ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
Revision: 1.32
Committed: Sat Apr 22 16:38:01 2006 UTC (18 years, 1 month ago) by dl
Branch: MAIN
Changes since 1.31: +272 -317 lines
Log Message:
Internal submap refactorings

File Contents

# User Rev Content
1 dl 1.1 /*
2     * %W% %E%
3     *
4 jsr166 1.25 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 dl 1.1 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8 dl 1.8 package java.util;
9 dl 1.1
10     /**
11 jsr166 1.14 * A Red-Black tree based {@link NavigableMap} implementation.
12     * The map is sorted according to the {@linkplain Comparable natural
13     * ordering} of its keys, or by a {@link Comparator} provided at map
14     * creation time, depending on which constructor is used.
15 dl 1.1 *
16 jsr166 1.14 * <p>This implementation provides guaranteed log(n) time cost for the
17 dl 1.1 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
18     * operations. Algorithms are adaptations of those in Cormen, Leiserson, and
19 jsr166 1.14 * Rivest's <I>Introduction to Algorithms</I>.
20 dl 1.1 *
21 jsr166 1.14 * <p>Note that the ordering maintained by a sorted map (whether or not an
22 dl 1.1 * explicit comparator is provided) must be <i>consistent with equals</i> if
23     * this sorted map is to correctly implement the <tt>Map</tt> interface. (See
24     * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
25     * <i>consistent with equals</i>.) This is so because the <tt>Map</tt>
26     * interface is defined in terms of the equals operation, but a map performs
27     * all key comparisons using its <tt>compareTo</tt> (or <tt>compare</tt>)
28     * method, so two keys that are deemed equal by this method are, from the
29     * standpoint of the sorted map, equal. The behavior of a sorted map
30     * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
31 jsr166 1.14 * just fails to obey the general contract of the <tt>Map</tt> interface.
32 dl 1.1 *
33 jsr166 1.23 * <p><strong>Note that this implementation is not synchronized.</strong>
34     * If multiple threads access a map concurrently, and at least one of the
35     * threads modifies the map structurally, it <i>must</i> be synchronized
36     * externally. (A structural modification is any operation that adds or
37     * deletes one or more mappings; merely changing the value associated
38     * with an existing key is not a structural modification.) This is
39     * typically accomplished by synchronizing on some object that naturally
40     * encapsulates the map.
41     * If no such object exists, the map should be "wrapped" using the
42     * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
43     * method. This is best done at creation time, to prevent accidental
44     * unsynchronized access to the map: <pre>
45     * SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
46 dl 1.1 *
47 jsr166 1.14 * <p>The iterators returned by the <tt>iterator</tt> method of the collections
48     * returned by all of this class's "collection view methods" are
49 dl 1.1 * <i>fail-fast</i>: if the map is structurally modified at any time after the
50     * iterator is created, in any way except through the iterator's own
51 jsr166 1.14 * <tt>remove</tt> method, the iterator will throw a {@link
52     * ConcurrentModificationException}. Thus, in the face of concurrent
53 dl 1.1 * modification, the iterator fails quickly and cleanly, rather than risking
54 jsr166 1.14 * arbitrary, non-deterministic behavior at an undetermined time in the future.
55 dl 1.1 *
56     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
57     * as it is, generally speaking, impossible to make any hard guarantees in the
58     * presence of unsynchronized concurrent modification. Fail-fast iterators
59     * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
60     * Therefore, it would be wrong to write a program that depended on this
61     * exception for its correctness: <i>the fail-fast behavior of iterators
62 dl 1.5 * should be used only to detect bugs.</i>
63 dl 1.1 *
64     * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
65     * and its views represent snapshots of mappings at the time they were
66     * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
67     * method. (Note however that it is possible to change mappings in the
68     * associated map using <tt>put</tt>.)
69     *
70     * <p>This class is a member of the
71     * <a href="{@docRoot}/../guide/collections/index.html">
72     * Java Collections Framework</a>.
73     *
74 jsr166 1.14 * @param <K> the type of keys maintained by this map
75     * @param <V> the type of mapped values
76     *
77 dl 1.1 * @author Josh Bloch and Doug Lea
78     * @version %I%, %G%
79     * @see Map
80     * @see HashMap
81     * @see Hashtable
82     * @see Comparable
83     * @see Comparator
84     * @see Collection
85     * @since 1.2
86     */
87    
88     public class TreeMap<K,V>
89     extends AbstractMap<K,V>
90     implements NavigableMap<K,V>, Cloneable, java.io.Serializable
91     {
92     /**
93 jsr166 1.14 * The comparator used to maintain order in this tree map, or
94     * null if it uses the natural ordering of its keys.
95 dl 1.1 *
96     * @serial
97     */
98 dl 1.31 private final Comparator<? super K> comparator;
99 dl 1.1
100     private transient Entry<K,V> root = null;
101    
102     /**
103     * The number of entries in the tree
104     */
105     private transient int size = 0;
106    
107     /**
108     * The number of structural modifications to the tree.
109     */
110     private transient int modCount = 0;
111    
112     private void incrementSize() { modCount++; size++; }
113     private void decrementSize() { modCount++; size--; }
114    
115     /**
116 jsr166 1.14 * Constructs a new, empty tree map, using the natural ordering of its
117     * keys. All keys inserted into the map must implement the {@link
118     * Comparable} interface. Furthermore, all such keys must be
119     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
120     * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
121     * <tt>k2</tt> in the map. If the user attempts to put a key into the
122     * map that violates this constraint (for example, the user attempts to
123     * put a string key into a map whose keys are integers), the
124     * <tt>put(Object key, Object value)</tt> call will throw a
125     * <tt>ClassCastException</tt>.
126 dl 1.1 */
127     public TreeMap() {
128 dl 1.31 comparator = null;
129 dl 1.1 }
130    
131     /**
132 jsr166 1.14 * Constructs a new, empty tree map, ordered according to the given
133     * comparator. All keys inserted into the map must be <i>mutually
134     * comparable</i> by the given comparator: <tt>comparator.compare(k1,
135     * k2)</tt> must not throw a <tt>ClassCastException</tt> for any keys
136     * <tt>k1</tt> and <tt>k2</tt> in the map. If the user attempts to put
137     * a key into the map that violates this constraint, the <tt>put(Object
138     * key, Object value)</tt> call will throw a
139     * <tt>ClassCastException</tt>.
140     *
141     * @param comparator the comparator that will be used to order this map.
142     * If <tt>null</tt>, the {@linkplain Comparable natural
143     * ordering} of the keys will be used.
144     */
145     public TreeMap(Comparator<? super K> comparator) {
146     this.comparator = comparator;
147 dl 1.1 }
148    
149     /**
150 jsr166 1.14 * Constructs a new tree map containing the same mappings as the given
151     * map, ordered according to the <i>natural ordering</i> of its keys.
152     * All keys inserted into the new map must implement the {@link
153     * Comparable} interface. Furthermore, all such keys must be
154     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
155     * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
156     * <tt>k2</tt> in the map. This method runs in n*log(n) time.
157     *
158     * @param m the map whose mappings are to be placed in this map
159     * @throws ClassCastException if the keys in m are not {@link Comparable},
160     * or are not mutually comparable
161     * @throws NullPointerException if the specified map is null
162 dl 1.1 */
163     public TreeMap(Map<? extends K, ? extends V> m) {
164 dl 1.31 comparator = null;
165 dl 1.1 putAll(m);
166     }
167    
168     /**
169 jsr166 1.14 * Constructs a new tree map containing the same mappings and
170     * using the same ordering as the specified sorted map. This
171     * method runs in linear time.
172 dl 1.1 *
173     * @param m the sorted map whose mappings are to be placed in this map,
174 jsr166 1.14 * and whose comparator is to be used to sort this map
175     * @throws NullPointerException if the specified map is null
176 dl 1.1 */
177     public TreeMap(SortedMap<K, ? extends V> m) {
178     comparator = m.comparator();
179     try {
180     buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
181     } catch (java.io.IOException cannotHappen) {
182     } catch (ClassNotFoundException cannotHappen) {
183     }
184     }
185    
186    
187     // Query Operations
188    
189     /**
190     * Returns the number of key-value mappings in this map.
191     *
192 jsr166 1.14 * @return the number of key-value mappings in this map
193 dl 1.1 */
194     public int size() {
195     return size;
196     }
197    
198     /**
199     * Returns <tt>true</tt> if this map contains a mapping for the specified
200     * key.
201     *
202 jsr166 1.14 * @param key key whose presence in this map is to be tested
203 dl 1.1 * @return <tt>true</tt> if this map contains a mapping for the
204 jsr166 1.14 * specified key
205     * @throws ClassCastException if the specified key cannot be compared
206     * with the keys currently in the map
207     * @throws NullPointerException if the specified key is null
208     * and this map uses natural ordering, or its comparator
209     * does not permit null keys
210 dl 1.1 */
211     public boolean containsKey(Object key) {
212     return getEntry(key) != null;
213     }
214    
215     /**
216     * Returns <tt>true</tt> if this map maps one or more keys to the
217     * specified value. More formally, returns <tt>true</tt> if and only if
218     * this map contains at least one mapping to a value <tt>v</tt> such
219     * that <tt>(value==null ? v==null : value.equals(v))</tt>. This
220 jsr166 1.19 * operation will probably require time linear in the map size for
221     * most implementations.
222 dl 1.1 *
223 jsr166 1.14 * @param value value whose presence in this map is to be tested
224     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
225     * <tt>false</tt> otherwise
226 dl 1.1 * @since 1.2
227     */
228     public boolean containsValue(Object value) {
229     return (root==null ? false :
230     (value==null ? valueSearchNull(root)
231 dl 1.29 : valueSearchNonNull(root, value)));
232 dl 1.1 }
233    
234     private boolean valueSearchNull(Entry n) {
235     if (n.value == null)
236     return true;
237    
238     // Check left and right subtrees for value
239     return (n.left != null && valueSearchNull(n.left)) ||
240 dl 1.29 (n.right != null && valueSearchNull(n.right));
241 dl 1.1 }
242    
243     private boolean valueSearchNonNull(Entry n, Object value) {
244     // Check this node for the value
245     if (value.equals(n.value))
246     return true;
247    
248     // Check left and right subtrees for value
249     return (n.left != null && valueSearchNonNull(n.left, value)) ||
250 dl 1.29 (n.right != null && valueSearchNonNull(n.right, value));
251 dl 1.1 }
252    
253     /**
254 jsr166 1.24 * Returns the value to which the specified key is mapped,
255     * or {@code null} if this map contains no mapping for the key.
256     *
257     * <p>More formally, if this map contains a mapping from a key
258     * {@code k} to a value {@code v} such that {@code key} compares
259     * equal to {@code k} according to the map's ordering, then this
260     * method returns {@code v}; otherwise it returns {@code null}.
261     * (There can be at most one such mapping.)
262     *
263     * <p>A return value of {@code null} does not <i>necessarily</i>
264     * indicate that the map contains no mapping for the key; it's also
265     * possible that the map explicitly maps the key to {@code null}.
266     * The {@link #containsKey containsKey} operation may be used to
267     * distinguish these two cases.
268     *
269 jsr166 1.14 * @throws ClassCastException if the specified key cannot be compared
270     * with the keys currently in the map
271     * @throws NullPointerException if the specified key is null
272     * and this map uses natural ordering, or its comparator
273     * does not permit null keys
274 dl 1.1 */
275     public V get(Object key) {
276     Entry<K,V> p = getEntry(key);
277     return (p==null ? null : p.value);
278     }
279    
280     public Comparator<? super K> comparator() {
281     return comparator;
282     }
283    
284     /**
285 jsr166 1.14 * @throws NoSuchElementException {@inheritDoc}
286 dl 1.1 */
287     public K firstKey() {
288     return key(getFirstEntry());
289     }
290    
291     /**
292 jsr166 1.14 * @throws NoSuchElementException {@inheritDoc}
293 dl 1.1 */
294     public K lastKey() {
295     return key(getLastEntry());
296     }
297    
298     /**
299 jsr166 1.14 * Copies all of the mappings from the specified map to this map.
300     * These mappings replace any mappings that this map had for any
301     * of the keys currently in the specified map.
302     *
303     * @param map mappings to be stored in this map
304     * @throws ClassCastException if the class of a key or value in
305     * the specified map prevents it from being stored in this map
306     * @throws NullPointerException if the specified map is null or
307     * the specified map contains a null key and this map does not
308     * permit null keys
309 dl 1.1 */
310     public void putAll(Map<? extends K, ? extends V> map) {
311     int mapSize = map.size();
312     if (size==0 && mapSize!=0 && map instanceof SortedMap) {
313     Comparator c = ((SortedMap)map).comparator();
314     if (c == comparator || (c != null && c.equals(comparator))) {
315     ++modCount;
316     try {
317     buildFromSorted(mapSize, map.entrySet().iterator(),
318     null, null);
319     } catch (java.io.IOException cannotHappen) {
320     } catch (ClassNotFoundException cannotHappen) {
321     }
322     return;
323     }
324     }
325     super.putAll(map);
326     }
327    
328     /**
329     * Returns this map's entry for the given key, or <tt>null</tt> if the map
330     * does not contain an entry for the key.
331     *
332     * @return this map's entry for the given key, or <tt>null</tt> if the map
333 jsr166 1.14 * does not contain an entry for the key
334     * @throws ClassCastException if the specified key cannot be compared
335     * with the keys currently in the map
336     * @throws NullPointerException if the specified key is null
337     * and this map uses natural ordering, or its comparator
338     * does not permit null keys
339 dl 1.1 */
340 dl 1.29 final Entry<K,V> getEntry(Object key) {
341 dl 1.1 // Offload comparator-based version for sake of performance
342     if (comparator != null)
343     return getEntryUsingComparator(key);
344 dl 1.28 if (key == null)
345     throw new NullPointerException();
346 jsr166 1.12 Comparable<? super K> k = (Comparable<? super K>) key;
347 dl 1.1 Entry<K,V> p = root;
348     while (p != null) {
349     int cmp = k.compareTo(p.key);
350     if (cmp < 0)
351     p = p.left;
352     else if (cmp > 0)
353     p = p.right;
354     else
355     return p;
356     }
357     return null;
358     }
359    
360     /**
361     * Version of getEntry using comparator. Split off from getEntry
362     * for performance. (This is not worth doing for most methods,
363     * that are less dependent on comparator performance, but is
364 dl 1.31 * worthwhile for get and put.)
365 dl 1.1 */
366 dl 1.29 final Entry<K,V> getEntryUsingComparator(Object key) {
367 dl 1.1 K k = (K) key;
368     Comparator<? super K> cpr = comparator;
369     Entry<K,V> p = root;
370     while (p != null) {
371     int cmp = cpr.compare(k, p.key);
372     if (cmp < 0)
373     p = p.left;
374     else if (cmp > 0)
375     p = p.right;
376     else
377     return p;
378     }
379     return null;
380     }
381    
382     /**
383     * Gets the entry corresponding to the specified key; if no such entry
384     * exists, returns the entry for the least key greater than the specified
385     * key; if no such entry exists (i.e., the greatest key in the Tree is less
386     * than the specified key), returns <tt>null</tt>.
387     */
388 dl 1.29 final Entry<K,V> getCeilingEntry(K key) {
389 dl 1.1 Entry<K,V> p = root;
390 dl 1.31 while (p != null) {
391 dl 1.1 int cmp = compare(key, p.key);
392     if (cmp < 0) {
393     if (p.left != null)
394     p = p.left;
395     else
396     return p;
397     } else if (cmp > 0) {
398     if (p.right != null) {
399     p = p.right;
400     } else {
401     Entry<K,V> parent = p.parent;
402     Entry<K,V> ch = p;
403     while (parent != null && ch == parent.right) {
404     ch = parent;
405     parent = parent.parent;
406     }
407     return parent;
408     }
409     } else
410     return p;
411     }
412 dl 1.31 return null;
413 dl 1.1 }
414    
415     /**
416     * Gets the entry corresponding to the specified key; if no such entry
417     * exists, returns the entry for the greatest key less than the specified
418     * key; if no such entry exists, returns <tt>null</tt>.
419     */
420 dl 1.29 final Entry<K,V> getFloorEntry(K key) {
421 dl 1.1 Entry<K,V> p = root;
422 dl 1.31 while (p != null) {
423 dl 1.1 int cmp = compare(key, p.key);
424     if (cmp > 0) {
425     if (p.right != null)
426     p = p.right;
427     else
428     return p;
429     } else if (cmp < 0) {
430     if (p.left != null) {
431     p = p.left;
432     } else {
433     Entry<K,V> parent = p.parent;
434     Entry<K,V> ch = p;
435     while (parent != null && ch == parent.left) {
436     ch = parent;
437     parent = parent.parent;
438     }
439     return parent;
440     }
441     } else
442     return p;
443    
444     }
445 dl 1.31 return null;
446 dl 1.1 }
447    
448     /**
449     * Gets the entry for the least key greater than the specified
450     * key; if no such entry exists, returns the entry for the least
451     * key greater than the specified key; if no such entry exists
452     * returns <tt>null</tt>.
453     */
454 dl 1.29 final Entry<K,V> getHigherEntry(K key) {
455 dl 1.1 Entry<K,V> p = root;
456 dl 1.31 while (p != null) {
457 dl 1.1 int cmp = compare(key, p.key);
458     if (cmp < 0) {
459     if (p.left != null)
460     p = p.left;
461     else
462     return p;
463     } else {
464     if (p.right != null) {
465     p = p.right;
466     } else {
467     Entry<K,V> parent = p.parent;
468     Entry<K,V> ch = p;
469     while (parent != null && ch == parent.right) {
470     ch = parent;
471     parent = parent.parent;
472     }
473     return parent;
474     }
475     }
476     }
477 dl 1.31 return null;
478 dl 1.1 }
479    
480     /**
481     * Returns the entry for the greatest key less than the specified key; if
482     * no such entry exists (i.e., the least key in the Tree is greater than
483     * the specified key), returns <tt>null</tt>.
484     */
485 dl 1.29 final Entry<K,V> getLowerEntry(K key) {
486 dl 1.1 Entry<K,V> p = root;
487 dl 1.31 while (p != null) {
488 dl 1.1 int cmp = compare(key, p.key);
489     if (cmp > 0) {
490     if (p.right != null)
491     p = p.right;
492     else
493     return p;
494     } else {
495     if (p.left != null) {
496     p = p.left;
497     } else {
498     Entry<K,V> parent = p.parent;
499     Entry<K,V> ch = p;
500     while (parent != null && ch == parent.left) {
501     ch = parent;
502     parent = parent.parent;
503     }
504     return parent;
505     }
506     }
507     }
508 dl 1.31 return null;
509 dl 1.1 }
510    
511     /**
512 jsr166 1.14 * Returns the key corresponding to the specified Entry.
513     * @throws NoSuchElementException if the Entry is null
514 dl 1.1 */
515 dl 1.29 static <K> K key(Entry<K,?> e) {
516 dl 1.1 if (e==null)
517     throw new NoSuchElementException();
518     return e.key;
519     }
520    
521     /**
522     * Associates the specified value with the specified key in this map.
523 jsr166 1.20 * If the map previously contained a mapping for the key, the old
524 dl 1.1 * value is replaced.
525     *
526 jsr166 1.14 * @param key key with which the specified value is to be associated
527     * @param value value to be associated with the specified key
528 dl 1.1 *
529 jsr166 1.14 * @return the previous value associated with <tt>key</tt>, or
530     * <tt>null</tt> if there was no mapping for <tt>key</tt>.
531     * (A <tt>null</tt> return can also indicate that the map
532     * previously associated <tt>null</tt> with <tt>key</tt>.)
533     * @throws ClassCastException if the specified key cannot be compared
534     * with the keys currently in the map
535     * @throws NullPointerException if the specified key is null
536     * and this map uses natural ordering, or its comparator
537     * does not permit null keys
538 dl 1.1 */
539     public V put(K key, V value) {
540 dl 1.31 // Offload comparator-based version for sake of performance
541     if (comparator != null)
542     return putUsingComparator(key, value);
543     if (key == null)
544     throw new NullPointerException();
545     Comparable<? super K> k = (Comparable<? super K>) key;
546    
547 dl 1.1 Entry<K,V> t = root;
548 dl 1.31 while (t != null) {
549     int cmp = k.compareTo(t.key);
550     if (cmp == 0) {
551     return t.setValue(value);
552     } else if (cmp < 0) {
553     if (t.left != null) {
554     t = t.left;
555     } else {
556     incrementSize();
557     fixAfterInsertion(t.left = new Entry<K,V>(key, value, t));
558     return null;
559     }
560     } else { // cmp > 0
561     if (t.right != null) {
562     t = t.right;
563     } else {
564     incrementSize();
565     fixAfterInsertion(t.right = new Entry<K,V>(key, value, t));
566     return null;
567     }
568     }
569 dl 1.8 }
570 dl 1.31 incrementSize();
571     root = new Entry<K,V>(key, value, null);
572     return null;
573     }
574 dl 1.1
575 dl 1.31 /**
576     * Version of put using comparator. Split off from put for
577     * performance.
578     */
579     final V putUsingComparator(K key, V value) {
580     Comparator<? super K> cpr = comparator;
581     Entry<K,V> t = root;
582     while (t != null) {
583     int cmp = cpr.compare(key, t.key);
584 dl 1.1 if (cmp == 0) {
585     return t.setValue(value);
586     } else if (cmp < 0) {
587     if (t.left != null) {
588     t = t.left;
589     } else {
590     incrementSize();
591 dl 1.31 fixAfterInsertion(t.left = new Entry<K,V>(key, value, t));
592 dl 1.1 return null;
593     }
594     } else { // cmp > 0
595     if (t.right != null) {
596     t = t.right;
597     } else {
598     incrementSize();
599 dl 1.31 fixAfterInsertion(t.right = new Entry<K,V>(key, value, t));
600 dl 1.1 return null;
601     }
602     }
603     }
604 dl 1.31 cpr.compare(key, key); // type check
605     incrementSize();
606     root = new Entry<K,V>(key, value, null);
607     return null;
608 dl 1.1 }
609    
610     /**
611     * Removes the mapping for this key from this TreeMap if present.
612     *
613     * @param key key for which mapping should be removed
614 jsr166 1.14 * @return the previous value associated with <tt>key</tt>, or
615     * <tt>null</tt> if there was no mapping for <tt>key</tt>.
616     * (A <tt>null</tt> return can also indicate that the map
617     * previously associated <tt>null</tt> with <tt>key</tt>.)
618     * @throws ClassCastException if the specified key cannot be compared
619     * with the keys currently in the map
620     * @throws NullPointerException if the specified key is null
621     * and this map uses natural ordering, or its comparator
622     * does not permit null keys
623 dl 1.1 */
624     public V remove(Object key) {
625     Entry<K,V> p = getEntry(key);
626     if (p == null)
627     return null;
628    
629     V oldValue = p.value;
630     deleteEntry(p);
631     return oldValue;
632     }
633    
634     /**
635 jsr166 1.14 * Removes all of the mappings from this map.
636     * The map will be empty after this call returns.
637 dl 1.1 */
638     public void clear() {
639     modCount++;
640     size = 0;
641     root = null;
642     }
643    
644     /**
645     * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
646     * values themselves are not cloned.)
647     *
648 jsr166 1.14 * @return a shallow copy of this map
649 dl 1.1 */
650     public Object clone() {
651     TreeMap<K,V> clone = null;
652     try {
653     clone = (TreeMap<K,V>) super.clone();
654     } catch (CloneNotSupportedException e) {
655     throw new InternalError();
656     }
657    
658     // Put clone into "virgin" state (except for comparator)
659     clone.root = null;
660     clone.size = 0;
661     clone.modCount = 0;
662     clone.entrySet = null;
663 dl 1.28 clone.navigableKeySet = null;
664     clone.descendingMap = null;
665 dl 1.1
666     // Initialize clone with our mappings
667     try {
668     clone.buildFromSorted(size, entrySet().iterator(), null, null);
669     } catch (java.io.IOException cannotHappen) {
670     } catch (ClassNotFoundException cannotHappen) {
671     }
672    
673     return clone;
674     }
675    
676     // NavigableMap API methods
677    
678 jsr166 1.22 /**
679     * @since 1.6
680     */
681 dl 1.1 public Map.Entry<K,V> firstEntry() {
682     Entry<K,V> e = getFirstEntry();
683 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
684 dl 1.1 }
685    
686 jsr166 1.22 /**
687     * @since 1.6
688     */
689 dl 1.1 public Map.Entry<K,V> lastEntry() {
690     Entry<K,V> e = getLastEntry();
691 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
692 dl 1.1 }
693    
694 jsr166 1.22 /**
695     * @since 1.6
696     */
697 dl 1.1 public Map.Entry<K,V> pollFirstEntry() {
698     Entry<K,V> p = getFirstEntry();
699 dl 1.8 if (p == null)
700 dl 1.1 return null;
701 dl 1.16 Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
702 dl 1.1 deleteEntry(p);
703     return result;
704     }
705    
706 jsr166 1.22 /**
707     * @since 1.6
708     */
709 dl 1.1 public Map.Entry<K,V> pollLastEntry() {
710     Entry<K,V> p = getLastEntry();
711 dl 1.8 if (p == null)
712 dl 1.1 return null;
713 dl 1.16 Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
714 dl 1.1 deleteEntry(p);
715     return result;
716     }
717    
718     /**
719 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
720     * @throws NullPointerException if the specified key is null
721     * and this map uses natural ordering, or its comparator
722     * does not permit null keys
723 jsr166 1.22 * @since 1.6
724 dl 1.1 */
725 jsr166 1.14 public Map.Entry<K,V> lowerEntry(K key) {
726     Entry<K,V> e = getLowerEntry(key);
727 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
728 dl 1.1 }
729    
730     /**
731 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
732     * @throws NullPointerException if the specified key is null
733     * and this map uses natural ordering, or its comparator
734     * does not permit null keys
735 jsr166 1.22 * @since 1.6
736 dl 1.1 */
737 jsr166 1.14 public K lowerKey(K key) {
738     Entry<K,V> e = getLowerEntry(key);
739 dl 1.1 return (e == null)? null : e.key;
740     }
741    
742     /**
743 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
744     * @throws NullPointerException if the specified key is null
745     * and this map uses natural ordering, or its comparator
746     * does not permit null keys
747 jsr166 1.22 * @since 1.6
748 dl 1.1 */
749     public Map.Entry<K,V> floorEntry(K key) {
750     Entry<K,V> e = getFloorEntry(key);
751 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
752 dl 1.1 }
753    
754     /**
755 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
756     * @throws NullPointerException if the specified key is null
757     * and this map uses natural ordering, or its comparator
758     * does not permit null keys
759 jsr166 1.22 * @since 1.6
760 dl 1.1 */
761     public K floorKey(K key) {
762     Entry<K,V> e = getFloorEntry(key);
763     return (e == null)? null : e.key;
764     }
765    
766     /**
767 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
768     * @throws NullPointerException if the specified key is null
769     * and this map uses natural ordering, or its comparator
770     * does not permit null keys
771 jsr166 1.22 * @since 1.6
772 dl 1.1 */
773 jsr166 1.14 public Map.Entry<K,V> ceilingEntry(K key) {
774     Entry<K,V> e = getCeilingEntry(key);
775 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
776 dl 1.1 }
777    
778     /**
779 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
780     * @throws NullPointerException if the specified key is null
781     * and this map uses natural ordering, or its comparator
782     * does not permit null keys
783 jsr166 1.22 * @since 1.6
784 dl 1.1 */
785 jsr166 1.14 public K ceilingKey(K key) {
786     Entry<K,V> e = getCeilingEntry(key);
787 dl 1.1 return (e == null)? null : e.key;
788     }
789    
790     /**
791 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
792     * @throws NullPointerException if the specified key is null
793     * and this map uses natural ordering, or its comparator
794     * does not permit null keys
795 jsr166 1.22 * @since 1.6
796 dl 1.1 */
797 jsr166 1.14 public Map.Entry<K,V> higherEntry(K key) {
798     Entry<K,V> e = getHigherEntry(key);
799 dl 1.16 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
800 dl 1.1 }
801    
802     /**
803 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
804     * @throws NullPointerException if the specified key is null
805     * and this map uses natural ordering, or its comparator
806     * does not permit null keys
807 jsr166 1.22 * @since 1.6
808 dl 1.1 */
809 jsr166 1.14 public K higherKey(K key) {
810     Entry<K,V> e = getHigherEntry(key);
811 dl 1.1 return (e == null)? null : e.key;
812     }
813    
814     // Views
815    
816     /**
817     * Fields initialized to contain an instance of the entry set view
818     * the first time this view is requested. Views are stateless, so
819     * there's no reason to create more than one.
820     */
821 dl 1.29 private transient EntrySet entrySet = null;
822 dl 1.28 private transient KeySet<K> navigableKeySet = null;
823     private transient NavigableMap<K,V> descendingMap = null;
824 dl 1.1
825     /**
826 jsr166 1.14 * Returns a {@link Set} view of the keys contained in this map.
827     * The set's iterator returns the keys in ascending order.
828     * The set is backed by the map, so changes to the map are
829     * reflected in the set, and vice-versa. If the map is modified
830     * while an iteration over the set is in progress (except through
831     * the iterator's own <tt>remove</tt> operation), the results of
832     * the iteration are undefined. The set supports element removal,
833     * which removes the corresponding mapping from the map, via the
834     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
835 jsr166 1.15 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
836     * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
837 jsr166 1.14 * operations.
838 dl 1.1 */
839     public Set<K> keySet() {
840 dl 1.28 return navigableKeySet();
841 dl 1.1 }
842    
843 dl 1.28 /**
844     * @since 1.6
845     */
846     public NavigableSet<K> navigableKeySet() {
847 dl 1.29 KeySet<K> nks = navigableKeySet;
848 dl 1.28 return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
849     }
850 dl 1.8
851 dl 1.28 /**
852     * @since 1.6
853     */
854     public NavigableSet<K> descendingKeySet() {
855     return descendingMap().navigableKeySet();
856 dl 1.1 }
857    
858     /**
859 jsr166 1.14 * Returns a {@link Collection} view of the values contained in this map.
860     * The collection's iterator returns the values in ascending order
861     * of the corresponding keys.
862     * The collection is backed by the map, so changes to the map are
863     * reflected in the collection, and vice-versa. If the map is
864     * modified while an iteration over the collection is in progress
865     * (except through the iterator's own <tt>remove</tt> operation),
866     * the results of the iteration are undefined. The collection
867     * supports element removal, which removes the corresponding
868     * mapping from the map, via the <tt>Iterator.remove</tt>,
869     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
870     * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
871 jsr166 1.15 * support the <tt>add</tt> or <tt>addAll</tt> operations.
872 dl 1.1 */
873     public Collection<V> values() {
874     Collection<V> vs = values;
875     return (vs != null) ? vs : (values = new Values());
876     }
877    
878     /**
879 jsr166 1.14 * Returns a {@link Set} view of the mappings contained in this map.
880     * The set's iterator returns the entries in ascending key order.
881     * The set is backed by the map, so changes to the map are
882     * reflected in the set, and vice-versa. If the map is modified
883     * while an iteration over the set is in progress (except through
884     * the iterator's own <tt>remove</tt> operation, or through the
885     * <tt>setValue</tt> operation on a map entry returned by the
886     * iterator) the results of the iteration are undefined. The set
887     * supports element removal, which removes the corresponding
888     * mapping from the map, via the <tt>Iterator.remove</tt>,
889 dl 1.1 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
890 jsr166 1.14 * <tt>clear</tt> operations. It does not support the
891     * <tt>add</tt> or <tt>addAll</tt> operations.
892 dl 1.1 */
893     public Set<Map.Entry<K,V>> entrySet() {
894 dl 1.29 EntrySet es = entrySet;
895 dl 1.1 return (es != null) ? es : (entrySet = new EntrySet());
896     }
897    
898 jsr166 1.22 /**
899     * @since 1.6
900     */
901 dl 1.28 public NavigableMap<K, V> descendingMap() {
902     NavigableMap<K, V> km = descendingMap;
903     return (km != null) ? km :
904 jsr166 1.30 (descendingMap = new DescendingSubMap(this,
905 dl 1.32 true, null, true,
906     true, null, true));
907 dl 1.1 }
908    
909     /**
910 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
911 dl 1.1 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
912 jsr166 1.14 * null and this map uses natural ordering, or its comparator
913     * does not permit null keys
914     * @throws IllegalArgumentException {@inheritDoc}
915 jsr166 1.22 * @since 1.6
916 dl 1.1 */
917 dl 1.29 public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
918     K toKey, boolean toInclusive) {
919 jsr166 1.30 return new AscendingSubMap(this,
920 dl 1.32 false, fromKey, fromInclusive,
921     false, toKey, toInclusive);
922 dl 1.1 }
923    
924     /**
925 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
926     * @throws NullPointerException if <tt>toKey</tt> is null
927     * and this map uses natural ordering, or its comparator
928     * does not permit null keys
929     * @throws IllegalArgumentException {@inheritDoc}
930 jsr166 1.22 * @since 1.6
931 dl 1.1 */
932 dl 1.29 public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
933 jsr166 1.30 return new AscendingSubMap(this,
934 dl 1.32 true, null, true,
935     false, toKey, inclusive);
936 dl 1.1 }
937    
938     /**
939 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
940     * @throws NullPointerException if <tt>fromKey</tt> is null
941     * and this map uses natural ordering, or its comparator
942     * does not permit null keys
943     * @throws IllegalArgumentException {@inheritDoc}
944 jsr166 1.22 * @since 1.6
945 dl 1.1 */
946 dl 1.29 public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
947 jsr166 1.30 return new AscendingSubMap(this,
948 dl 1.32 false, fromKey, inclusive,
949     true, null, true);
950 dl 1.4 }
951    
952     /**
953 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
954 dl 1.4 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
955 jsr166 1.14 * null and this map uses natural ordering, or its comparator
956     * does not permit null keys
957     * @throws IllegalArgumentException {@inheritDoc}
958 dl 1.4 */
959     public SortedMap<K,V> subMap(K fromKey, K toKey) {
960 dl 1.29 return subMap(fromKey, true, toKey, false);
961 dl 1.4 }
962    
963     /**
964 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
965     * @throws NullPointerException if <tt>toKey</tt> is null
966     * and this map uses natural ordering, or its comparator
967     * does not permit null keys
968     * @throws IllegalArgumentException {@inheritDoc}
969 dl 1.4 */
970     public SortedMap<K,V> headMap(K toKey) {
971 dl 1.29 return headMap(toKey, false);
972 dl 1.4 }
973    
974     /**
975 jsr166 1.14 * @throws ClassCastException {@inheritDoc}
976     * @throws NullPointerException if <tt>fromKey</tt> is null
977     * and this map uses natural ordering, or its comparator
978     * does not permit null keys
979     * @throws IllegalArgumentException {@inheritDoc}
980 dl 1.4 */
981     public SortedMap<K,V> tailMap(K fromKey) {
982 dl 1.29 return tailMap(fromKey, true);
983 dl 1.1 }
984    
985 dl 1.28 // View class support
986 dl 1.1
987 dl 1.28 class Values extends AbstractCollection<V> {
988     public Iterator<V> iterator() {
989     return new ValueIterator(getFirstEntry());
990     }
991 dl 1.1
992 dl 1.28 public int size() {
993     return TreeMap.this.size();
994 dl 1.1 }
995    
996 dl 1.28 public boolean contains(Object o) {
997     for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
998     if (valEquals(e.getValue(), o))
999     return true;
1000     return false;
1001     }
1002 dl 1.1
1003 dl 1.28 public boolean remove(Object o) {
1004     for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
1005     if (valEquals(e.getValue(), o)) {
1006     deleteEntry(e);
1007     return true;
1008     }
1009 dl 1.1 }
1010 dl 1.28 return false;
1011 dl 1.1 }
1012    
1013 dl 1.28 public void clear() {
1014     TreeMap.this.clear();
1015     }
1016     }
1017    
1018     class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1019     public Iterator<Map.Entry<K,V>> iterator() {
1020     return new EntryIterator(getFirstEntry());
1021 dl 1.1 }
1022    
1023 dl 1.28 public boolean contains(Object o) {
1024     if (!(o instanceof Map.Entry))
1025     return false;
1026     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1027     V value = entry.getValue();
1028     Entry<K,V> p = getEntry(entry.getKey());
1029     return p != null && valEquals(p.getValue(), value);
1030 dl 1.1 }
1031    
1032 dl 1.28 public boolean remove(Object o) {
1033     if (!(o instanceof Map.Entry))
1034     return false;
1035     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1036     V value = entry.getValue();
1037     Entry<K,V> p = getEntry(entry.getKey());
1038     if (p != null && valEquals(p.getValue(), value)) {
1039     deleteEntry(p);
1040     return true;
1041     }
1042     return false;
1043 dl 1.1 }
1044    
1045 dl 1.28 public int size() {
1046     return TreeMap.this.size();
1047 dl 1.1 }
1048    
1049 dl 1.28 public void clear() {
1050     TreeMap.this.clear();
1051 dl 1.1 }
1052 dl 1.28 }
1053    
1054     /*
1055     * Unlike Values and EntrySet, the KeySet class is static,
1056     * delegating to a NavigableMap to allow use by SubMaps, which
1057     * outweighs the ugliness of needing type-tests for the following
1058     * Iterator methods that are defined appropriately in main versus
1059     * submap classes.
1060     */
1061 dl 1.1
1062 dl 1.28 Iterator<K> keyIterator() {
1063     return new KeyIterator(getFirstEntry());
1064     }
1065    
1066     Iterator<K> descendingKeyIterator() {
1067     return new DescendingKeyIterator(getFirstEntry());
1068     }
1069    
1070     static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1071     private final NavigableMap<E, Object> m;
1072     KeySet(NavigableMap<E,Object> map) { m = map; }
1073    
1074     public Iterator<E> iterator() {
1075     if (m instanceof TreeMap)
1076     return ((TreeMap<E,Object>)m).keyIterator();
1077     else
1078     return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
1079 dl 1.1 }
1080    
1081 dl 1.28 public Iterator<E> descendingIterator() {
1082     if (m instanceof TreeMap)
1083     return ((TreeMap<E,Object>)m).descendingKeyIterator();
1084     else
1085     return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
1086 dl 1.1 }
1087    
1088 dl 1.28 public int size() { return m.size(); }
1089     public boolean isEmpty() { return m.isEmpty(); }
1090     public boolean contains(Object o) { return m.containsKey(o); }
1091     public void clear() { m.clear(); }
1092     public E lower(E e) { return m.lowerKey(e); }
1093     public E floor(E e) { return m.floorKey(e); }
1094     public E ceiling(E e) { return m.ceilingKey(e); }
1095     public E higher(E e) { return m.higherKey(e); }
1096     public E first() { return m.firstKey(); }
1097     public E last() { return m.lastKey(); }
1098     public Comparator<? super E> comparator() { return m.comparator(); }
1099     public E pollFirst() {
1100     Map.Entry<E,Object> e = m.pollFirstEntry();
1101     return e == null? null : e.getKey();
1102     }
1103     public E pollLast() {
1104     Map.Entry<E,Object> e = m.pollLastEntry();
1105     return e == null? null : e.getKey();
1106     }
1107     public boolean remove(Object o) {
1108     int oldSize = size();
1109     m.remove(o);
1110     return size() != oldSize;
1111     }
1112 dl 1.31 public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1113     E toElement, boolean toInclusive) {
1114     return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
1115     toElement, toInclusive));
1116 dl 1.28 }
1117 dl 1.29 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1118     return new TreeSet<E>(m.headMap(toElement, inclusive));
1119 dl 1.28 }
1120 dl 1.29 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1121     return new TreeSet<E>(m.tailMap(fromElement, inclusive));
1122 dl 1.28 }
1123     public SortedSet<E> subSet(E fromElement, E toElement) {
1124 dl 1.29 return subSet(fromElement, true, toElement, false);
1125 dl 1.28 }
1126     public SortedSet<E> headSet(E toElement) {
1127 dl 1.29 return headSet(toElement, false);
1128 dl 1.28 }
1129     public SortedSet<E> tailSet(E fromElement) {
1130 dl 1.29 return tailSet(fromElement, true);
1131 dl 1.28 }
1132     public NavigableSet<E> descendingSet() {
1133     return new TreeSet(m.descendingMap());
1134 dl 1.1 }
1135 dl 1.28 }
1136    
1137 dl 1.29 /**
1138     * Base class for TreeMap Iterators
1139     */
1140     abstract class PrivateEntryIterator<T> implements Iterator<T> {
1141     Entry<K,V> next;
1142 dl 1.31 Entry<K,V> lastReturned;
1143     int expectedModCount;
1144 dl 1.29
1145     PrivateEntryIterator(Entry<K,V> first) {
1146 dl 1.31 expectedModCount = modCount;
1147     lastReturned = null;
1148 dl 1.29 next = first;
1149     }
1150    
1151     public final boolean hasNext() {
1152     return next != null;
1153     }
1154    
1155     final Entry<K,V> nextEntry() {
1156 dl 1.31 Entry<K,V> e = lastReturned = next;
1157     if (e == null)
1158 dl 1.29 throw new NoSuchElementException();
1159     if (modCount != expectedModCount)
1160     throw new ConcurrentModificationException();
1161 dl 1.31 next = successor(e);
1162     return e;
1163 dl 1.29 }
1164    
1165     final Entry<K,V> prevEntry() {
1166 dl 1.31 Entry<K,V> e = lastReturned= next;
1167     if (e == null)
1168 dl 1.29 throw new NoSuchElementException();
1169     if (modCount != expectedModCount)
1170     throw new ConcurrentModificationException();
1171 dl 1.31 next = predecessor(e);
1172     return e;
1173 dl 1.29 }
1174    
1175     public void remove() {
1176     if (lastReturned == null)
1177     throw new IllegalStateException();
1178     if (modCount != expectedModCount)
1179     throw new ConcurrentModificationException();
1180     if (lastReturned.left != null && lastReturned.right != null)
1181     next = lastReturned;
1182     deleteEntry(lastReturned);
1183     expectedModCount++;
1184     lastReturned = null;
1185     }
1186     }
1187    
1188     final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1189     EntryIterator(Entry<K,V> first) {
1190     super(first);
1191     }
1192     public Map.Entry<K,V> next() {
1193     return nextEntry();
1194     }
1195     }
1196    
1197     final class ValueIterator extends PrivateEntryIterator<V> {
1198     ValueIterator(Entry<K,V> first) {
1199     super(first);
1200     }
1201     public V next() {
1202     return nextEntry().value;
1203     }
1204     }
1205    
1206     final class KeyIterator extends PrivateEntryIterator<K> {
1207     KeyIterator(Entry<K,V> first) {
1208     super(first);
1209     }
1210     public K next() {
1211     return nextEntry().key;
1212     }
1213     }
1214    
1215     final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1216     DescendingKeyIterator(Entry<K,V> first) {
1217     super(first);
1218     }
1219     public K next() {
1220     return prevEntry().key;
1221     }
1222     }
1223    
1224 dl 1.28 // SubMaps
1225    
1226 dl 1.29 static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>
1227 dl 1.28 implements NavigableMap<K,V>, java.io.Serializable {
1228 dl 1.29 /*
1229     * The backing map.
1230     */
1231 jsr166 1.30 final TreeMap<K,V> m;
1232 dl 1.29
1233 dl 1.31 /*
1234 dl 1.32 * Endpoints are represented as triples (fromStart, lo,
1235     * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1236     * true, then the low (absolute) bound is the start of the
1237     * backing map, and the other values are ignored. Otherwise,
1238     * if loInclusive is true, lo is the inclusive bound, else lo
1239     * is the exclusive bound. Similarly for the upper bound.
1240 dl 1.28 */
1241    
1242 dl 1.31 final K lo, hi;
1243     final boolean fromStart, toEnd;
1244 dl 1.32 final boolean loInclusive, hiInclusive;
1245 dl 1.28
1246 jsr166 1.30 NavigableSubMap(TreeMap<K,V> m,
1247 dl 1.32 boolean fromStart, K lo, boolean loInclusive,
1248     boolean toEnd, K hi, boolean hiInclusive) {
1249 dl 1.31 if (!fromStart && !toEnd) {
1250     if (m.compare(lo, hi) > 0)
1251     throw new IllegalArgumentException("fromKey > toKey");
1252 dl 1.32 } else {
1253     if (!fromStart) // type check
1254     m.compare(lo, lo);
1255     if (!toEnd)
1256     m.compare(hi, hi);
1257 dl 1.31 }
1258    
1259 dl 1.29 this.m = m;
1260     this.fromStart = fromStart;
1261 dl 1.28 this.lo = lo;
1262 dl 1.32 this.loInclusive = loInclusive;
1263 dl 1.29 this.toEnd = toEnd;
1264 dl 1.28 this.hi = hi;
1265 dl 1.32 this.hiInclusive = hiInclusive;
1266 dl 1.1 }
1267    
1268 dl 1.29 // internal utilities
1269    
1270 dl 1.32 final boolean tooLow(Object key) {
1271     if (!fromStart) {
1272     int c = m.compare(key, lo);
1273     if (c < 0 || (c == 0 && !loInclusive))
1274     return true;
1275     }
1276     return false;
1277     }
1278    
1279     final boolean tooHigh(Object key) {
1280     if (!toEnd) {
1281     int c = m.compare(key, hi);
1282     if (c > 0 || (c == 0 && !hiInclusive))
1283     return true;
1284     }
1285     return false;
1286     }
1287    
1288 dl 1.29 final boolean inRange(Object key) {
1289 dl 1.32 return !tooLow(key) && !tooHigh(key);
1290 dl 1.29 }
1291    
1292     final boolean inClosedRange(Object key) {
1293     return (fromStart || m.compare(key, lo) >= 0)
1294     && (toEnd || m.compare(hi, key) >= 0);
1295     }
1296    
1297     final boolean inRange(Object key, boolean inclusive) {
1298     return inclusive ? inRange(key) : inClosedRange(key);
1299     }
1300    
1301 dl 1.32 /**
1302     * Return SimpleImmutableEntry for entry, or null if null
1303     */
1304     static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
1305     return e == null? null :
1306     new AbstractMap.SimpleImmutableEntry<K,V>(e);
1307 dl 1.29 }
1308    
1309 dl 1.32 /**
1310     * Return key for entry, or null if null
1311     */
1312     static <K,V> K exportKey(TreeMap.Entry<K,V> e) {
1313     return e == null? null : e.key;
1314 dl 1.29 }
1315    
1316 dl 1.32 /*
1317     * Absolute versions of relation operations.
1318     * Subclasses map to these using like-named "sub"
1319     * versions that invert senses for descending maps
1320     */
1321    
1322     final TreeMap.Entry<K,V> absLowest() {
1323     TreeMap.Entry<K,V> e =
1324 dl 1.29 (fromStart ? m.getFirstEntry() :
1325 dl 1.32 (loInclusive ? m.getCeilingEntry(lo) :
1326     m.getHigherEntry(lo)));
1327     return (e == null || tooHigh(e.key)) ? null : e;
1328 dl 1.29 }
1329    
1330 dl 1.32 final TreeMap.Entry<K,V> absHighest() {
1331     TreeMap.Entry<K,V> e =
1332 dl 1.29 (toEnd ? m.getLastEntry() :
1333 dl 1.32 (hiInclusive ? m.getFloorEntry(hi) :
1334     m.getLowerEntry(hi)));
1335     return (e == null || tooLow(e.key)) ? null : e;
1336     }
1337    
1338     final TreeMap.Entry<K,V> absCeiling(K key) {
1339     if (tooLow(key))
1340     return absLowest();
1341     TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1342     return (e == null || tooHigh(e.key)) ? null : e;
1343 dl 1.29 }
1344    
1345 dl 1.32 final TreeMap.Entry<K,V> absHigher(K key) {
1346     if (tooLow(key))
1347     return absLowest();
1348     TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1349     return (e == null || tooHigh(e.key)) ? null : e;
1350 dl 1.29 }
1351    
1352 dl 1.32 final TreeMap.Entry<K,V> absFloor(K key) {
1353     if (tooHigh(key))
1354     return absHighest();
1355     TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1356     return (e == null || tooLow(e.key)) ? null : e;
1357 dl 1.29 }
1358    
1359 dl 1.32 final TreeMap.Entry<K,V> absLower(K key) {
1360     if (tooHigh(key))
1361     return absHighest();
1362     TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1363     return (e == null || tooLow(e.key)) ? null : e;
1364 dl 1.29 }
1365    
1366 dl 1.32 /** Returns the absolute high fence for ascending traversal */
1367     final TreeMap.Entry<K,V> absHighFence() {
1368     return (toEnd ? null : (hiInclusive ?
1369     m.getHigherEntry(hi) :
1370     m.getCeilingEntry(hi)));
1371     }
1372    
1373     /** Return the absolute low fence for descending traversal */
1374     final TreeMap.Entry<K,V> absLowFence() {
1375     return (fromStart ? null : (loInclusive ?
1376     m.getLowerEntry(lo) :
1377     m.getFloorEntry(lo)));
1378     }
1379    
1380     // Abstract methods defined in ascending vs descending classes
1381     // These relay to the appropriate absolute versions
1382    
1383     abstract TreeMap.Entry<K,V> subLowest();
1384     abstract TreeMap.Entry<K,V> subHighest();
1385     abstract TreeMap.Entry<K,V> subCeiling(K key);
1386     abstract TreeMap.Entry<K,V> subHigher(K key);
1387     abstract TreeMap.Entry<K,V> subFloor(K key);
1388     abstract TreeMap.Entry<K,V> subLower(K key);
1389    
1390     /** Returns ascending iterator from the perspective of this submap */
1391     abstract Iterator<K> keyIterator();
1392    
1393     /** Returns descending iterator from the perspective of this submap */
1394     abstract Iterator<K> descendingKeyIterator();
1395 dl 1.29
1396 dl 1.32 // public methods
1397 dl 1.29
1398 dl 1.28 public boolean isEmpty() {
1399 dl 1.32 return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1400 dl 1.1 }
1401    
1402 dl 1.32 public int size() {
1403     return (fromStart && toEnd) ? m.size() : entrySet().size();
1404 dl 1.1 }
1405    
1406 dl 1.32 public final boolean containsKey(Object key) {
1407     return inRange(key) && m.containsKey(key);
1408 dl 1.1 }
1409    
1410 dl 1.32 public final V put(K key, V value) {
1411 dl 1.28 if (!inRange(key))
1412     throw new IllegalArgumentException("key out of range");
1413 dl 1.29 return m.put(key, value);
1414 dl 1.1 }
1415    
1416 dl 1.32 public final V get(Object key) {
1417     return !inRange(key)? null : m.get(key);
1418     }
1419    
1420     public final V remove(Object key) {
1421     return !inRange(key)? null : m.remove(key);
1422     }
1423    
1424     public final Map.Entry<K,V> ceilingEntry(K key) {
1425     return exportEntry(subCeiling(key));
1426     }
1427    
1428     public final K ceilingKey(K key) {
1429     return exportKey(subCeiling(key));
1430     }
1431    
1432     public final Map.Entry<K,V> higherEntry(K key) {
1433     return exportEntry(subHigher(key));
1434     }
1435    
1436     public final K higherKey(K key) {
1437     return exportKey(subHigher(key));
1438 dl 1.1 }
1439    
1440 dl 1.32 public final Map.Entry<K,V> floorEntry(K key) {
1441     return exportEntry(subFloor(key));
1442 dl 1.1 }
1443    
1444 dl 1.32 public final K floorKey(K key) {
1445     return exportKey(subFloor(key));
1446 dl 1.1 }
1447    
1448 dl 1.32 public final Map.Entry<K,V> lowerEntry(K key) {
1449     return exportEntry(subLower(key));
1450 dl 1.1 }
1451    
1452 dl 1.32 public final K lowerKey(K key) {
1453     return exportKey(subLower(key));
1454 dl 1.1 }
1455    
1456 dl 1.32 public final K firstKey() {
1457     return key(subLowest());
1458 dl 1.1 }
1459    
1460 dl 1.32 public final K lastKey() {
1461     return key(subHighest());
1462 dl 1.1 }
1463    
1464 dl 1.32 public final Map.Entry<K,V> firstEntry() {
1465     return exportEntry(subLowest());
1466 dl 1.1 }
1467    
1468 dl 1.32 public final Map.Entry<K,V> lastEntry() {
1469     return exportEntry(subHighest());
1470 dl 1.1 }
1471    
1472 dl 1.32 public final Map.Entry<K,V> pollFirstEntry() {
1473     TreeMap.Entry<K,V> e = subLowest();
1474     Map.Entry<K,V> result = exportEntry(e);
1475     if (e != null)
1476     m.deleteEntry(e);
1477     return result;
1478     }
1479 dl 1.1
1480 dl 1.32 public final Map.Entry<K,V> pollLastEntry() {
1481     TreeMap.Entry<K,V> e = subHighest();
1482     Map.Entry<K,V> result = exportEntry(e);
1483     if (e != null)
1484     m.deleteEntry(e);
1485     return result;
1486 dl 1.1 }
1487    
1488 dl 1.28 // Views
1489     transient NavigableMap<K,V> descendingMapView = null;
1490 dl 1.29 transient EntrySetView entrySetView = null;
1491     transient KeySet<K> navigableKeySetView = null;
1492 dl 1.28
1493 dl 1.32 public final NavigableSet<K> navigableKeySet() {
1494     KeySet<K> nksv = navigableKeySetView;
1495     return (nksv != null) ? nksv :
1496     (navigableKeySetView = new TreeMap.KeySet(this));
1497     }
1498    
1499     public final Set<K> keySet() {
1500     return navigableKeySet();
1501     }
1502    
1503     public NavigableSet<K> descendingKeySet() {
1504     return descendingMap().navigableKeySet();
1505     }
1506    
1507     public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1508     return subMap(fromKey, true, toKey, false);
1509     }
1510    
1511     public final SortedMap<K,V> headMap(K toKey) {
1512     return headMap(toKey, false);
1513     }
1514    
1515     public final SortedMap<K,V> tailMap(K fromKey) {
1516     return tailMap(fromKey, true);
1517     }
1518    
1519     // View classes
1520    
1521 dl 1.28 abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1522 dl 1.1 private transient int size = -1, sizeModCount;
1523    
1524     public int size() {
1525 dl 1.29 if (fromStart && toEnd)
1526     return m.size();
1527     if (size == -1 || sizeModCount != m.modCount) {
1528     sizeModCount = m.modCount;
1529 jsr166 1.30 size = 0;
1530 dl 1.1 Iterator i = iterator();
1531     while (i.hasNext()) {
1532     size++;
1533     i.next();
1534     }
1535     }
1536     return size;
1537     }
1538    
1539     public boolean isEmpty() {
1540 dl 1.32 TreeMap.Entry<K,V> n = absLowest();
1541 dl 1.29 return n == null || tooHigh(n.key);
1542 dl 1.1 }
1543    
1544     public boolean contains(Object o) {
1545     if (!(o instanceof Map.Entry))
1546     return false;
1547     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1548     K key = entry.getKey();
1549     if (!inRange(key))
1550     return false;
1551 dl 1.29 TreeMap.Entry node = m.getEntry(key);
1552 dl 1.1 return node != null &&
1553 dl 1.29 valEquals(node.getValue(), entry.getValue());
1554 dl 1.1 }
1555    
1556     public boolean remove(Object o) {
1557     if (!(o instanceof Map.Entry))
1558     return false;
1559     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1560     K key = entry.getKey();
1561     if (!inRange(key))
1562     return false;
1563 dl 1.29 TreeMap.Entry<K,V> node = m.getEntry(key);
1564 dl 1.1 if (node!=null && valEquals(node.getValue(),entry.getValue())){
1565 dl 1.29 m.deleteEntry(node);
1566 dl 1.1 return true;
1567     }
1568     return false;
1569     }
1570 dl 1.28 }
1571 dl 1.1
1572 dl 1.29 /**
1573     * Iterators for SubMaps
1574     */
1575     abstract class SubMapIterator<T> implements Iterator<T> {
1576 dl 1.31 TreeMap.Entry<K,V> lastReturned;
1577 dl 1.29 TreeMap.Entry<K,V> next;
1578 dl 1.31 final K fenceKey;
1579     int expectedModCount;
1580 dl 1.29
1581 jsr166 1.30 SubMapIterator(TreeMap.Entry<K,V> first,
1582 dl 1.31 TreeMap.Entry<K,V> fence) {
1583     expectedModCount = m.modCount;
1584     lastReturned = null;
1585 dl 1.29 next = first;
1586 dl 1.31 fenceKey = fence == null ? null : fence.key;
1587 dl 1.29 }
1588    
1589     public final boolean hasNext() {
1590 dl 1.31 return next != null && next.key != fenceKey;
1591 dl 1.29 }
1592    
1593     final TreeMap.Entry<K,V> nextEntry() {
1594 dl 1.31 TreeMap.Entry<K,V> e = lastReturned = next;
1595     if (e == null || e.key == fenceKey)
1596 dl 1.29 throw new NoSuchElementException();
1597     if (m.modCount != expectedModCount)
1598     throw new ConcurrentModificationException();
1599 dl 1.31 next = successor(e);
1600     return e;
1601 dl 1.29 }
1602    
1603     final TreeMap.Entry<K,V> prevEntry() {
1604 dl 1.31 TreeMap.Entry<K,V> e = lastReturned = next;
1605     if (e == null || e.key == fenceKey)
1606 dl 1.29 throw new NoSuchElementException();
1607     if (m.modCount != expectedModCount)
1608     throw new ConcurrentModificationException();
1609 dl 1.31 next = predecessor(e);
1610     return e;
1611 dl 1.29 }
1612    
1613     public void remove() {
1614     if (lastReturned == null)
1615     throw new IllegalStateException();
1616     if (m.modCount != expectedModCount)
1617     throw new ConcurrentModificationException();
1618     if (lastReturned.left != null && lastReturned.right != null)
1619     next = lastReturned;
1620     m.deleteEntry(lastReturned);
1621     expectedModCount++;
1622     lastReturned = null;
1623     }
1624 dl 1.28 }
1625    
1626 dl 1.29 final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1627 jsr166 1.30 SubMapEntryIterator(TreeMap.Entry<K,V> first,
1628 dl 1.31 TreeMap.Entry<K,V> fence) {
1629     super(first, fence);
1630 dl 1.29 }
1631     public Map.Entry<K,V> next() {
1632     return nextEntry();
1633     }
1634 dl 1.28 }
1635    
1636 dl 1.29 final class SubMapKeyIterator extends SubMapIterator<K> {
1637 jsr166 1.30 SubMapKeyIterator(TreeMap.Entry<K,V> first,
1638 dl 1.31 TreeMap.Entry<K,V> fence) {
1639     super(first, fence);
1640 dl 1.29 }
1641     public K next() {
1642     return nextEntry().key;
1643     }
1644 dl 1.28 }
1645    
1646 dl 1.29 final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1647 jsr166 1.30 DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1648 dl 1.32 TreeMap.Entry<K,V> fence) {
1649     super(last, fence);
1650 dl 1.29 }
1651    
1652     public Map.Entry<K,V> next() {
1653     return prevEntry();
1654     }
1655 dl 1.28 }
1656    
1657 dl 1.29 final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
1658 jsr166 1.30 DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1659 dl 1.32 TreeMap.Entry<K,V> fence) {
1660     super(last, fence);
1661 dl 1.29 }
1662     public K next() {
1663     return prevEntry().key;
1664     }
1665 dl 1.28 }
1666     }
1667    
1668 dl 1.32 static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1669 dl 1.28 private static final long serialVersionUID = 912986545866124060L;
1670    
1671 jsr166 1.30 AscendingSubMap(TreeMap<K,V> m,
1672 dl 1.32 boolean fromStart, K lo, boolean loInclusive,
1673     boolean toEnd, K hi, boolean hiInclusive) {
1674     super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1675 dl 1.28 }
1676    
1677     public Comparator<? super K> comparator() {
1678 dl 1.29 return m.comparator();
1679 dl 1.28 }
1680    
1681 jsr166 1.30 public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1682 dl 1.29 K toKey, boolean toInclusive) {
1683 dl 1.28 if (!inRange(fromKey, fromInclusive))
1684     throw new IllegalArgumentException("fromKey out of range");
1685     if (!inRange(toKey, toInclusive))
1686     throw new IllegalArgumentException("toKey out of range");
1687 jsr166 1.30 return new AscendingSubMap(m,
1688 dl 1.32 false, fromKey, fromInclusive,
1689     false, toKey, toInclusive);
1690 dl 1.28 }
1691    
1692 dl 1.29 public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1693 dl 1.28 if (!inClosedRange(toKey))
1694     throw new IllegalArgumentException("toKey out of range");
1695 jsr166 1.30 return new AscendingSubMap(m,
1696 dl 1.32 fromStart, lo, loInclusive,
1697     false, toKey, inclusive);
1698 dl 1.28 }
1699    
1700 dl 1.29 public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1701 dl 1.28 if (!inRange(fromKey, inclusive))
1702     throw new IllegalArgumentException("fromKey out of range");
1703 jsr166 1.30 return new AscendingSubMap(m,
1704 dl 1.32 false, fromKey, inclusive,
1705     toEnd, hi, hiInclusive);
1706     }
1707    
1708     public NavigableMap<K,V> descendingMap() {
1709     NavigableMap<K,V> mv = descendingMapView;
1710     return (mv != null) ? mv :
1711     (descendingMapView =
1712     new DescendingSubMap(m,
1713     fromStart, lo, loInclusive,
1714     toEnd, hi, hiInclusive));
1715 dl 1.28 }
1716    
1717     Iterator<K> keyIterator() {
1718 dl 1.32 return new SubMapKeyIterator(absLowest(), absHighFence());
1719 dl 1.28 }
1720    
1721     Iterator<K> descendingKeyIterator() {
1722 dl 1.32 return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1723 dl 1.29 }
1724    
1725 dl 1.32 final class AscendingEntrySetView extends EntrySetView {
1726 dl 1.29 public Iterator<Map.Entry<K,V>> iterator() {
1727 dl 1.32 return new SubMapEntryIterator(absLowest(), absHighFence());
1728 dl 1.29 }
1729 dl 1.28 }
1730    
1731     public Set<Map.Entry<K,V>> entrySet() {
1732 dl 1.29 EntrySetView es = entrySetView;
1733     return (es != null) ? es : new AscendingEntrySetView();
1734 dl 1.28 }
1735    
1736 dl 1.32 TreeMap.Entry<K,V> subLowest() { return absLowest(); }
1737     TreeMap.Entry<K,V> subHighest() { return absHighest(); }
1738     TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
1739     TreeMap.Entry<K,V> subHigher(K key) { return absHigher(key); }
1740     TreeMap.Entry<K,V> subFloor(K key) { return absFloor(key); }
1741     TreeMap.Entry<K,V> subLower(K key) { return absLower(key); }
1742 dl 1.28 }
1743 dl 1.1
1744 dl 1.32 static final class DescendingSubMap<K,V> extends NavigableSubMap<K,V> {
1745 dl 1.28 private static final long serialVersionUID = 912986545866120460L;
1746 jsr166 1.30 DescendingSubMap(TreeMap<K,V> m,
1747 dl 1.32 boolean fromStart, K lo, boolean loInclusive,
1748     boolean toEnd, K hi, boolean hiInclusive) {
1749     super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1750 dl 1.28 }
1751 dl 1.8
1752 dl 1.28 private final Comparator<? super K> reverseComparator =
1753 dl 1.29 Collections.reverseOrder(m.comparator);
1754 dl 1.8
1755 dl 1.28 public Comparator<? super K> comparator() {
1756     return reverseComparator;
1757 dl 1.1 }
1758    
1759 jsr166 1.30 public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1760 dl 1.29 K toKey, boolean toInclusive) {
1761 dl 1.28 if (!inRange(fromKey, fromInclusive))
1762 dl 1.1 throw new IllegalArgumentException("fromKey out of range");
1763 dl 1.28 if (!inRange(toKey, toInclusive))
1764 dl 1.1 throw new IllegalArgumentException("toKey out of range");
1765 jsr166 1.30 return new DescendingSubMap(m,
1766 dl 1.32 false, toKey, toInclusive,
1767     false, fromKey, fromInclusive);
1768 dl 1.1 }
1769    
1770 dl 1.29 public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1771 dl 1.28 if (!inRange(toKey, inclusive))
1772 dl 1.1 throw new IllegalArgumentException("toKey out of range");
1773 jsr166 1.30 return new DescendingSubMap(m,
1774 dl 1.32 false, toKey, inclusive,
1775     toEnd, hi, hiInclusive);
1776 dl 1.1 }
1777    
1778 dl 1.29 public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1779 dl 1.28 if (!inRange(fromKey, inclusive))
1780 dl 1.1 throw new IllegalArgumentException("fromKey out of range");
1781 jsr166 1.30 return new DescendingSubMap(m,
1782 dl 1.32 fromStart, lo, loInclusive,
1783     false, fromKey, inclusive);
1784     }
1785    
1786     public NavigableMap<K,V> descendingMap() {
1787     NavigableMap<K,V> mv = descendingMapView;
1788     return (mv != null) ? mv :
1789     (descendingMapView =
1790     new AscendingSubMap(m,
1791     fromStart, lo, loInclusive,
1792     toEnd, hi, hiInclusive));
1793 dl 1.28 }
1794    
1795     Iterator<K> keyIterator() {
1796 dl 1.32 return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1797 dl 1.28 }
1798    
1799     Iterator<K> descendingKeyIterator() {
1800 dl 1.32 return new SubMapKeyIterator(absLowest(), absHighFence());
1801 dl 1.29 }
1802    
1803 dl 1.32 final class DescendingEntrySetView extends EntrySetView {
1804 dl 1.29 public Iterator<Map.Entry<K,V>> iterator() {
1805 dl 1.32 return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
1806 dl 1.29 }
1807 dl 1.28 }
1808    
1809     public Set<Map.Entry<K,V>> entrySet() {
1810 dl 1.29 EntrySetView es = entrySetView;
1811     return (es != null) ? es : new DescendingEntrySetView();
1812 dl 1.28 }
1813    
1814 dl 1.32 TreeMap.Entry<K,V> subLowest() { return absHighest(); }
1815     TreeMap.Entry<K,V> subHighest() { return absLowest(); }
1816     TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
1817     TreeMap.Entry<K,V> subHigher(K key) { return absLower(key); }
1818     TreeMap.Entry<K,V> subFloor(K key) { return absCeiling(key); }
1819     TreeMap.Entry<K,V> subLower(K key) { return absHigher(key); }
1820 dl 1.1 }
1821    
1822     /**
1823 dl 1.29 * Compares two keys using the correct comparison method for this TreeMap.
1824     */
1825     final int compare(Object k1, Object k2) {
1826     return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1827     : comparator.compare((K)k1, (K)k2);
1828     }
1829    
1830     /**
1831     * Test two values for equality. Differs from o1.equals(o2) only in
1832     * that it copes with <tt>null</tt> o1 properly.
1833     */
1834     final static boolean valEquals(Object o1, Object o2) {
1835     return (o1==null ? o2==null : o1.equals(o2));
1836     }
1837    
1838     /**
1839 dl 1.28 * This class exists solely for the sake of serialization
1840     * compatibility with previous releases of TreeMap that did not
1841     * support NavigableMap. It translates an old-version SubMap into
1842     * a new-version AscendingSubMap. This class is never otherwise
1843     * used.
1844     */
1845     private class SubMap extends AbstractMap<K,V>
1846     implements SortedMap<K,V>, java.io.Serializable {
1847     private static final long serialVersionUID = -6520786458950516097L;
1848     private boolean fromStart = false, toEnd = false;
1849     private K fromKey, toKey;
1850     private Object readResolve() {
1851 jsr166 1.30 return new AscendingSubMap(TreeMap.this,
1852 dl 1.32 fromStart, fromKey, true,
1853     toEnd, toKey, false);
1854 dl 1.29 }
1855     public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1856     public K lastKey() { throw new InternalError(); }
1857     public K firstKey() { throw new InternalError(); }
1858     public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1859     public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1860     public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1861     public Comparator<? super K> comparator() { throw new InternalError(); }
1862 dl 1.1 }
1863    
1864    
1865     private static final boolean RED = false;
1866     private static final boolean BLACK = true;
1867    
1868     /**
1869     * Node in the Tree. Doubles as a means to pass key-value pairs back to
1870     * user (see Map.Entry).
1871     */
1872    
1873 dl 1.29 static final class Entry<K,V> implements Map.Entry<K,V> {
1874 dl 1.1 K key;
1875     V value;
1876     Entry<K,V> left = null;
1877     Entry<K,V> right = null;
1878     Entry<K,V> parent;
1879     boolean color = BLACK;
1880    
1881     /**
1882     * Make a new cell with given key, value, and parent, and with
1883     * <tt>null</tt> child links, and BLACK color.
1884     */
1885     Entry(K key, V value, Entry<K,V> parent) {
1886     this.key = key;
1887     this.value = value;
1888     this.parent = parent;
1889     }
1890    
1891     /**
1892     * Returns the key.
1893     *
1894 jsr166 1.14 * @return the key
1895 dl 1.1 */
1896     public K getKey() {
1897     return key;
1898     }
1899    
1900     /**
1901     * Returns the value associated with the key.
1902     *
1903 jsr166 1.14 * @return the value associated with the key
1904 dl 1.1 */
1905     public V getValue() {
1906     return value;
1907     }
1908    
1909     /**
1910     * Replaces the value currently associated with the key with the given
1911     * value.
1912     *
1913     * @return the value associated with the key before this method was
1914 jsr166 1.14 * called
1915 dl 1.1 */
1916     public V setValue(V value) {
1917     V oldValue = this.value;
1918     this.value = value;
1919     return oldValue;
1920     }
1921    
1922     public boolean equals(Object o) {
1923     if (!(o instanceof Map.Entry))
1924     return false;
1925     Map.Entry e = (Map.Entry)o;
1926    
1927     return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1928     }
1929    
1930     public int hashCode() {
1931     int keyHash = (key==null ? 0 : key.hashCode());
1932     int valueHash = (value==null ? 0 : value.hashCode());
1933     return keyHash ^ valueHash;
1934     }
1935    
1936     public String toString() {
1937     return key + "=" + value;
1938     }
1939     }
1940    
1941     /**
1942     * Returns the first Entry in the TreeMap (according to the TreeMap's
1943     * key-sort function). Returns null if the TreeMap is empty.
1944     */
1945 dl 1.29 final Entry<K,V> getFirstEntry() {
1946 dl 1.1 Entry<K,V> p = root;
1947     if (p != null)
1948     while (p.left != null)
1949     p = p.left;
1950     return p;
1951     }
1952    
1953     /**
1954     * Returns the last Entry in the TreeMap (according to the TreeMap's
1955     * key-sort function). Returns null if the TreeMap is empty.
1956     */
1957 dl 1.29 final Entry<K,V> getLastEntry() {
1958 dl 1.1 Entry<K,V> p = root;
1959     if (p != null)
1960     while (p.right != null)
1961     p = p.right;
1962     return p;
1963     }
1964    
1965     /**
1966     * Returns the successor of the specified Entry, or null if no such.
1967     */
1968 dl 1.31 static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
1969 dl 1.1 if (t == null)
1970     return null;
1971     else if (t.right != null) {
1972     Entry<K,V> p = t.right;
1973     while (p.left != null)
1974     p = p.left;
1975     return p;
1976     } else {
1977     Entry<K,V> p = t.parent;
1978     Entry<K,V> ch = t;
1979     while (p != null && ch == p.right) {
1980     ch = p;
1981     p = p.parent;
1982     }
1983     return p;
1984     }
1985     }
1986    
1987     /**
1988     * Returns the predecessor of the specified Entry, or null if no such.
1989     */
1990 dl 1.31 static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
1991 dl 1.1 if (t == null)
1992     return null;
1993     else if (t.left != null) {
1994     Entry<K,V> p = t.left;
1995     while (p.right != null)
1996     p = p.right;
1997     return p;
1998     } else {
1999     Entry<K,V> p = t.parent;
2000     Entry<K,V> ch = t;
2001     while (p != null && ch == p.left) {
2002     ch = p;
2003     p = p.parent;
2004     }
2005     return p;
2006     }
2007     }
2008    
2009     /**
2010     * Balancing operations.
2011     *
2012     * Implementations of rebalancings during insertion and deletion are
2013     * slightly different than the CLR version. Rather than using dummy
2014     * nilnodes, we use a set of accessors that deal properly with null. They
2015     * are used to avoid messiness surrounding nullness checks in the main
2016     * algorithms.
2017     */
2018    
2019     private static <K,V> boolean colorOf(Entry<K,V> p) {
2020     return (p == null ? BLACK : p.color);
2021     }
2022    
2023     private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
2024     return (p == null ? null: p.parent);
2025     }
2026    
2027     private static <K,V> void setColor(Entry<K,V> p, boolean c) {
2028     if (p != null)
2029     p.color = c;
2030     }
2031    
2032     private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
2033     return (p == null) ? null: p.left;
2034     }
2035    
2036     private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
2037     return (p == null) ? null: p.right;
2038     }
2039    
2040     /** From CLR **/
2041     private void rotateLeft(Entry<K,V> p) {
2042     Entry<K,V> r = p.right;
2043     p.right = r.left;
2044     if (r.left != null)
2045     r.left.parent = p;
2046     r.parent = p.parent;
2047     if (p.parent == null)
2048     root = r;
2049     else if (p.parent.left == p)
2050     p.parent.left = r;
2051     else
2052     p.parent.right = r;
2053     r.left = p;
2054     p.parent = r;
2055     }
2056    
2057     /** From CLR **/
2058     private void rotateRight(Entry<K,V> p) {
2059     Entry<K,V> l = p.left;
2060     p.left = l.right;
2061     if (l.right != null) l.right.parent = p;
2062     l.parent = p.parent;
2063     if (p.parent == null)
2064     root = l;
2065     else if (p.parent.right == p)
2066     p.parent.right = l;
2067     else p.parent.left = l;
2068     l.right = p;
2069     p.parent = l;
2070     }
2071    
2072    
2073     /** From CLR **/
2074     private void fixAfterInsertion(Entry<K,V> x) {
2075     x.color = RED;
2076    
2077     while (x != null && x != root && x.parent.color == RED) {
2078     if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
2079     Entry<K,V> y = rightOf(parentOf(parentOf(x)));
2080     if (colorOf(y) == RED) {
2081     setColor(parentOf(x), BLACK);
2082     setColor(y, BLACK);
2083     setColor(parentOf(parentOf(x)), RED);
2084     x = parentOf(parentOf(x));
2085     } else {
2086     if (x == rightOf(parentOf(x))) {
2087     x = parentOf(x);
2088     rotateLeft(x);
2089     }
2090     setColor(parentOf(x), BLACK);
2091     setColor(parentOf(parentOf(x)), RED);
2092     if (parentOf(parentOf(x)) != null)
2093     rotateRight(parentOf(parentOf(x)));
2094     }
2095     } else {
2096     Entry<K,V> y = leftOf(parentOf(parentOf(x)));
2097     if (colorOf(y) == RED) {
2098     setColor(parentOf(x), BLACK);
2099     setColor(y, BLACK);
2100     setColor(parentOf(parentOf(x)), RED);
2101     x = parentOf(parentOf(x));
2102     } else {
2103     if (x == leftOf(parentOf(x))) {
2104     x = parentOf(x);
2105     rotateRight(x);
2106     }
2107 dl 1.31 setColor(parentOf(x), BLACK);
2108 dl 1.1 setColor(parentOf(parentOf(x)), RED);
2109     if (parentOf(parentOf(x)) != null)
2110     rotateLeft(parentOf(parentOf(x)));
2111     }
2112     }
2113     }
2114     root.color = BLACK;
2115     }
2116    
2117     /**
2118     * Delete node p, and then rebalance the tree.
2119     */
2120    
2121     private void deleteEntry(Entry<K,V> p) {
2122     decrementSize();
2123    
2124     // If strictly internal, copy successor's element to p and then make p
2125     // point to successor.
2126     if (p.left != null && p.right != null) {
2127     Entry<K,V> s = successor (p);
2128     p.key = s.key;
2129     p.value = s.value;
2130     p = s;
2131     } // p has 2 children
2132    
2133     // Start fixup at replacement node, if it exists.
2134     Entry<K,V> replacement = (p.left != null ? p.left : p.right);
2135    
2136     if (replacement != null) {
2137     // Link replacement to parent
2138     replacement.parent = p.parent;
2139     if (p.parent == null)
2140     root = replacement;
2141     else if (p == p.parent.left)
2142     p.parent.left = replacement;
2143     else
2144     p.parent.right = replacement;
2145    
2146     // Null out links so they are OK to use by fixAfterDeletion.
2147     p.left = p.right = p.parent = null;
2148    
2149     // Fix replacement
2150     if (p.color == BLACK)
2151     fixAfterDeletion(replacement);
2152     } else if (p.parent == null) { // return if we are the only node.
2153     root = null;
2154     } else { // No children. Use self as phantom replacement and unlink.
2155     if (p.color == BLACK)
2156     fixAfterDeletion(p);
2157    
2158     if (p.parent != null) {
2159     if (p == p.parent.left)
2160     p.parent.left = null;
2161     else if (p == p.parent.right)
2162     p.parent.right = null;
2163     p.parent = null;
2164     }
2165     }
2166     }
2167    
2168     /** From CLR **/
2169     private void fixAfterDeletion(Entry<K,V> x) {
2170     while (x != root && colorOf(x) == BLACK) {
2171     if (x == leftOf(parentOf(x))) {
2172     Entry<K,V> sib = rightOf(parentOf(x));
2173    
2174     if (colorOf(sib) == RED) {
2175     setColor(sib, BLACK);
2176     setColor(parentOf(x), RED);
2177     rotateLeft(parentOf(x));
2178     sib = rightOf(parentOf(x));
2179     }
2180    
2181     if (colorOf(leftOf(sib)) == BLACK &&
2182     colorOf(rightOf(sib)) == BLACK) {
2183 dl 1.31 setColor(sib, RED);
2184 dl 1.1 x = parentOf(x);
2185     } else {
2186     if (colorOf(rightOf(sib)) == BLACK) {
2187     setColor(leftOf(sib), BLACK);
2188     setColor(sib, RED);
2189     rotateRight(sib);
2190     sib = rightOf(parentOf(x));
2191     }
2192     setColor(sib, colorOf(parentOf(x)));
2193     setColor(parentOf(x), BLACK);
2194     setColor(rightOf(sib), BLACK);
2195     rotateLeft(parentOf(x));
2196     x = root;
2197     }
2198     } else { // symmetric
2199     Entry<K,V> sib = leftOf(parentOf(x));
2200    
2201     if (colorOf(sib) == RED) {
2202     setColor(sib, BLACK);
2203     setColor(parentOf(x), RED);
2204     rotateRight(parentOf(x));
2205     sib = leftOf(parentOf(x));
2206     }
2207    
2208     if (colorOf(rightOf(sib)) == BLACK &&
2209     colorOf(leftOf(sib)) == BLACK) {
2210 dl 1.31 setColor(sib, RED);
2211 dl 1.1 x = parentOf(x);
2212     } else {
2213     if (colorOf(leftOf(sib)) == BLACK) {
2214     setColor(rightOf(sib), BLACK);
2215     setColor(sib, RED);
2216     rotateLeft(sib);
2217     sib = leftOf(parentOf(x));
2218     }
2219     setColor(sib, colorOf(parentOf(x)));
2220     setColor(parentOf(x), BLACK);
2221     setColor(leftOf(sib), BLACK);
2222     rotateRight(parentOf(x));
2223     x = root;
2224     }
2225     }
2226     }
2227    
2228     setColor(x, BLACK);
2229     }
2230    
2231     private static final long serialVersionUID = 919286545866124006L;
2232    
2233     /**
2234     * Save the state of the <tt>TreeMap</tt> instance to a stream (i.e.,
2235     * serialize it).
2236     *
2237     * @serialData The <i>size</i> of the TreeMap (the number of key-value
2238     * mappings) is emitted (int), followed by the key (Object)
2239     * and value (Object) for each key-value mapping represented
2240     * by the TreeMap. The key-value mappings are emitted in
2241     * key-order (as determined by the TreeMap's Comparator,
2242     * or by the keys' natural ordering if the TreeMap has no
2243     * Comparator).
2244     */
2245     private void writeObject(java.io.ObjectOutputStream s)
2246     throws java.io.IOException {
2247     // Write out the Comparator and any hidden stuff
2248     s.defaultWriteObject();
2249    
2250     // Write out size (number of Mappings)
2251     s.writeInt(size);
2252    
2253     // Write out keys and values (alternating)
2254 jsr166 1.14 for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
2255 dl 1.1 Map.Entry<K,V> e = i.next();
2256     s.writeObject(e.getKey());
2257     s.writeObject(e.getValue());
2258     }
2259     }
2260    
2261     /**
2262     * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2263     * deserialize it).
2264     */
2265     private void readObject(final java.io.ObjectInputStream s)
2266     throws java.io.IOException, ClassNotFoundException {
2267     // Read in the Comparator and any hidden stuff
2268     s.defaultReadObject();
2269    
2270     // Read in size
2271     int size = s.readInt();
2272    
2273     buildFromSorted(size, null, s, null);
2274     }
2275    
2276     /** Intended to be called only from TreeSet.readObject **/
2277     void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2278     throws java.io.IOException, ClassNotFoundException {
2279     buildFromSorted(size, null, s, defaultVal);
2280     }
2281    
2282     /** Intended to be called only from TreeSet.addAll **/
2283 jsr166 1.12 void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2284 dl 1.1 try {
2285     buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2286     } catch (java.io.IOException cannotHappen) {
2287     } catch (ClassNotFoundException cannotHappen) {
2288     }
2289     }
2290    
2291    
2292     /**
2293     * Linear time tree building algorithm from sorted data. Can accept keys
2294     * and/or values from iterator or stream. This leads to too many
2295     * parameters, but seems better than alternatives. The four formats
2296     * that this method accepts are:
2297     *
2298     * 1) An iterator of Map.Entries. (it != null, defaultVal == null).
2299     * 2) An iterator of keys. (it != null, defaultVal != null).
2300     * 3) A stream of alternating serialized keys and values.
2301     * (it == null, defaultVal == null).
2302     * 4) A stream of serialized keys. (it == null, defaultVal != null).
2303     *
2304     * It is assumed that the comparator of the TreeMap is already set prior
2305     * to calling this method.
2306     *
2307     * @param size the number of keys (or key-value pairs) to be read from
2308 jsr166 1.14 * the iterator or stream
2309 dl 1.1 * @param it If non-null, new entries are created from entries
2310     * or keys read from this iterator.
2311     * @param str If non-null, new entries are created from keys and
2312     * possibly values read from this stream in serialized form.
2313     * Exactly one of it and str should be non-null.
2314     * @param defaultVal if non-null, this default value is used for
2315     * each value in the map. If null, each value is read from
2316     * iterator or stream, as described above.
2317     * @throws IOException propagated from stream reads. This cannot
2318     * occur if str is null.
2319     * @throws ClassNotFoundException propagated from readObject.
2320     * This cannot occur if str is null.
2321     */
2322 jsr166 1.27 private void buildFromSorted(int size, Iterator it,
2323     java.io.ObjectInputStream str,
2324     V defaultVal)
2325 dl 1.1 throws java.io.IOException, ClassNotFoundException {
2326     this.size = size;
2327 jsr166 1.27 root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2328     it, str, defaultVal);
2329 dl 1.1 }
2330    
2331     /**
2332     * Recursive "helper method" that does the real work of the
2333 jsr166 1.27 * previous method. Identically named parameters have
2334 dl 1.1 * identical definitions. Additional parameters are documented below.
2335     * It is assumed that the comparator and size fields of the TreeMap are
2336     * already set prior to calling this method. (It ignores both fields.)
2337     *
2338     * @param level the current level of tree. Initial call should be 0.
2339     * @param lo the first element index of this subtree. Initial should be 0.
2340     * @param hi the last element index of this subtree. Initial should be
2341 jsr166 1.14 * size-1.
2342 dl 1.1 * @param redLevel the level at which nodes should be red.
2343     * Must be equal to computeRedLevel for tree of this size.
2344     */
2345     private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2346     int redLevel,
2347     Iterator it,
2348     java.io.ObjectInputStream str,
2349     V defaultVal)
2350     throws java.io.IOException, ClassNotFoundException {
2351     /*
2352     * Strategy: The root is the middlemost element. To get to it, we
2353     * have to first recursively construct the entire left subtree,
2354     * so as to grab all of its elements. We can then proceed with right
2355     * subtree.
2356     *
2357     * The lo and hi arguments are the minimum and maximum
2358     * indices to pull out of the iterator or stream for current subtree.
2359     * They are not actually indexed, we just proceed sequentially,
2360     * ensuring that items are extracted in corresponding order.
2361     */
2362    
2363     if (hi < lo) return null;
2364    
2365     int mid = (lo + hi) / 2;
2366    
2367     Entry<K,V> left = null;
2368     if (lo < mid)
2369     left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2370     it, str, defaultVal);
2371    
2372     // extract key and/or value from iterator or stream
2373     K key;
2374     V value;
2375     if (it != null) {
2376     if (defaultVal==null) {
2377     Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
2378     key = entry.getKey();
2379     value = entry.getValue();
2380     } else {
2381     key = (K)it.next();
2382     value = defaultVal;
2383     }
2384     } else { // use stream
2385     key = (K) str.readObject();
2386     value = (defaultVal != null ? defaultVal : (V) str.readObject());
2387     }
2388    
2389     Entry<K,V> middle = new Entry<K,V>(key, value, null);
2390    
2391     // color nodes in non-full bottommost level red
2392     if (level == redLevel)
2393     middle.color = RED;
2394    
2395     if (left != null) {
2396     middle.left = left;
2397     left.parent = middle;
2398     }
2399    
2400     if (mid < hi) {
2401     Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2402     it, str, defaultVal);
2403     middle.right = right;
2404     right.parent = middle;
2405     }
2406    
2407     return middle;
2408     }
2409    
2410     /**
2411     * Find the level down to which to assign all nodes BLACK. This is the
2412     * last `full' level of the complete binary tree produced by
2413     * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2414     * set of color assignments wrt future insertions.) This level number is
2415     * computed by finding the number of splits needed to reach the zeroeth
2416     * node. (The answer is ~lg(N), but in any case must be computed by same
2417     * quick O(lg(N)) loop.)
2418     */
2419     private static int computeRedLevel(int sz) {
2420     int level = 0;
2421     for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2422     level++;
2423     return level;
2424     }
2425     }