>null</tt> if the map
325     * does not contain an entry for the key.
326     *
327     * @return this map's entry for the given key, or <tt>null</tt> if the map
328 jsr166 1.14 * does not contain an entry for the key
329     * @throws ClassCastException if the specified key cannot be compared
330     * with the keys currently in the map
331     * @throws NullPointerException if the specified key is null
332     * and this map uses natural ordering, or its comparator
333     * does not permit null keys
334 dl 1.1 */
335     private Entry<K,V> getEntry(Object key) {
336     // Offload comparator-based version for sake of performance
337     if (comparator != null)
338     return getEntryUsingComparator(key);
339 jsr166 1.12 Comparable<? super K> k = (Comparable<? super K>) key;
340 dl 1.1 Entry<K,V> p = root;
341     while (p != null) {
342     int cmp = k.compareTo(p.key);
343     if (cmp < 0)
344     p = p.left;
345     else if (cmp > 0)
346     p = p.right;
347     else
348     return p;
349     }
350     return null;
351     }
352    
353     /**
354     * Version of getEntry using comparator. Split off from getEntry
355     * for performance. (This is not worth doing for most methods,
356     * that are less dependent on comparator performance, but is
357     * worthwhile here.)
358     */
359     private Entry<K,V> getEntryUsingComparator(Object key) {
360     K k = (K) key;
361     Comparator<? super K> cpr = comparator;
362     Entry<K,V> p = root;
363     while (p != null) {
364     int cmp = cpr.compare(k, p.key);
365     if (cmp < 0)
366     p = p.left;
367     else if (cmp > 0)
368     p = p.right;
369     else
370     return p;
371     }
372     return null;
373     }
374    
375     /**
376     * Gets the entry corresponding to the specified key; if no such entry
377     * exists, returns the entry for the least key greater than the specified
378     * key; if no such entry exists (i.e., the greatest key in the Tree is less
379     * than the specified key), returns <tt>null</tt>.
380     */
381     private Entry<K,V> getCeilingEntry(K key) {
382     Entry<K,V> p = root;
383     if (p==null)
384     return null;
385    
386     while (true) {
387     int cmp = compare(key, p.key);
388     if (cmp < 0) {
389     if (p.left != null)
390     p = p.left;
391     else
392     return p;
393     } else if (cmp > 0) {
394     if (p.right != null) {
395     p = p.right;
396     } else {
397     Entry<K,V> parent = p.parent;
398     Entry<K,V> ch = p;
399     while (parent != null && ch == parent.right) {
400     ch = parent;
401     parent = parent.parent;
402     }
403     return parent;
404     }
405     } else
406     return p;
407     }
408     }
409    
410     /**
411     * Gets the entry corresponding to the specified key; if no such entry
412     * exists, returns the entry for the greatest key less than the specified
413     * key; if no such entry exists, returns <tt>null</tt>.
414     */
415     private Entry<K,V> getFloorEntry(K key) {
416     Entry<K,V> p = root;
417     if (p==null)
418     return null;
419    
420     while (true) {
421     int cmp = compare(key, p.key);
422     if (cmp > 0) {
423     if (p.right != null)
424     p = p.right;
425     else
426     return p;
427     } else if (cmp < 0) {
428     if (p.left != null) {
429     p = p.left;
430     } else {
431     Entry<K,V> parent = p.parent;
432     Entry<K,V> ch = p;
433     while (parent != null && ch == parent.left) {
434     ch = parent;
435     parent = parent.parent;
436     }
437     return parent;
438     }
439     } else
440     return p;
441    
442     }
443     }
444    
445     /**
446     * Gets the entry for the least key greater than the specified
447     * key; if no such entry exists, returns the entry for the least
448     * key greater than the specified key; if no such entry exists
449     * returns <tt>null</tt>.
450     */
451     private Entry<K,V> getHigherEntry(K key) {
452     Entry<K,V> p = root;
453     if (p==null)
454     return null;
455    
456     while (true) {
457     int cmp = compare(key, p.key);
458     if (cmp < 0) {
459     if (p.left != null)
460     p = p.left;
461     else
462     return p;
463     } else {
464     if (p.right != null) {
465     p = p.right;
466     } else {
467     Entry<K,V> parent = p.parent;
468     Entry<K,V> ch = p;
469     while (parent != null && ch == parent.right) {
470     ch = parent;
471     parent = parent.parent;
472     }
473     return parent;
474     }
475     }
476     }
477     }
478    
479     /**
480     * Returns the entry for the greatest key less than the specified key; if
481     * no such entry exists (i.e., the least key in the Tree is greater than
482     * the specified key), returns <tt>null</tt>.
483     */
484     private Entry<K,V> getLowerEntry(K key) {
485     Entry<K,V> p = root;
486     if (p==null)
487     return null;
488    
489     while (true) {
490     int cmp = compare(key, p.key);
491     if (cmp > 0) {
492     if (p.right != null)
493     p = p.right;
494     else
495     return p;
496     } else {
497     if (p.left != null) {
498     p = p.left;
499     } else {
500     Entry<K,V> parent = p.parent;
501     Entry<K,V> ch = p;
502     while (parent != null && ch == parent.left) {
503     ch = parent;
504     parent = parent.parent;
505     }
506     return parent;
507     }
508     }
509     }
510     }
511    
512     /**
513 jsr166 1.14 * Returns the key corresponding to the specified Entry.
514     * @throws NoSuchElementException if the Entry is null
515 dl 1.1 */
516     private static <K> K key(Entry<K,?> e) {
517     if (e==null)
518     throw new NoSuchElementException();
519     return e.key;
520     }
521    
522     /**
523     * Associates the specified value with the specified key in this map.
524 jsr166 1.20 * If the map previously contained a mapping for the key, the old
525 dl 1.1 * value is replaced.
526     *
527 jsr166 1.14 * @param key key with which the specified value is to be associated
528     * @param value value to be associated with the specified key
529 dl 1.1 *
530 jsr166 1.14 * @return the previous value associated with <tt>key</tt>, or
531     * <tt>null</tt> if there was no mapping for <tt>key</tt>.
532     * (A <tt>null</tt> return can also indicate that the map
533     * previously associated <tt>null</tt> with <tt>key</tt>.)
534     * @throws ClassCastException if the specified key cannot be compared
535     * with the keys currently in the map
536     * @throws NullPointerException if the specified key is null
537     * and this map uses natural ordering, or its comparator
538     * does not permit null keys
539 dl 1.1 */
540     public V put(K key, V value) {
541     Entry<K,V> t = root;
542    
543     if (t == null) {
544 dl 1.13 if (key == null) {
545     if (comparator == null)
546     throw new NullPointerException();
547     comparator.compare(key, key);
548     }
549 dl 1.1 incrementSize();
550     root = new Entry<K,V>(key, value, null);
551     return null;
552 dl 1.8 }
553 dl 1.1
554     while (true) {
555     int cmp = compare(key, t.key);
556     if (cmp == 0) {
557     return t.setValue(value);
558     } else if (cmp < 0) {
559     if (t.left != null) {
560     t = t.left;
561     } else {
562     incrementSize();
563     t.left = new Entry<K,V>(key, value, t);
564     fixAfterInsertion(t.left);
565     return null;
566     }
567     } else { // cmp > 0
568     if (t.right != null) {
569     t = t.right;
570     } else {
571     incrementSize();
572     t.right = new Entry<K,V>(key, value, t);
573     fixAfterInsertion(t.right);
574     return null;
575     }
576     }
577     }
578     }
579    
580     /**
581     * Removes the mapping for this key from this TreeMap if present.
582     *
583     * @param key key for which mapping should be removed
584 jsr166 1.14 * @return the previous value associated with <tt>key</tt>, or
585     * <tt>null</tt> if there was no mapping for <tt>key</tt>.
586     * (A <tt>null</tt> return can also indicate that the map
587     * previously associated <tt>null</tt> with <tt>key</tt>.)
588     * @throws ClassCastException if the specified key cannot be compared
589     * with the keys currently in the map
590     * @throws NullPointerException if the specified key is null
591     * and this map uses natural ordering, or its comparator
592     * does not permit null keys
593 dl 1.1 */
594     public V remove(Object key) {
595     Entry<K,V> p = getEntry(key);
596     if (p == null)
597     return null;
598    
599     V oldValue = p.value;
600     deleteEntry(p);
601     return oldValue;
602     }
603    
604     /**
605 jsr166 1.14 * Removes all of the mappings from this map.
606     * The map will be empty after this call returns.
607 dl 1.1 */
608     public void clear() {
609     modCount++;
610     size = 0;
611     root = null;
612     }
613    
614     /**
615     * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
616     * values themselves are not cloned.)
617     *
618 jsr166 1.14 * @return a shallow copy of this map
619 dl 1.1 */
620     public Object clone() {
621     TreeMap<K,V> clone = null;
622     try {
623     clone = (TreeMap<K,V>) super.clone();
624     } catch (CloneNotSupportedException e) {
625     throw new InternalError();
626     }
627    
628     // Put clone into "virgin" state (except for comparator)
629     clone.root = null;
630     clone.size = 0;
631     clone.modCount = 0;
632     clone.entrySet = null;
633     clone.descendingEntrySet = null;
634     clone.descendingKeySet = null;
635    
636     // Initialize clone with our mappings
637     try {
638     clone.buildFromSorted(size, entrySet().iterator(), null, null);
639     } catch (java.io.IOException cannotHappen) {
640     } catch (ClassNotFoundException cannotHappen) {
641     }
642    
643     return clone;
644     }
645    
646     // NavigableMap API methods
647    
648     public Map.Entry<K,V> firstEntry() {
649     Entry<K,V> e = getFirstEntry();
650 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
651 dl 1.1 }
652    
653     public Map.Entry<K,V> lastEntry() {
654     Entry<K,V> e = getLastEntry();
655 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
656 dl 1.1 }
657    
658     public Map.Entry<K,V> pollFirstEntry() {
659     Entry<K,V> p = getFirstEntry();
660 dl 1.8 if (p == null)
661 dl 1.1 return null;
662 dl 1.16 Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
663 dl 1.1 deleteEntry(p);
664     return result;
665     }
666    
667     public Map.Entry<K,V> pollLastEntry() {
668     Entry<K,V> p = getLastEntry();
669 dl 1.8 if (p == null)
670 dl 1.1 return null;
671 dl 1.16 Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
672 dl 1.1 deleteEntry(p);
673     return result;
674     }
675    
676     /**
677 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
678     * @throws NullPointerException if the specified key is null
679     * and this map uses natural ordering, or its comparator
680     * does not permit null keys
681 dl 1.1 */
682 jsr166 1.14 public Map.Entry<K,V> lowerEntry(K key) {
683     Entry<K,V> e = getLowerEntry(key);
684 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
685 dl 1.1 }
686    
687     /**
688 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
689     * @throws NullPointerException if the specified key is null
690     * and this map uses natural ordering, or its comparator
691     * does not permit null keys
692 dl 1.1 */
693 jsr166 1.14 public K lowerKey(K key) {
694     Entry<K,V> e = getLowerEntry(key);
695 dl 1.1 return (e == null)? null : e.key;
696     }
697    
698     /**
699 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
700     * @throws NullPointerException if the specified key is null
701     * and this map uses natural ordering, or its comparator
702     * does not permit null keys
703 dl 1.1 */
704     public Map.Entry<K,V> floorEntry(K key) {
705     Entry<K,V> e = getFloorEntry(key);
706 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
707 dl 1.1 }
708    
709     /**
710 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
711     * @throws NullPointerException if the specified key is null
712     * and this map uses natural ordering, or its comparator
713     * does not permit null keys
714 dl 1.1 */
715     public K floorKey(K key) {
716     Entry<K,V> e = getFloorEntry(key);
717     return (e == null)? null : e.key;
718     }
719    
720     /**
721 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
722     * @throws NullPointerException if the specified key is null
723     * and this map uses natural ordering, or its comparator
724     * does not permit null keys
725 dl 1.1 */
726 jsr166 1.14 public Map.Entry<K,V> ceilingEntry(K key) {
727     Entry<K,V> e = getCeilingEntry(key);
728 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
729 dl 1.1 }
730    
731     /**
732 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
733     * @throws NullPointerException if the specified key is null
734     * and this map uses natural ordering, or its comparator
735     * does not permit null keys
736 dl 1.1 */
737 jsr166 1.14 public K ceilingKey(K key) {
738     Entry<K,V> e = getCeilingEntry(key);
739 dl 1.1 return (e == null)? null : e.key;
740     }
741    
742     /**
743 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
744     * @throws NullPointerException if the specified key is null
745     * and this map uses natural ordering, or its comparator
746     * does not permit null keys
747 dl 1.1 */
748 jsr166 1.14 public Map.Entry<K,V> higherEntry(K key) {
749     Entry<K,V> e = getHigherEntry(key);
750 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
751 dl 1.1 }
752    
753     /**
754 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
755     * @throws NullPointerException if the specified key is null
756     * and this map uses natural ordering, or its comparator
757     * does not permit null keys
758 dl 1.1 */
759 jsr166 1.14 public K higherKey(K key) {
760     Entry<K,V> e = getHigherEntry(key);
761 dl 1.1 return (e == null)? null : e.key;
762     }
763    
764     // Views
765    
766     /**
767     * Fields initialized to contain an instance of the entry set view
768     * the first time this view is requested. Views are stateless, so
769     * there's no reason to create more than one.
770     */
771     private transient Set<Map.Entry<K,V>> entrySet = null;
772     private transient Set<Map.Entry<K,V>> descendingEntrySet = null;
773 dl 1.8 private transient Set<K> descendingKeySet = null;
774 dl 1.1
775     /**
776 jsr166 1.14 * Returns a {@link Set} view of the keys contained in this map.
777     * The set's iterator returns the keys in ascending order.
778     * The set is backed by the map, so changes to the map are
779     * reflected in the set, and vice-versa. If the map is modified
780     * while an iteration over the set is in progress (except through
781     * the iterator's own <tt>remove</tt> operation), the results of
782     * the iteration are undefined. The set supports element removal,
783     * which removes the corresponding mapping from the map, via the
784     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
785 jsr166 1.15 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
786     * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
787 jsr166 1.14 * operations.
788 dl 1.1 */
789     public Set<K> keySet() {
790     Set<K> ks = keySet;
791     return (ks != null) ? ks : (keySet = new KeySet());
792     }
793    
794     class KeySet extends AbstractSet<K> {
795     public Iterator<K> iterator() {
796     return new KeyIterator(getFirstEntry());
797     }
798 dl 1.8
799 dl 1.1 public int size() {
800     return TreeMap.this.size();
801     }
802 dl 1.8
803 dl 1.1 public boolean contains(Object o) {
804     return containsKey(o);
805     }
806 dl 1.8
807 dl 1.1 public boolean remove(Object o) {
808     int oldSize = size;
809     TreeMap.this.remove(o);
810     return size != oldSize;
811     }
812 dl 1.8
813 dl 1.1 public void clear() {
814     TreeMap.this.clear();
815     }
816     }
817    
818     /**
819 jsr166 1.14 * Returns a {@link Collection} view of the values contained in this map.
820     * The collection's iterator returns the values in ascending order
821     * of the corresponding keys.
822     * The collection is backed by the map, so changes to the map are
823     * reflected in the collection, and vice-versa. If the map is
824     * modified while an iteration over the collection is in progress
825     * (except through the iterator's own <tt>remove</tt> operation),
826     * the results of the iteration are undefined. The collection
827     * supports element removal, which removes the corresponding
828     * mapping from the map, via the <tt>Iterator.remove</tt>,
829     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
830     * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
831 jsr166 1.15 * support the <tt>add</tt> or <tt>addAll</tt> operations.
832 dl 1.1 */
833     public Collection<V> values() {
834     Collection<V> vs = values;
835     return (vs != null) ? vs : (values = new Values());
836     }
837    
838     class Values extends AbstractCollection<V> {
839     public Iterator<V> iterator() {
840     return new ValueIterator(getFirstEntry());
841     }
842 dl 1.8
843 dl 1.1 public int size() {
844     return TreeMap.this.size();
845     }
846 dl 1.8
847 dl 1.1 public boolean contains(Object o) {
848     for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
849     if (valEquals(e.getValue(), o))
850     return true;
851     return false;
852     }
853 dl 1.8
854 dl 1.1 public boolean remove(Object o) {
855     for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
856     if (valEquals(e.getValue(), o)) {
857     deleteEntry(e);
858     return true;
859     }
860     }
861     return false;
862     }
863 dl 1.8
864 dl 1.1 public void clear() {
865     TreeMap.this.clear();
866     }
867     }
868    
869     /**
870 jsr166 1.14 * Returns a {@link Set} view of the mappings contained in this map.
871     * The set's iterator returns the entries in ascending key order.
872     * The set is backed by the map, so changes to the map are
873     * reflected in the set, and vice-versa. If the map is modified
874     * while an iteration over the set is in progress (except through
875     * the iterator's own <tt>remove</tt> operation, or through the
876     * <tt>setValue</tt> operation on a map entry returned by the
877     * iterator) the results of the iteration are undefined. The set
878     * supports element removal, which removes the corresponding
879     * mapping from the map, via the <tt>Iterator.remove</tt>,
880 dl 1.1 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
881 jsr166 1.14 * <tt>clear</tt> operations. It does not support the
882     * <tt>add</tt> or <tt>addAll</tt> operations.
883 dl 1.1 */
884     public Set<Map.Entry<K,V>> entrySet() {
885     Set<Map.Entry<K,V>> es = entrySet;
886     return (es != null) ? es : (entrySet = new EntrySet());
887     }
888    
889     class EntrySet extends AbstractSet<Map.Entry<K,V>> {
890     public Iterator<Map.Entry<K,V>> iterator() {
891     return new EntryIterator(getFirstEntry());
892     }
893 dl 1.8
894 dl 1.1 public boolean contains(Object o) {
895     if (!(o instanceof Map.Entry))
896     return false;
897     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
898     V value = entry.getValue();
899     Entry<K,V> p = getEntry(entry.getKey());
900     return p != null && valEquals(p.getValue(), value);
901     }
902 dl 1.8
903 dl 1.1 public boolean remove(Object o) {
904     if (!(o instanceof Map.Entry))
905     return false;
906     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
907     V value = entry.getValue();
908     Entry<K,V> p = getEntry(entry.getKey());
909     if (p != null && valEquals(p.getValue(), value)) {
910     deleteEntry(p);
911     return true;
912     }
913     return false;
914     }
915 dl 1.8
916 dl 1.1 public int size() {
917     return TreeMap.this.size();
918     }
919 dl 1.8
920 dl 1.1 public void clear() {
921     TreeMap.this.clear();
922     }
923     }
924    
925     public Set<Map.Entry<K,V>> descendingEntrySet() {
926     Set<Map.Entry<K,V>> es = descendingEntrySet;
927     return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
928     }
929    
930     class DescendingEntrySet extends EntrySet {
931     public Iterator<Map.Entry<K,V>> iterator() {
932     return new DescendingEntryIterator(getLastEntry());
933     }
934     }
935    
936     public Set<K> descendingKeySet() {
937     Set<K> ks = descendingKeySet;
938     return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
939     }
940    
941     class DescendingKeySet extends KeySet {
942     public Iterator<K> iterator() {
943     return new DescendingKeyIterator(getLastEntry());
944     }
945     }
946    
947     /**
948 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
949 dl 1.1 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
950 jsr166 1.14 * null and this map uses natural ordering, or its comparator
951     * does not permit null keys
952     * @throws IllegalArgumentException {@inheritDoc}
953 dl 1.1 */
954 dl 1.4 public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
955 dl 1.1 return new SubMap(fromKey, toKey);
956     }
957    
958     /**
959 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
960     * @throws NullPointerException if <tt>toKey</tt> is null
961     * and this map uses natural ordering, or its comparator
962     * does not permit null keys
963     * @throws IllegalArgumentException {@inheritDoc}
964 dl 1.1 */
965 dl 1.4 public NavigableMap<K,V> navigableHeadMap(K toKey) {
966 dl 1.1 return new SubMap(toKey, true);
967     }
968    
969     /**
970 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
971     * @throws NullPointerException if <tt>fromKey</tt> is null
972     * and this map uses natural ordering, or its comparator
973     * does not permit null keys
974     * @throws IllegalArgumentException {@inheritDoc}
975 dl 1.1 */
976 dl 1.4 public NavigableMap<K,V> navigableTailMap(K fromKey) {
977     return new SubMap(fromKey, false);
978     }
979    
980     /**
981 jsr166 1.14 * Equivalent to {@link #navigableSubMap} but with a return type
982     * conforming to the <tt>SortedMap</tt> interface.
983     *
984     * <p>{@inheritDoc}
985     *
986     * @throws ClassCastException {@inheritDoc}
987 dl 1.4 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
988 jsr166 1.14 * null and this map uses natural ordering, or its comparator
989     * does not permit null keys
990     * @throws IllegalArgumentException {@inheritDoc}
991 dl 1.4 */
992     public SortedMap<K,V> subMap(K fromKey, K toKey) {
993     return new SubMap(fromKey, toKey);
994     }
995    
996     /**
997 jsr166 1.14 * Equivalent to {@link #navigableHeadMap} but with a return type
998     * conforming to the <tt>SortedMap</tt> interface.
999     *
1000     * <p>{@inheritDoc}
1001 dl 1.4 *
1002 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
1003     * @throws NullPointerException if <tt>toKey</tt> is null
1004     * and this map uses natural ordering, or its comparator
1005     * does not permit null keys
1006     * @throws IllegalArgumentException {@inheritDoc}
1007 dl 1.4 */
1008     public SortedMap<K,V> headMap(K toKey) {
1009     return new SubMap(toKey, true);
1010     }
1011    
1012     /**
1013 jsr166 1.14 * Equivalent to {@link #navigableTailMap} but with a return type
1014     * conforming to the <tt>SortedMap</tt> interface.
1015     *
1016     * <p>{@inheritDoc}
1017 dl 1.4 *
1018 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
1019     * @throws NullPointerException if <tt>fromKey</tt> is null
1020     * and this map uses natural ordering, or its comparator
1021     * does not permit null keys
1022     * @throws IllegalArgumentException {@inheritDoc}
1023 dl 1.4 */
1024     public SortedMap<K,V> tailMap(K fromKey) {
1025 dl 1.1 return new SubMap(fromKey, false);
1026     }
1027    
1028     private class SubMap
1029     extends AbstractMap<K,V>
1030     implements NavigableMap<K,V>, java.io.Serializable {
1031     private static final long serialVersionUID = -6520786458950516097L;
1032    
1033     /**
1034     * fromKey is significant only if fromStart is false. Similarly,
1035     * toKey is significant only if toStart is false.
1036     */
1037     private boolean fromStart = false, toEnd = false;
1038     private K fromKey, toKey;
1039    
1040     SubMap(K fromKey, K toKey) {
1041     if (compare(fromKey, toKey) > 0)
1042     throw new IllegalArgumentException("fromKey > toKey");
1043     this.fromKey = fromKey;
1044     this.toKey = toKey;
1045     }
1046    
1047     SubMap(K key, boolean headMap) {
1048     compare(key, key); // Type-check key
1049    
1050     if (headMap) {
1051     fromStart = true;
1052     toKey = key;
1053     } else {
1054     toEnd = true;
1055     fromKey = key;
1056     }
1057     }
1058    
1059     SubMap(boolean fromStart, K fromKey, boolean toEnd, K toKey) {
1060     this.fromStart = fromStart;
1061     this.fromKey= fromKey;
1062     this.toEnd = toEnd;
1063     this.toKey = toKey;
1064     }
1065    
1066     public boolean isEmpty() {
1067 dl 1.7 return entrySet().isEmpty();
1068 dl 1.1 }
1069    
1070     public boolean containsKey(Object key) {
1071 dl 1.17 return inRange(key) && TreeMap.this.containsKey(key);
1072 dl 1.1 }
1073    
1074     public V get(Object key) {
1075 dl 1.17 if (!inRange(key))
1076 dl 1.1 return null;
1077     return TreeMap.this.get(key);
1078     }
1079    
1080     public V put(K key, V value) {
1081     if (!inRange(key))
1082     throw new IllegalArgumentException("key out of range");
1083     return TreeMap.this.put(key, value);
1084     }
1085    
1086     public V remove(Object key) {
1087 dl 1.17 if (!inRange(key))
1088 dl 1.1 return null;
1089     return TreeMap.this.remove(key);
1090     }
1091    
1092     public Comparator<? super K> comparator() {
1093     return comparator;
1094     }
1095    
1096     public K firstKey() {
1097     TreeMap.Entry<K,V> e = fromStart ? getFirstEntry() : getCeilingEntry(fromKey);
1098     K first = key(e);
1099     if (!toEnd && compare(first, toKey) >= 0)
1100 jsr166 1.11 throw new NoSuchElementException();
1101 dl 1.1 return first;
1102     }
1103    
1104     public K lastKey() {
1105     TreeMap.Entry<K,V> e = toEnd ? getLastEntry() : getLowerEntry(toKey);
1106     K last = key(e);
1107     if (!fromStart && compare(last, fromKey) < 0)
1108 jsr166 1.11 throw new NoSuchElementException();
1109 dl 1.1 return last;
1110     }
1111    
1112     public Map.Entry<K,V> firstEntry() {
1113 dl 1.8 TreeMap.Entry<K,V> e = fromStart ?
1114 dl 1.1 getFirstEntry() : getCeilingEntry(fromKey);
1115     if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1116     return null;
1117     return e;
1118     }
1119    
1120     public Map.Entry<K,V> lastEntry() {
1121 dl 1.8 TreeMap.Entry<K,V> e = toEnd ?
1122 dl 1.1 getLastEntry() : getLowerEntry(toKey);
1123     if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1124     return null;
1125     return e;
1126     }
1127    
1128     public Map.Entry<K,V> pollFirstEntry() {
1129 dl 1.8 TreeMap.Entry<K,V> e = fromStart ?
1130 dl 1.1 getFirstEntry() : getCeilingEntry(fromKey);
1131 dl 1.7 if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1132 dl 1.1 return null;
1133 dl 1.16 Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(e);
1134 dl 1.1 deleteEntry(e);
1135     return result;
1136     }
1137    
1138     public Map.Entry<K,V> pollLastEntry() {
1139 dl 1.8 TreeMap.Entry<K,V> e = toEnd ?
1140 dl 1.1 getLastEntry() : getLowerEntry(toKey);
1141 dl 1.7 if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1142 dl 1.1 return null;
1143 dl 1.16 Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(e);
1144 dl 1.1 deleteEntry(e);
1145     return result;
1146     }
1147    
1148     private TreeMap.Entry<K,V> subceiling(K key) {
1149     TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1150     getCeilingEntry(fromKey) : getCeilingEntry(key);
1151     if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1152     return null;
1153     return e;
1154     }
1155    
1156     public Map.Entry<K,V> ceilingEntry(K key) {
1157     TreeMap.Entry<K,V> e = subceiling(key);
1158 dl 1.16 return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1159 dl 1.1 }
1160    
1161     public K ceilingKey(K key) {
1162     TreeMap.Entry<K,V> e = subceiling(key);
1163     return e == null? null : e.key;
1164     }
1165    
1166    
1167     private TreeMap.Entry<K,V> subhigher(K key) {
1168     TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1169     getCeilingEntry(fromKey) : getHigherEntry(key);
1170     if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1171     return null;
1172     return e;
1173     }
1174    
1175     public Map.Entry<K,V> higherEntry(K key) {
1176     TreeMap.Entry<K,V> e = subhigher(key);
1177 dl 1.16 return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1178 dl 1.1 }
1179    
1180     public K higherKey(K key) {
1181     TreeMap.Entry<K,V> e = subhigher(key);
1182     return e == null? null : e.key;
1183     }
1184    
1185     private TreeMap.Entry<K,V> subfloor(K key) {
1186     TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1187     getLowerEntry(toKey) : getFloorEntry(key);
1188     if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1189     return null;
1190     return e;
1191     }
1192    
1193     public Map.Entry<K,V> floorEntry(K key) {
1194     TreeMap.Entry<K,V> e = subfloor(key);
1195 dl 1.16 return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1196 dl 1.1 }
1197    
1198     public K floorKey(K key) {
1199     TreeMap.Entry<K,V> e = subfloor(key);
1200     return e == null? null : e.key;
1201     }
1202    
1203     private TreeMap.Entry<K,V> sublower(K key) {
1204     TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1205     getLowerEntry(toKey) : getLowerEntry(key);
1206     if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1207     return null;
1208     return e;
1209     }
1210    
1211     public Map.Entry<K,V> lowerEntry(K key) {
1212     TreeMap.Entry<K,V> e = sublower(key);
1213 dl 1.16 return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1214 dl 1.1 }
1215    
1216     public K lowerKey(K key) {
1217     TreeMap.Entry<K,V> e = sublower(key);
1218     return e == null? null : e.key;
1219     }
1220    
1221 dl 1.7 private transient Set<Map.Entry<K,V>> entrySet = null;
1222 dl 1.1
1223     public Set<Map.Entry<K,V>> entrySet() {
1224 dl 1.7 Set<Map.Entry<K,V>> es = entrySet;
1225     return (es != null)? es : (entrySet = new EntrySetView());
1226 dl 1.1 }
1227    
1228     private class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1229     private transient int size = -1, sizeModCount;
1230    
1231     public int size() {
1232     if (size == -1 || sizeModCount != TreeMap.this.modCount) {
1233     size = 0; sizeModCount = TreeMap.this.modCount;
1234     Iterator i = iterator();
1235     while (i.hasNext()) {
1236     size++;
1237     i.next();
1238     }
1239     }
1240     return size;
1241     }
1242    
1243     public boolean isEmpty() {
1244     return !iterator().hasNext();
1245     }
1246    
1247     public boolean contains(Object o) {
1248     if (!(o instanceof Map.Entry))
1249     return false;
1250     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1251     K key = entry.getKey();
1252     if (!inRange(key))
1253     return false;
1254     TreeMap.Entry node = getEntry(key);
1255     return node != null &&
1256     valEquals(node.getValue(), entry.getValue());
1257     }
1258    
1259     public boolean remove(Object o) {
1260     if (!(o instanceof Map.Entry))
1261     return false;
1262     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1263     K key = entry.getKey();
1264     if (!inRange(key))
1265     return false;
1266     TreeMap.Entry<K,V> node = getEntry(key);
1267     if (node!=null && valEquals(node.getValue(),entry.getValue())){
1268     deleteEntry(node);
1269     return true;
1270     }
1271     return false;
1272     }
1273    
1274     public Iterator<Map.Entry<K,V>> iterator() {
1275     return new SubMapEntryIterator(
1276     (fromStart ? getFirstEntry() : getCeilingEntry(fromKey)),
1277     (toEnd ? null : getCeilingEntry(toKey)));
1278     }
1279     }
1280    
1281     private transient Set<Map.Entry<K,V>> descendingEntrySetView = null;
1282 dl 1.8 private transient Set<K> descendingKeySetView = null;
1283 dl 1.1
1284     public Set<Map.Entry<K,V>> descendingEntrySet() {
1285     Set<Map.Entry<K,V>> es = descendingEntrySetView;
1286 jsr166 1.14 return (es != null) ? es :
1287     (descendingEntrySetView = new DescendingEntrySetView());
1288 dl 1.1 }
1289    
1290     public Set<K> descendingKeySet() {
1291     Set<K> ks = descendingKeySetView;
1292 jsr166 1.14 return (ks != null) ? ks :
1293     (descendingKeySetView = new DescendingKeySetView());
1294 dl 1.1 }
1295    
1296     private class DescendingEntrySetView extends EntrySetView {
1297     public Iterator<Map.Entry<K,V>> iterator() {
1298     return new DescendingSubMapEntryIterator
1299     ((toEnd ? getLastEntry() : getLowerEntry(toKey)),
1300     (fromStart ? null : getLowerEntry(fromKey)));
1301     }
1302     }
1303    
1304     private class DescendingKeySetView extends AbstractSet<K> {
1305     public Iterator<K> iterator() {
1306     return new Iterator<K>() {
1307     private Iterator<Entry<K,V>> i = descendingEntrySet().iterator();
1308 dl 1.8
1309 dl 1.1 public boolean hasNext() { return i.hasNext(); }
1310     public K next() { return i.next().getKey(); }
1311     public void remove() { i.remove(); }
1312     };
1313     }
1314 dl 1.8
1315 dl 1.1 public int size() {
1316     return SubMap.this.size();
1317     }
1318 dl 1.8
1319 dl 1.1 public boolean contains(Object k) {
1320     return SubMap.this.containsKey(k);
1321     }
1322     }
1323    
1324 dl 1.4 public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1325 dl 1.1 if (!inRange2(fromKey))
1326     throw new IllegalArgumentException("fromKey out of range");
1327     if (!inRange2(toKey))
1328     throw new IllegalArgumentException("toKey out of range");
1329     return new SubMap(fromKey, toKey);
1330     }
1331    
1332 dl 1.4 public NavigableMap<K,V> navigableHeadMap(K toKey) {
1333 dl 1.1 if (!inRange2(toKey))
1334     throw new IllegalArgumentException("toKey out of range");
1335     return new SubMap(fromStart, fromKey, false, toKey);
1336     }
1337    
1338 dl 1.4 public NavigableMap<K,V> navigableTailMap(K fromKey) {
1339 dl 1.1 if (!inRange2(fromKey))
1340     throw new IllegalArgumentException("fromKey out of range");
1341     return new SubMap(false, fromKey, toEnd, toKey);
1342     }
1343    
1344 dl 1.4 public SortedMap<K,V> subMap(K fromKey, K toKey) {
1345     return navigableSubMap(fromKey, toKey);
1346     }
1347    
1348     public SortedMap<K,V> headMap(K toKey) {
1349     return navigableHeadMap(toKey);
1350     }
1351    
1352     public SortedMap<K,V> tailMap(K fromKey) {
1353     return navigableTailMap(fromKey);
1354     }
1355    
1356 dl 1.17 private boolean inRange(Object key) {
1357 dl 1.1 return (fromStart || compare(key, fromKey) >= 0) &&
1358     (toEnd || compare(key, toKey) < 0);
1359     }
1360    
1361     // This form allows the high endpoint (as well as all legit keys)
1362 dl 1.17 private boolean inRange2(Object key) {
1363 dl 1.1 return (fromStart || compare(key, fromKey) >= 0) &&
1364     (toEnd || compare(key, toKey) <= 0);
1365     }
1366     }
1367    
1368     /**
1369     * TreeMap Iterator.
1370     */
1371     abstract class PrivateEntryIterator<T> implements Iterator<T> {
1372     int expectedModCount = TreeMap.this.modCount;
1373     Entry<K,V> lastReturned = null;
1374     Entry<K,V> next;
1375    
1376     PrivateEntryIterator(Entry<K,V> first) {
1377     next = first;
1378     }
1379    
1380     public boolean hasNext() {
1381     return next != null;
1382     }
1383    
1384 jsr166 1.14 Entry<K,V> nextEntry() {
1385 dl 1.1 if (next == null)
1386     throw new NoSuchElementException();
1387     if (modCount != expectedModCount)
1388     throw new ConcurrentModificationException();
1389     lastReturned = next;
1390     next = successor(next);
1391     return lastReturned;
1392     }
1393    
1394     public void remove() {
1395     if (lastReturned == null)
1396     throw new IllegalStateException();
1397     if (modCount != expectedModCount)
1398     throw new ConcurrentModificationException();
1399     if (lastReturned.left != null && lastReturned.right != null)
1400     next = lastReturned;
1401     deleteEntry(lastReturned);
1402     expectedModCount++;
1403     lastReturned = null;
1404     }
1405     }
1406    
1407     class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1408     EntryIterator(Entry<K,V> first) {
1409     super(first);
1410     }
1411     public Map.Entry<K,V> next() {
1412     return nextEntry();
1413     }
1414     }
1415    
1416     class KeyIterator extends PrivateEntryIterator<K> {
1417     KeyIterator(Entry<K,V> first) {
1418     super(first);
1419     }
1420     public K next() {
1421     return nextEntry().key;
1422     }
1423     }
1424    
1425     class ValueIterator extends PrivateEntryIterator<V> {
1426     ValueIterator(Entry<K,V> first) {
1427     super(first);
1428     }
1429     public V next() {
1430     return nextEntry().value;
1431     }
1432     }
1433    
1434     class SubMapEntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1435     private final K firstExcludedKey;
1436    
1437     SubMapEntryIterator(Entry<K,V> first, Entry<K,V> firstExcluded) {
1438     super(first);
1439     firstExcludedKey = (firstExcluded == null
1440     ? null
1441     : firstExcluded.key);
1442     }
1443    
1444     public boolean hasNext() {
1445     return next != null && next.key != firstExcludedKey;
1446     }
1447    
1448     public Map.Entry<K,V> next() {
1449     if (next == null || next.key == firstExcludedKey)
1450     throw new NoSuchElementException();
1451     return nextEntry();
1452     }
1453     }
1454    
1455     /**
1456     * Base for Descending Iterators.
1457     */
1458     abstract class DescendingPrivateEntryIterator<T> extends PrivateEntryIterator<T> {
1459     DescendingPrivateEntryIterator(Entry<K,V> first) {
1460     super(first);
1461     }
1462    
1463     Entry<K,V> nextEntry() {
1464     if (next == null)
1465     throw new NoSuchElementException();
1466     if (modCount != expectedModCount)
1467     throw new ConcurrentModificationException();
1468     lastReturned = next;
1469     next = predecessor(next);
1470     return lastReturned;
1471     }
1472     }
1473    
1474     class DescendingEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1475     DescendingEntryIterator(Entry<K,V> first) {
1476     super(first);
1477     }
1478     public Map.Entry<K,V> next() {
1479     return nextEntry();
1480     }
1481     }
1482    
1483     class DescendingKeyIterator extends DescendingPrivateEntryIterator<K> {
1484     DescendingKeyIterator(Entry<K,V> first) {
1485     super(first);
1486     }
1487     public K next() {
1488     return nextEntry().key;
1489     }
1490     }
1491    
1492    
1493     class DescendingSubMapEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1494     private final K lastExcludedKey;
1495    
1496     DescendingSubMapEntryIterator(Entry<K,V> last, Entry<K,V> lastExcluded) {
1497     super(last);
1498     lastExcludedKey = (lastExcluded == null
1499     ? null
1500     : lastExcluded.key);
1501     }
1502    
1503     public boolean hasNext() {
1504     return next != null && next.key != lastExcludedKey;
1505     }
1506    
1507     public Map.Entry<K,V> next() {
1508     if (next == null || next.key == lastExcludedKey)
1509     throw new NoSuchElementException();
1510     return nextEntry();
1511     }
1512    
1513     }
1514    
1515     /**
1516     * Compares two keys using the correct comparison method for this TreeMap.
1517     */
1518 dl 1.16 private int compare(Object k1, Object k2) {
1519     return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1520     : comparator.compare((K)k1, (K)k2);
1521 dl 1.1 }
1522    
1523     /**
1524 jsr166 1.18 * Test two values for equality. Differs from o1.equals(o2) only in
1525 dl 1.1 * that it copes with <tt>null</tt> o1 properly.
1526     */
1527     private static boolean valEquals(Object o1, Object o2) {
1528     return (o1==null ? o2==null : o1.equals(o2));
1529     }
1530    
1531     private static final boolean RED = false;
1532     private static final boolean BLACK = true;
1533    
1534     /**
1535     * Node in the Tree. Doubles as a means to pass key-value pairs back to
1536     * user (see Map.Entry).
1537     */
1538    
1539     static class Entry<K,V> implements Map.Entry<K,V> {
1540     K key;
1541     V value;
1542     Entry<K,V> left = null;
1543     Entry<K,V> right = null;
1544     Entry<K,V> parent;
1545     boolean color = BLACK;
1546    
1547     /**
1548     * Make a new cell with given key, value, and parent, and with
1549     * <tt>null</tt> child links, and BLACK color.
1550     */
1551     Entry(K key, V value, Entry<K,V> parent) {
1552     this.key = key;
1553     this.value = value;
1554     this.parent = parent;
1555     }
1556    
1557     /**
1558     * Returns the key.
1559     *
1560 jsr166 1.14 * @return the key
1561 dl 1.1 */
1562     public K getKey() {
1563     return key;
1564     }
1565    
1566     /**
1567     * Returns the value associated with the key.
1568     *
1569 jsr166 1.14 * @return the value associated with the key
1570 dl 1.1 */
1571     public V getValue() {
1572     return value;
1573     }
1574    
1575     /**
1576     * Replaces the value currently associated with the key with the given
1577     * value.
1578     *
1579     * @return the value associated with the key before this method was
1580 jsr166 1.14 * called
1581 dl 1.1 */
1582     public V setValue(V value) {
1583     V oldValue = this.value;
1584     this.value = value;
1585     return oldValue;
1586     }
1587    
1588     public boolean equals(Object o) {
1589     if (!(o instanceof Map.Entry))
1590     return false;
1591     Map.Entry e = (Map.Entry)o;
1592    
1593     return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1594     }
1595    
1596     public int hashCode() {
1597     int keyHash = (key==null ? 0 : key.hashCode());
1598     int valueHash = (value==null ? 0 : value.hashCode());
1599     return keyHash ^ valueHash;
1600     }
1601    
1602     public String toString() {
1603     return key + "=" + value;
1604     }
1605     }
1606    
1607     /**
1608     * Returns the first Entry in the TreeMap (according to the TreeMap's
1609     * key-sort function). Returns null if the TreeMap is empty.
1610     */
1611     private Entry<K,V> getFirstEntry() {
1612     Entry<K,V> p = root;
1613     if (p != null)
1614     while (p.left != null)
1615     p = p.left;
1616     return p;
1617     }
1618    
1619     /**
1620     * Returns the last Entry in the TreeMap (according to the TreeMap's
1621     * key-sort function). Returns null if the TreeMap is empty.
1622     */
1623     private Entry<K,V> getLastEntry() {
1624     Entry<K,V> p = root;
1625     if (p != null)
1626     while (p.right != null)
1627     p = p.right;
1628     return p;
1629     }
1630    
1631     /**
1632     * Returns the successor of the specified Entry, or null if no such.
1633     */
1634     private Entry<K,V> successor(Entry<K,V> t) {
1635     if (t == null)
1636     return null;
1637     else if (t.right != null) {
1638     Entry<K,V> p = t.right;
1639     while (p.left != null)
1640     p = p.left;
1641     return p;
1642     } else {
1643     Entry<K,V> p = t.parent;
1644     Entry<K,V> ch = t;
1645     while (p != null && ch == p.right) {
1646     ch = p;
1647     p = p.parent;
1648     }
1649     return p;
1650     }
1651     }
1652    
1653     /**
1654     * Returns the predecessor of the specified Entry, or null if no such.
1655     */
1656     private Entry<K,V> predecessor(Entry<K,V> t) {
1657     if (t == null)
1658     return null;
1659     else if (t.left != null) {
1660     Entry<K,V> p = t.left;
1661     while (p.right != null)
1662     p = p.right;
1663     return p;
1664     } else {
1665     Entry<K,V> p = t.parent;
1666     Entry<K,V> ch = t;
1667     while (p != null && ch == p.left) {
1668     ch = p;
1669     p = p.parent;
1670     }
1671     return p;
1672     }
1673     }
1674    
1675     /**
1676     * Balancing operations.
1677     *
1678     * Implementations of rebalancings during insertion and deletion are
1679     * slightly different than the CLR version. Rather than using dummy
1680     * nilnodes, we use a set of accessors that deal properly with null. They
1681     * are used to avoid messiness surrounding nullness checks in the main
1682     * algorithms.
1683     */
1684    
1685     private static <K,V> boolean colorOf(Entry<K,V> p) {
1686     return (p == null ? BLACK : p.color);
1687     }
1688    
1689     private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
1690     return (p == null ? null: p.parent);
1691     }
1692    
1693     private static <K,V> void setColor(Entry<K,V> p, boolean c) {
1694     if (p != null)
1695     p.color = c;
1696     }
1697    
1698     private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
1699     return (p == null) ? null: p.left;
1700     }
1701    
1702     private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
1703     return (p == null) ? null: p.right;
1704     }
1705    
1706     /** From CLR **/
1707     private void rotateLeft(Entry<K,V> p) {
1708     Entry<K,V> r = p.right;
1709     p.right = r.left;
1710     if (r.left != null)
1711     r.left.parent = p;
1712     r.parent = p.parent;
1713     if (p.parent == null)
1714     root = r;
1715     else if (p.parent.left == p)
1716     p.parent.left = r;
1717     else
1718     p.parent.right = r;
1719     r.left = p;
1720     p.parent = r;
1721     }
1722    
1723     /** From CLR **/
1724     private void rotateRight(Entry<K,V> p) {
1725     Entry<K,V> l = p.left;
1726     p.left = l.right;
1727     if (l.right != null) l.right.parent = p;
1728     l.parent = p.parent;
1729     if (p.parent == null)
1730     root = l;
1731     else if (p.parent.right == p)
1732     p.parent.right = l;
1733     else p.parent.left = l;
1734     l.right = p;
1735     p.parent = l;
1736     }
1737    
1738    
1739     /** From CLR **/
1740     private void fixAfterInsertion(Entry<K,V> x) {
1741     x.color = RED;
1742    
1743     while (x != null && x != root && x.parent.color == RED) {
1744     if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
1745     Entry<K,V> y = rightOf(parentOf(parentOf(x)));
1746     if (colorOf(y) == RED) {
1747     setColor(parentOf(x), BLACK);
1748     setColor(y, BLACK);
1749     setColor(parentOf(parentOf(x)), RED);
1750     x = parentOf(parentOf(x));
1751     } else {
1752     if (x == rightOf(parentOf(x))) {
1753     x = parentOf(x);
1754     rotateLeft(x);
1755     }
1756     setColor(parentOf(x), BLACK);
1757     setColor(parentOf(parentOf(x)), RED);
1758     if (parentOf(parentOf(x)) != null)
1759     rotateRight(parentOf(parentOf(x)));
1760     }
1761     } else {
1762     Entry<K,V> y = leftOf(parentOf(parentOf(x)));
1763     if (colorOf(y) == RED) {
1764     setColor(parentOf(x), BLACK);
1765     setColor(y, BLACK);
1766     setColor(parentOf(parentOf(x)), RED);
1767     x = parentOf(parentOf(x));
1768     } else {
1769     if (x == leftOf(parentOf(x))) {
1770     x = parentOf(x);
1771     rotateRight(x);
1772     }
1773     setColor(parentOf(x), BLACK);
1774     setColor(parentOf(parentOf(x)), RED);
1775     if (parentOf(parentOf(x)) != null)
1776     rotateLeft(parentOf(parentOf(x)));
1777     }
1778     }
1779     }
1780     root.color = BLACK;
1781     }
1782    
1783     /**
1784     * Delete node p, and then rebalance the tree.
1785     */
1786    
1787     private void deleteEntry(Entry<K,V> p) {
1788     decrementSize();
1789    
1790     // If strictly internal, copy successor's element to p and then make p
1791     // point to successor.
1792     if (p.left != null && p.right != null) {
1793     Entry<K,V> s = successor (p);
1794     p.key = s.key;
1795     p.value = s.value;
1796     p = s;
1797     } // p has 2 children
1798    
1799     // Start fixup at replacement node, if it exists.
1800     Entry<K,V> replacement = (p.left != null ? p.left : p.right);
1801    
1802     if (replacement != null) {
1803     // Link replacement to parent
1804     replacement.parent = p.parent;
1805     if (p.parent == null)
1806     root = replacement;
1807     else if (p == p.parent.left)
1808     p.parent.left = replacement;
1809     else
1810     p.parent.right = replacement;
1811    
1812     // Null out links so they are OK to use by fixAfterDeletion.
1813     p.left = p.right = p.parent = null;
1814    
1815     // Fix replacement
1816     if (p.color == BLACK)
1817     fixAfterDeletion(replacement);
1818     } else if (p.parent == null) { // return if we are the only node.
1819     root = null;
1820     } else { // No children. Use self as phantom replacement and unlink.
1821     if (p.color == BLACK)
1822     fixAfterDeletion(p);
1823    
1824     if (p.parent != null) {
1825     if (p == p.parent.left)
1826     p.parent.left = null;
1827     else if (p == p.parent.right)
1828     p.parent.right = null;
1829     p.parent = null;
1830     }
1831     }
1832     }
1833    
1834     /** From CLR **/
1835     private void fixAfterDeletion(Entry<K,V> x) {
1836     while (x != root && colorOf(x) == BLACK) {
1837     if (x == leftOf(parentOf(x))) {
1838     Entry<K,V> sib = rightOf(parentOf(x));
1839    
1840     if (colorOf(sib) == RED) {
1841     setColor(sib, BLACK);
1842     setColor(parentOf(x), RED);
1843     rotateLeft(parentOf(x));
1844     sib = rightOf(parentOf(x));
1845     }
1846    
1847     if (colorOf(leftOf(sib)) == BLACK &&
1848     colorOf(rightOf(sib)) == BLACK) {
1849     setColor(sib, RED);
1850     x = parentOf(x);
1851     } else {
1852     if (colorOf(rightOf(sib)) == BLACK) {
1853     setColor(leftOf(sib), BLACK);
1854     setColor(sib, RED);
1855     rotateRight(sib);
1856     sib = rightOf(parentOf(x));
1857     }
1858     setColor(sib, colorOf(parentOf(x)));
1859     setColor(parentOf(x), BLACK);
1860     setColor(rightOf(sib), BLACK);
1861     rotateLeft(parentOf(x));
1862     x = root;
1863     }
1864     } else { // symmetric
1865     Entry<K,V> sib = leftOf(parentOf(x));
1866    
1867     if (colorOf(sib) == RED) {
1868     setColor(sib, BLACK);
1869     setColor(parentOf(x), RED);
1870     rotateRight(parentOf(x));
1871     sib = leftOf(parentOf(x));
1872     }
1873    
1874     if (colorOf(rightOf(sib)) == BLACK &&
1875     colorOf(leftOf(sib)) == BLACK) {
1876     setColor(sib, RED);
1877     x = parentOf(x);
1878     } else {
1879     if (colorOf(leftOf(sib)) == BLACK) {
1880     setColor(rightOf(sib), BLACK);
1881     setColor(sib, RED);
1882     rotateLeft(sib);
1883     sib = leftOf(parentOf(x));
1884     }
1885     setColor(sib, colorOf(parentOf(x)));
1886     setColor(parentOf(x), BLACK);
1887     setColor(leftOf(sib), BLACK);
1888     rotateRight(parentOf(x));
1889     x = root;
1890     }
1891     }
1892     }
1893    
1894     setColor(x, BLACK);
1895     }
1896    
1897     private static final long serialVersionUID = 919286545866124006L;
1898    
1899     /**
1900     * Save the state of the <tt>TreeMap</tt> instance to a stream (i.e.,
1901     * serialize it).
1902     *
1903     * @serialData The <i>size</i> of the TreeMap (the number of key-value
1904     * mappings) is emitted (int), followed by the key (Object)
1905     * and value (Object) for each key-value mapping represented
1906     * by the TreeMap. The key-value mappings are emitted in
1907     * key-order (as determined by the TreeMap's Comparator,
1908     * or by the keys' natural ordering if the TreeMap has no
1909     * Comparator).
1910     */
1911     private void writeObject(java.io.ObjectOutputStream s)
1912     throws java.io.IOException {
1913     // Write out the Comparator and any hidden stuff
1914     s.defaultWriteObject();
1915    
1916     // Write out size (number of Mappings)
1917     s.writeInt(size);
1918    
1919     // Write out keys and values (alternating)
1920 jsr166 1.14 for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
1921 dl 1.1 Map.Entry<K,V> e = i.next();
1922     s.writeObject(e.getKey());
1923     s.writeObject(e.getValue());
1924     }
1925     }
1926    
1927    
1928    
1929     /**
1930     * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
1931     * deserialize it).
1932     */
1933     private void readObject(final java.io.ObjectInputStream s)
1934     throws java.io.IOException, ClassNotFoundException {
1935     // Read in the Comparator and any hidden stuff
1936     s.defaultReadObject();
1937    
1938     // Read in size
1939     int size = s.readInt();
1940    
1941     buildFromSorted(size, null, s, null);
1942     }
1943    
1944     /** Intended to be called only from TreeSet.readObject **/
1945     void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
1946     throws java.io.IOException, ClassNotFoundException {
1947     buildFromSorted(size, null, s, defaultVal);
1948     }
1949    
1950     /** Intended to be called only from TreeSet.addAll **/
1951 jsr166 1.12 void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
1952 dl 1.1 try {
1953     buildFromSorted(set.size(), set.iterator(), null, defaultVal);
1954     } catch (java.io.IOException cannotHappen) {
1955     } catch (ClassNotFoundException cannotHappen) {
1956     }
1957     }
1958    
1959    
1960     /**
1961     * Linear time tree building algorithm from sorted data. Can accept keys
1962     * and/or values from iterator or stream. This leads to too many
1963     * parameters, but seems better than alternatives. The four formats
1964     * that this method accepts are:
1965     *
1966     * 1) An iterator of Map.Entries. (it != null, defaultVal == null).
1967     * 2) An iterator of keys. (it != null, defaultVal != null).
1968     * 3) A stream of alternating serialized keys and values.
1969     * (it == null, defaultVal == null).
1970     * 4) A stream of serialized keys. (it == null, defaultVal != null).
1971     *
1972     * It is assumed that the comparator of the TreeMap is already set prior
1973     * to calling this method.
1974     *
1975     * @param size the number of keys (or key-value pairs) to be read from
1976 jsr166 1.14 * the iterator or stream
1977 dl 1.1 * @param it If non-null, new entries are created from entries
1978     * or keys read from this iterator.
1979     * @param str If non-null, new entries are created from keys and
1980     * possibly values read from this stream in serialized form.
1981     * Exactly one of it and str should be non-null.
1982     * @param defaultVal if non-null, this default value is used for
1983     * each value in the map. If null, each value is read from
1984     * iterator or stream, as described above.
1985     * @throws IOException propagated from stream reads. This cannot
1986     * occur if str is null.
1987     * @throws ClassNotFoundException propagated from readObject.
1988     * This cannot occur if str is null.
1989     */
1990     private
1991     void buildFromSorted(int size, Iterator it,
1992     java.io.ObjectInputStream str,
1993     V defaultVal)
1994     throws java.io.IOException, ClassNotFoundException {
1995     this.size = size;
1996     root =
1997     buildFromSorted(0, 0, size-1, computeRedLevel(size),
1998     it, str, defaultVal);
1999     }
2000    
2001     /**
2002     * Recursive "helper method" that does the real work of the
2003     * of the previous method. Identically named parameters have
2004     * identical definitions. Additional parameters are documented below.
2005     * It is assumed that the comparator and size fields of the TreeMap are
2006     * already set prior to calling this method. (It ignores both fields.)
2007     *
2008     * @param level the current level of tree. Initial call should be 0.
2009     * @param lo the first element index of this subtree. Initial should be 0.
2010     * @param hi the last element index of this subtree. Initial should be
2011 jsr166 1.14 * size-1.
2012 dl 1.1 * @param redLevel the level at which nodes should be red.
2013     * Must be equal to computeRedLevel for tree of this size.
2014     */
2015     private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2016     int redLevel,
2017     Iterator it,
2018     java.io.ObjectInputStream str,
2019     V defaultVal)
2020     throws java.io.IOException, ClassNotFoundException {
2021     /*
2022     * Strategy: The root is the middlemost element. To get to it, we
2023     * have to first recursively construct the entire left subtree,
2024     * so as to grab all of its elements. We can then proceed with right
2025     * subtree.
2026     *
2027     * The lo and hi arguments are the minimum and maximum
2028     * indices to pull out of the iterator or stream for current subtree.
2029     * They are not actually indexed, we just proceed sequentially,
2030     * ensuring that items are extracted in corresponding order.
2031     */
2032    
2033     if (hi < lo) return null;
2034    
2035     int mid = (lo + hi) / 2;
2036    
2037     Entry<K,V> left = null;
2038     if (lo < mid)
2039     left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2040     it, str, defaultVal);
2041    
2042     // extract key and/or value from iterator or stream
2043     K key;
2044     V value;
2045     if (it != null) {
2046     if (defaultVal==null) {
2047     Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
2048     key = entry.getKey();
2049     value = entry.getValue();
2050     } else {
2051     key = (K)it.next();
2052     value = defaultVal;
2053     }
2054     } else { // use stream
2055     key = (K) str.readObject();
2056     value = (defaultVal != null ? defaultVal : (V) str.readObject());
2057     }
2058    
2059     Entry<K,V> middle = new Entry<K,V>(key, value, null);
2060    
2061     // color nodes in non-full bottommost level red
2062     if (level == redLevel)
2063     middle.color = RED;
2064    
2065     if (left != null) {
2066     middle.left = left;
2067     left.parent = middle;
2068     }
2069    
2070     if (mid < hi) {
2071     Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2072     it, str, defaultVal);
2073     middle.right = right;
2074     right.parent = middle;
2075     }
2076    
2077     return middle;
2078     }
2079    
2080     /**
2081     * Find the level down to which to assign all nodes BLACK. This is the
2082     * last `full' level of the complete binary tree produced by
2083     * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2084     * set of color assignments wrt future insertions.) This level number is
2085     * computed by finding the number of splits needed to reach the zeroeth
2086     * node. (The answer is ~lg(N), but in any case must be computed by same
2087     * quick O(lg(N)) loop.)
2088     */
2089     private static int computeRedLevel(int sz) {
2090     int level = 0;
2091     for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2092     level++;
2093     return level;
2094     }
2095     }