ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
Revision: 1.6
Committed: Wed Mar 23 11:20:27 2005 UTC (19 years, 1 month ago) by dl
Branch: MAIN
Changes since 1.5: +5 -7 lines
Log Message:
Documentation improvements

File Contents

# User Rev Content
1 dl 1.1 /*
2     * %W% %E%
3     *
4     * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
5     * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9    
10    
11     /**
12     * Red-Black tree based implementation of the <tt>NavigableMap</tt> interface.
13     * This class guarantees that the map will be in ascending key order, sorted
14 dl 1.6 * according to the <i>natural order</i> for the keys' class (see
15 dl 1.1 * <tt>Comparable</tt>), or by the comparator provided at creation time,
16     * depending on which constructor is used.<p>
17     *
18     * This implementation provides guaranteed log(n) time cost for the
19     * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
20     * operations. Algorithms are adaptations of those in Cormen, Leiserson, and
21     * Rivest's <I>Introduction to Algorithms</I>.<p>
22     *
23     * Note that the ordering maintained by a sorted map (whether or not an
24     * explicit comparator is provided) must be <i>consistent with equals</i> if
25     * this sorted map is to correctly implement the <tt>Map</tt> interface. (See
26     * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
27     * <i>consistent with equals</i>.) This is so because the <tt>Map</tt>
28     * interface is defined in terms of the equals operation, but a map performs
29     * all key comparisons using its <tt>compareTo</tt> (or <tt>compare</tt>)
30     * method, so two keys that are deemed equal by this method are, from the
31     * standpoint of the sorted map, equal. The behavior of a sorted map
32     * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
33     * just fails to obey the general contract of the <tt>Map</tt> interface.<p>
34     *
35     * <b>Note that this implementation is not synchronized.</b> If multiple
36     * threads access a map concurrently, and at least one of the threads modifies
37     * the map structurally, it <i>must</i> be synchronized externally. (A
38     * structural modification is any operation that adds or deletes one or more
39     * mappings; merely changing the value associated with an existing key is not
40     * a structural modification.) This is typically accomplished by
41     * synchronizing on some object that naturally encapsulates the map. If no
42     * such object exists, the map should be "wrapped" using the
43     * <tt>Collections.synchronizedMap</tt> method. This is best done at creation
44     * time, to prevent accidental unsynchronized access to the map:
45     * <pre>
46     * Map m = Collections.synchronizedMap(new TreeMap(...));
47     * </pre><p>
48     *
49     * The iterators returned by all of this class's "collection view methods" are
50     * <i>fail-fast</i>: if the map is structurally modified at any time after the
51     * iterator is created, in any way except through the iterator's own
52     * <tt>remove</tt> or <tt>add</tt> methods, the iterator throws a
53     * <tt>ConcurrentModificationException</tt>. Thus, in the face of concurrent
54     * modification, the iterator fails quickly and cleanly, rather than risking
55     * arbitrary, non-deterministic behavior at an undetermined time in the
56     * future.
57     *
58     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
59     * as it is, generally speaking, impossible to make any hard guarantees in the
60     * presence of unsynchronized concurrent modification. Fail-fast iterators
61     * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
62     * Therefore, it would be wrong to write a program that depended on this
63     * exception for its correctness: <i>the fail-fast behavior of iterators
64 dl 1.5 * should be used only to detect bugs.</i>
65 dl 1.1 *
66     * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
67     * and its views represent snapshots of mappings at the time they were
68     * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
69     * method. (Note however that it is possible to change mappings in the
70     * associated map using <tt>put</tt>.)
71     *
72     * <p>This class is a member of the
73     * <a href="{@docRoot}/../guide/collections/index.html">
74     * Java Collections Framework</a>.
75     *
76     * @author Josh Bloch and Doug Lea
77     * @version %I%, %G%
78     * @see Map
79     * @see HashMap
80     * @see Hashtable
81     * @see Comparable
82     * @see Comparator
83     * @see Collection
84     * @see Collections#synchronizedMap(Map)
85     * @since 1.2
86     */
87    
88     public class TreeMap<K,V>
89     extends AbstractMap<K,V>
90     implements NavigableMap<K,V>, Cloneable, java.io.Serializable
91     {
92     /**
93     * The Comparator used to maintain order in this TreeMap, or
94     * null if this TreeMap uses its elements natural ordering.
95     *
96     * @serial
97     */
98     private Comparator<? super K> comparator = null;
99    
100     private transient Entry<K,V> root = null;
101    
102     /**
103     * The number of entries in the tree
104     */
105     private transient int size = 0;
106    
107     /**
108     * The number of structural modifications to the tree.
109     */
110     private transient int modCount = 0;
111    
112     private void incrementSize() { modCount++; size++; }
113     private void decrementSize() { modCount++; size--; }
114    
115     /**
116     * Constructs a new, empty map, sorted according to the keys' natural
117     * order. All keys inserted into the map must implement the
118     * <tt>Comparable</tt> interface. Furthermore, all such keys must be
119     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw a
120     * ClassCastException for any elements <tt>k1</tt> and <tt>k2</tt> in the
121     * map. If the user attempts to put a key into the map that violates this
122     * constraint (for example, the user attempts to put a string key into a
123     * map whose keys are integers), the <tt>put(Object key, Object
124     * value)</tt> call will throw a <tt>ClassCastException</tt>.
125     *
126     * @see Comparable
127     */
128     public TreeMap() {
129     }
130    
131     /**
132     * Constructs a new, empty map, sorted according to the given comparator.
133     * All keys inserted into the map must be <i>mutually comparable</i> by
134     * the given comparator: <tt>comparator.compare(k1, k2)</tt> must not
135     * throw a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
136     * <tt>k2</tt> in the map. If the user attempts to put a key into the
137     * map that violates this constraint, the <tt>put(Object key, Object
138     * value)</tt> call will throw a <tt>ClassCastException</tt>.
139     *
140     * @param c the comparator that will be used to sort this map. A
141     * <tt>null</tt> value indicates that the keys' <i>natural
142     * ordering</i> should be used.
143     */
144     public TreeMap(Comparator<? super K> c) {
145     this.comparator = c;
146     }
147    
148     /**
149     * Constructs a new map containing the same mappings as the given map,
150     * sorted according to the keys' <i>natural order</i>. All keys inserted
151     * into the new map must implement the <tt>Comparable</tt> interface.
152     * Furthermore, all such keys must be <i>mutually comparable</i>:
153     * <tt>k1.compareTo(k2)</tt> must not throw a <tt>ClassCastException</tt>
154     * for any elements <tt>k1</tt> and <tt>k2</tt> in the map. This method
155     * runs in n*log(n) time.
156     *
157     * @param m the map whose mappings are to be placed in this map.
158     * @throws ClassCastException the keys in t are not Comparable, or
159     * are not mutually comparable.
160     * @throws NullPointerException if the specified map is null.
161     */
162     public TreeMap(Map<? extends K, ? extends V> m) {
163     putAll(m);
164     }
165    
166     /**
167     * Constructs a new map containing the same mappings as the given
168     * <tt>SortedMap</tt>, sorted according to the same ordering. This method
169     * runs in linear time.
170     *
171     * @param m the sorted map whose mappings are to be placed in this map,
172     * and whose comparator is to be used to sort this map.
173     * @throws NullPointerException if the specified sorted map is null.
174     */
175     public TreeMap(SortedMap<K, ? extends V> m) {
176     comparator = m.comparator();
177     try {
178     buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
179     } catch (java.io.IOException cannotHappen) {
180     } catch (ClassNotFoundException cannotHappen) {
181     }
182     }
183    
184    
185     // Query Operations
186    
187     /**
188     * Returns the number of key-value mappings in this map.
189     *
190     * @return the number of key-value mappings in this map.
191     */
192     public int size() {
193     return size;
194     }
195    
196     /**
197     * Returns <tt>true</tt> if this map contains a mapping for the specified
198     * key.
199     *
200     * @param key key whose presence in this map is to be tested.
201     *
202     * @return <tt>true</tt> if this map contains a mapping for the
203     * specified key.
204     * @throws ClassCastException if the key cannot be compared with the keys
205     * currently in the map.
206 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
207 dl 1.1 * natural ordering, or its comparator does not tolerate
208     * <tt>null</tt> keys.
209     */
210     public boolean containsKey(Object key) {
211     return getEntry(key) != null;
212     }
213    
214     /**
215     * Returns <tt>true</tt> if this map maps one or more keys to the
216     * specified value. More formally, returns <tt>true</tt> if and only if
217     * this map contains at least one mapping to a value <tt>v</tt> such
218     * that <tt>(value==null ? v==null : value.equals(v))</tt>. This
219     * operation will probably require time linear in the Map size for most
220     * implementations of Map.
221     *
222     * @param value value whose presence in this Map is to be tested.
223     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
224     * <tt>false</tt> otherwise.
225     * @since 1.2
226     */
227     public boolean containsValue(Object value) {
228     return (root==null ? false :
229     (value==null ? valueSearchNull(root)
230     : valueSearchNonNull(root, value)));
231     }
232    
233     private boolean valueSearchNull(Entry n) {
234     if (n.value == null)
235     return true;
236    
237     // Check left and right subtrees for value
238     return (n.left != null && valueSearchNull(n.left)) ||
239     (n.right != null && valueSearchNull(n.right));
240     }
241    
242     private boolean valueSearchNonNull(Entry n, Object value) {
243     // Check this node for the value
244     if (value.equals(n.value))
245     return true;
246    
247     // Check left and right subtrees for value
248     return (n.left != null && valueSearchNonNull(n.left, value)) ||
249     (n.right != null && valueSearchNonNull(n.right, value));
250     }
251    
252     /**
253     * Returns the value to which this map maps the specified key. Returns
254     * <tt>null</tt> if the map contains no mapping for this key. A return
255     * value of <tt>null</tt> does not <i>necessarily</i> indicate that the
256     * map contains no mapping for the key; it's also possible that the map
257     * explicitly maps the key to <tt>null</tt>. The <tt>containsKey</tt>
258     * operation may be used to distinguish these two cases.
259     *
260     * @param key key whose associated value is to be returned.
261     * @return the value to which this map maps the specified key, or
262     * <tt>null</tt> if the map contains no mapping for the key.
263 dl 1.3 * @throws ClassCastException if key cannot be compared with the keys
264 dl 1.1 * currently in the map.
265 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
266 dl 1.1 * natural ordering, or its comparator does not tolerate
267     * <tt>null</tt> keys.
268     *
269     * @see #containsKey(Object)
270     */
271     public V get(Object key) {
272     Entry<K,V> p = getEntry(key);
273     return (p==null ? null : p.value);
274     }
275    
276     /**
277     * Returns the comparator used to order this map, or <tt>null</tt> if this
278     * map uses its keys' natural order.
279     *
280     * @return the comparator associated with this sorted map, or
281     * <tt>null</tt> if it uses its keys' natural sort method.
282     */
283     public Comparator<? super K> comparator() {
284     return comparator;
285     }
286    
287     /**
288     * Returns the first (lowest) key currently in this sorted map.
289     *
290     * @return the first (lowest) key currently in this sorted map.
291     * @throws NoSuchElementException Map is empty.
292     */
293     public K firstKey() {
294     return key(getFirstEntry());
295     }
296    
297     /**
298     * Returns the last (highest) key currently in this sorted map.
299     *
300     * @return the last (highest) key currently in this sorted map.
301     * @throws NoSuchElementException Map is empty.
302     */
303     public K lastKey() {
304     return key(getLastEntry());
305     }
306    
307     /**
308     * Copies all of the mappings from the specified map to this map. These
309     * mappings replace any mappings that this map had for any of the keys
310     * currently in the specified map.
311     *
312     * @param map mappings to be stored in this map.
313     * @throws ClassCastException class of a key or value in the specified
314     * map prevents it from being stored in this map.
315     *
316     * @throws NullPointerException if the given map is <tt>null</tt> or
317     * this map does not permit <tt>null</tt> keys and a
318     * key in the specified map is <tt>null</tt>.
319     */
320     public void putAll(Map<? extends K, ? extends V> map) {
321     int mapSize = map.size();
322     if (size==0 && mapSize!=0 && map instanceof SortedMap) {
323     Comparator c = ((SortedMap)map).comparator();
324     if (c == comparator || (c != null && c.equals(comparator))) {
325     ++modCount;
326     try {
327     buildFromSorted(mapSize, map.entrySet().iterator(),
328     null, null);
329     } catch (java.io.IOException cannotHappen) {
330     } catch (ClassNotFoundException cannotHappen) {
331     }
332     return;
333     }
334     }
335     super.putAll(map);
336     }
337    
338     /**
339     * Returns this map's entry for the given key, or <tt>null</tt> if the map
340     * does not contain an entry for the key.
341     *
342     * @return this map's entry for the given key, or <tt>null</tt> if the map
343     * does not contain an entry for the key.
344     * @throws ClassCastException if the key cannot be compared with the keys
345     * currently in the map.
346 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
347 dl 1.1 * natural order, or its comparator does not tolerate *
348     * <tt>null</tt> keys.
349     */
350     private Entry<K,V> getEntry(Object key) {
351     // Offload comparator-based version for sake of performance
352     if (comparator != null)
353     return getEntryUsingComparator(key);
354     Comparable<K> k = (Comparable<K>) key;
355     Entry<K,V> p = root;
356     while (p != null) {
357     int cmp = k.compareTo(p.key);
358     if (cmp < 0)
359     p = p.left;
360     else if (cmp > 0)
361     p = p.right;
362     else
363     return p;
364     }
365     return null;
366     }
367    
368     /**
369     * Version of getEntry using comparator. Split off from getEntry
370     * for performance. (This is not worth doing for most methods,
371     * that are less dependent on comparator performance, but is
372     * worthwhile here.)
373     */
374     private Entry<K,V> getEntryUsingComparator(Object key) {
375     K k = (K) key;
376     Comparator<? super K> cpr = comparator;
377     Entry<K,V> p = root;
378     while (p != null) {
379     int cmp = cpr.compare(k, p.key);
380     if (cmp < 0)
381     p = p.left;
382     else if (cmp > 0)
383     p = p.right;
384     else
385     return p;
386     }
387     return null;
388     }
389    
390     /**
391     * Gets the entry corresponding to the specified key; if no such entry
392     * exists, returns the entry for the least key greater than the specified
393     * key; if no such entry exists (i.e., the greatest key in the Tree is less
394     * than the specified key), returns <tt>null</tt>.
395     */
396     private Entry<K,V> getCeilingEntry(K key) {
397     Entry<K,V> p = root;
398     if (p==null)
399     return null;
400    
401     while (true) {
402     int cmp = compare(key, p.key);
403     if (cmp < 0) {
404     if (p.left != null)
405     p = p.left;
406     else
407     return p;
408     } else if (cmp > 0) {
409     if (p.right != null) {
410     p = p.right;
411     } else {
412     Entry<K,V> parent = p.parent;
413     Entry<K,V> ch = p;
414     while (parent != null && ch == parent.right) {
415     ch = parent;
416     parent = parent.parent;
417     }
418     return parent;
419     }
420     } else
421     return p;
422     }
423     }
424    
425     /**
426     * Gets the entry corresponding to the specified key; if no such entry
427     * exists, returns the entry for the greatest key less than the specified
428     * key; if no such entry exists, returns <tt>null</tt>.
429     */
430     private Entry<K,V> getFloorEntry(K key) {
431     Entry<K,V> p = root;
432     if (p==null)
433     return null;
434    
435     while (true) {
436     int cmp = compare(key, p.key);
437     if (cmp > 0) {
438     if (p.right != null)
439     p = p.right;
440     else
441     return p;
442     } else if (cmp < 0) {
443     if (p.left != null) {
444     p = p.left;
445     } else {
446     Entry<K,V> parent = p.parent;
447     Entry<K,V> ch = p;
448     while (parent != null && ch == parent.left) {
449     ch = parent;
450     parent = parent.parent;
451     }
452     return parent;
453     }
454     } else
455     return p;
456    
457     }
458     }
459    
460     /**
461     * Gets the entry for the least key greater than the specified
462     * key; if no such entry exists, returns the entry for the least
463     * key greater than the specified key; if no such entry exists
464     * returns <tt>null</tt>.
465     */
466     private Entry<K,V> getHigherEntry(K key) {
467     Entry<K,V> p = root;
468     if (p==null)
469     return null;
470    
471     while (true) {
472     int cmp = compare(key, p.key);
473     if (cmp < 0) {
474     if (p.left != null)
475     p = p.left;
476     else
477     return p;
478     } else {
479     if (p.right != null) {
480     p = p.right;
481     } else {
482     Entry<K,V> parent = p.parent;
483     Entry<K,V> ch = p;
484     while (parent != null && ch == parent.right) {
485     ch = parent;
486     parent = parent.parent;
487     }
488     return parent;
489     }
490     }
491     }
492     }
493    
494     /**
495     * Returns the entry for the greatest key less than the specified key; if
496     * no such entry exists (i.e., the least key in the Tree is greater than
497     * the specified key), returns <tt>null</tt>.
498     */
499     private Entry<K,V> getLowerEntry(K key) {
500     Entry<K,V> p = root;
501     if (p==null)
502     return null;
503    
504     while (true) {
505     int cmp = compare(key, p.key);
506     if (cmp > 0) {
507     if (p.right != null)
508     p = p.right;
509     else
510     return p;
511     } else {
512     if (p.left != null) {
513     p = p.left;
514     } else {
515     Entry<K,V> parent = p.parent;
516     Entry<K,V> ch = p;
517     while (parent != null && ch == parent.left) {
518     ch = parent;
519     parent = parent.parent;
520     }
521     return parent;
522     }
523     }
524     }
525     }
526    
527     /**
528     * Returns the key corresponding to the specified Entry. Throw
529     * NoSuchElementException if the Entry is <tt>null</tt>.
530     */
531     private static <K> K key(Entry<K,?> e) {
532     if (e==null)
533     throw new NoSuchElementException();
534     return e.key;
535     }
536    
537     /**
538     * Associates the specified value with the specified key in this map.
539     * If the map previously contained a mapping for this key, the old
540     * value is replaced.
541     *
542     * @param key key with which the specified value is to be associated.
543     * @param value value to be associated with the specified key.
544     *
545 dl 1.6 * @return the previous value associated with specified key, or <tt>null</tt>
546 dl 1.1 * if there was no mapping for key. A <tt>null</tt> return can
547     * also indicate that the map previously associated <tt>null</tt>
548     * with the specified key.
549 dl 1.3 * @throws ClassCastException if key cannot be compared with the keys
550 dl 1.1 * currently in the map.
551 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
552 dl 1.1 * natural order, or its comparator does not tolerate
553     * <tt>null</tt> keys.
554     */
555     public V put(K key, V value) {
556     Entry<K,V> t = root;
557    
558     if (t == null) {
559     incrementSize();
560     root = new Entry<K,V>(key, value, null);
561     return null;
562     }
563    
564     while (true) {
565     int cmp = compare(key, t.key);
566     if (cmp == 0) {
567     return t.setValue(value);
568     } else if (cmp < 0) {
569     if (t.left != null) {
570     t = t.left;
571     } else {
572     incrementSize();
573     t.left = new Entry<K,V>(key, value, t);
574     fixAfterInsertion(t.left);
575     return null;
576     }
577     } else { // cmp > 0
578     if (t.right != null) {
579     t = t.right;
580     } else {
581     incrementSize();
582     t.right = new Entry<K,V>(key, value, t);
583     fixAfterInsertion(t.right);
584     return null;
585     }
586     }
587     }
588     }
589    
590     /**
591     * Removes the mapping for this key from this TreeMap if present.
592     *
593     * @param key key for which mapping should be removed
594 dl 1.6 * @return the previous value associated with specified key, or <tt>null</tt>
595 dl 1.1 * if there was no mapping for key. A <tt>null</tt> return can
596     * also indicate that the map previously associated
597     * <tt>null</tt> with the specified key.
598     *
599 dl 1.3 * @throws ClassCastException if key cannot be compared with the keys
600 dl 1.1 * currently in the map.
601 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
602 dl 1.1 * natural order, or its comparator does not tolerate
603     * <tt>null</tt> keys.
604     */
605     public V remove(Object key) {
606     Entry<K,V> p = getEntry(key);
607     if (p == null)
608     return null;
609    
610     V oldValue = p.value;
611     deleteEntry(p);
612     return oldValue;
613     }
614    
615     /**
616     * Removes all mappings from this TreeMap.
617     */
618     public void clear() {
619     modCount++;
620     size = 0;
621     root = null;
622     }
623    
624     /**
625     * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
626     * values themselves are not cloned.)
627     *
628     * @return a shallow copy of this Map.
629     */
630     public Object clone() {
631     TreeMap<K,V> clone = null;
632     try {
633     clone = (TreeMap<K,V>) super.clone();
634     } catch (CloneNotSupportedException e) {
635     throw new InternalError();
636     }
637    
638     // Put clone into "virgin" state (except for comparator)
639     clone.root = null;
640     clone.size = 0;
641     clone.modCount = 0;
642     clone.entrySet = null;
643     clone.descendingEntrySet = null;
644     clone.descendingKeySet = null;
645    
646     // Initialize clone with our mappings
647     try {
648     clone.buildFromSorted(size, entrySet().iterator(), null, null);
649     } catch (java.io.IOException cannotHappen) {
650     } catch (ClassNotFoundException cannotHappen) {
651     }
652    
653     return clone;
654     }
655    
656     // NavigableMap API methods
657    
658     /**
659     * Returns a key-value mapping associated with the least
660     * key in this map, or <tt>null</tt> if the map is empty.
661     *
662     * @return an Entry with least key, or <tt>null</tt>
663     * if the map is empty.
664     */
665     public Map.Entry<K,V> firstEntry() {
666     Entry<K,V> e = getFirstEntry();
667 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
668 dl 1.1 }
669    
670     /**
671     * Returns a key-value mapping associated with the greatest
672     * key in this map, or <tt>null</tt> if the map is empty.
673     *
674     * @return an Entry with greatest key, or <tt>null</tt>
675     * if the map is empty.
676     */
677     public Map.Entry<K,V> lastEntry() {
678     Entry<K,V> e = getLastEntry();
679 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
680 dl 1.1 }
681    
682     /**
683     * Removes and returns a key-value mapping associated with
684     * the least key in this map, or <tt>null</tt> if the map is empty.
685     *
686     * @return the removed first entry of this map, or <tt>null</tt>
687     * if the map is empty.
688     */
689     public Map.Entry<K,V> pollFirstEntry() {
690     Entry<K,V> p = getFirstEntry();
691     if (p == null)
692     return null;
693 dl 1.2 Map.Entry result = new AbstractMap.SimpleImmutableEntry(p);
694 dl 1.1 deleteEntry(p);
695     return result;
696     }
697    
698     /**
699     * Removes and returns a key-value mapping associated with
700     * the greatest key in this map, or <tt>null</tt> if the map is empty.
701     *
702     * @return the removed last entry of this map, or <tt>null</tt>
703     * if the map is empty.
704     */
705     public Map.Entry<K,V> pollLastEntry() {
706     Entry<K,V> p = getLastEntry();
707     if (p == null)
708     return null;
709 dl 1.2 Map.Entry result = new AbstractMap.SimpleImmutableEntry(p);
710 dl 1.1 deleteEntry(p);
711     return result;
712     }
713    
714     /**
715     * Returns a key-value mapping associated with the least key
716     * greater than or equal to the given key, or <tt>null</tt> if
717     * there is no such entry.
718     *
719     * @param key the key.
720     * @return an Entry associated with ceiling of given key, or
721     * <tt>null</tt> if there is no such Entry.
722     * @throws ClassCastException if key cannot be compared with the
723     * keys currently in the map.
724 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
725 dl 1.1 * natural order, or its comparator does not tolerate
726     * <tt>null</tt> keys.
727     */
728     public Map.Entry<K,V> ceilingEntry(K key) {
729     Entry<K,V> e = getCeilingEntry(key);
730 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
731 dl 1.1 }
732    
733    
734     /**
735     * Returns least key greater than or equal to the given key, or
736     * <tt>null</tt> if there is no such key.
737     *
738     * @param key the key.
739     * @return the ceiling key, or <tt>null</tt>
740     * if there is no such key.
741     * @throws ClassCastException if key cannot be compared with the keys
742     * currently in the map.
743 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
744 dl 1.1 * natural order, or its comparator does not tolerate
745     * <tt>null</tt> keys.
746     */
747     public K ceilingKey(K key) {
748     Entry<K,V> e = getCeilingEntry(key);
749     return (e == null)? null : e.key;
750     }
751    
752    
753    
754     /**
755     * Returns a key-value mapping associated with the greatest key
756     * less than or equal to the given key, or <tt>null</tt> if there
757     * is no such entry.
758     *
759     * @param key the key.
760     * @return an Entry associated with floor of given key, or <tt>null</tt>
761     * if there is no such Entry.
762     * @throws ClassCastException if key cannot be compared with the keys
763     * currently in the map.
764 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
765 dl 1.1 * natural order, or its comparator does not tolerate
766     * <tt>null</tt> keys.
767     */
768     public Map.Entry<K,V> floorEntry(K key) {
769     Entry<K,V> e = getFloorEntry(key);
770 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
771 dl 1.1 }
772    
773     /**
774     * Returns the greatest key
775     * less than or equal to the given key, or <tt>null</tt> if there
776     * is no such key.
777     *
778     * @param key the key.
779     * @return the floor of given key, or <tt>null</tt> if there is no
780     * such key.
781     * @throws ClassCastException if key cannot be compared with the keys
782     * currently in the map.
783 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
784 dl 1.1 * natural order, or its comparator does not tolerate
785     * <tt>null</tt> keys.
786     */
787     public K floorKey(K key) {
788     Entry<K,V> e = getFloorEntry(key);
789     return (e == null)? null : e.key;
790     }
791    
792     /**
793     * Returns a key-value mapping associated with the least key
794     * strictly greater than the given key, or <tt>null</tt> if there
795     * is no such entry.
796     *
797     * @param key the key.
798     * @return an Entry with least key greater than the given key, or
799     * <tt>null</tt> if there is no such Entry.
800     * @throws ClassCastException if key cannot be compared with the keys
801     * currently in the map.
802 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
803 dl 1.1 * natural order, or its comparator does not tolerate
804     * <tt>null</tt> keys.
805     */
806     public Map.Entry<K,V> higherEntry(K key) {
807     Entry<K,V> e = getHigherEntry(key);
808 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
809 dl 1.1 }
810    
811     /**
812     * Returns the least key strictly greater than the given key, or
813     * <tt>null</tt> if there is no such key.
814     *
815     * @param key the key.
816     * @return the least key greater than the given key, or
817     * <tt>null</tt> if there is no such key.
818     * @throws ClassCastException if key cannot be compared with the keys
819     * currently in the map.
820 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
821 dl 1.1 * natural order, or its comparator does not tolerate
822     * <tt>null</tt> keys.
823     */
824     public K higherKey(K key) {
825     Entry<K,V> e = getHigherEntry(key);
826     return (e == null)? null : e.key;
827     }
828    
829     /**
830     * Returns a key-value mapping associated with the greatest
831     * key strictly less than the given key, or <tt>null</tt> if there is no
832     * such entry.
833     *
834     * @param key the key.
835     * @return an Entry with greatest key less than the given
836     * key, or <tt>null</tt> if there is no such Entry.
837     * @throws ClassCastException if key cannot be compared with the keys
838     * currently in the map.
839 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
840 dl 1.1 * natural order, or its comparator does not tolerate
841     * <tt>null</tt> keys.
842     */
843     public Map.Entry<K,V> lowerEntry(K key) {
844     Entry<K,V> e = getLowerEntry(key);
845 dl 1.2 return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
846 dl 1.1 }
847    
848     /**
849     * Returns the greatest key strictly less than the given key, or
850     * <tt>null</tt> if there is no such key.
851     *
852     * @param key the key.
853     * @return the greatest key less than the given
854     * key, or <tt>null</tt> if there is no such key.
855     * @throws ClassCastException if key cannot be compared with the keys
856     * currently in the map.
857 dl 1.3 * @throws NullPointerException if key is <tt>null</tt> and this map uses
858 dl 1.1 * natural order, or its comparator does not tolerate
859     * <tt>null</tt> keys.
860     */
861     public K lowerKey(K key) {
862     Entry<K,V> e = getLowerEntry(key);
863     return (e == null)? null : e.key;
864     }
865    
866     // Views
867    
868     /**
869     * Fields initialized to contain an instance of the entry set view
870     * the first time this view is requested. Views are stateless, so
871     * there's no reason to create more than one.
872     */
873     private transient Set<Map.Entry<K,V>> entrySet = null;
874     private transient Set<Map.Entry<K,V>> descendingEntrySet = null;
875     private transient Set<K> descendingKeySet = null;
876    
877     transient Set<K> keySet = null; // XXX remove when integrated
878     transient Collection<V> values = null; // XXX remove when integrated
879    
880     /**
881     * Returns a Set view of the keys contained in this map. The set's
882     * iterator will return the keys in ascending order. The set is backed by
883     * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
884     * the Set, and vice-versa. The Set supports element removal, which
885     * removes the corresponding mapping from the map, via the
886     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>,
887     * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not support
888     * the <tt>add</tt> or <tt>addAll</tt> operations.
889     *
890     * @return a set view of the keys contained in this TreeMap.
891     */
892     public Set<K> keySet() {
893     Set<K> ks = keySet;
894     return (ks != null) ? ks : (keySet = new KeySet());
895     }
896    
897     class KeySet extends AbstractSet<K> {
898     public Iterator<K> iterator() {
899     return new KeyIterator(getFirstEntry());
900     }
901    
902     public int size() {
903     return TreeMap.this.size();
904     }
905    
906     public boolean contains(Object o) {
907     return containsKey(o);
908     }
909    
910     public boolean remove(Object o) {
911     int oldSize = size;
912     TreeMap.this.remove(o);
913     return size != oldSize;
914     }
915    
916     public void clear() {
917     TreeMap.this.clear();
918     }
919     }
920    
921     /**
922     * Returns a collection view of the values contained in this map. The
923     * collection's iterator will return the values in the order that their
924     * corresponding keys appear in the tree. The collection is backed by
925     * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
926     * the collection, and vice-versa. The collection supports element
927     * removal, which removes the corresponding mapping from the map through
928     * the <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
929     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
930     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
931     *
932     * @return a collection view of the values contained in this map.
933     */
934     public Collection<V> values() {
935     Collection<V> vs = values;
936     return (vs != null) ? vs : (values = new Values());
937     }
938    
939     class Values extends AbstractCollection<V> {
940     public Iterator<V> iterator() {
941     return new ValueIterator(getFirstEntry());
942     }
943    
944     public int size() {
945     return TreeMap.this.size();
946     }
947    
948     public boolean contains(Object o) {
949     for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
950     if (valEquals(e.getValue(), o))
951     return true;
952     return false;
953     }
954    
955     public boolean remove(Object o) {
956     for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
957     if (valEquals(e.getValue(), o)) {
958     deleteEntry(e);
959     return true;
960     }
961     }
962     return false;
963     }
964    
965     public void clear() {
966     TreeMap.this.clear();
967     }
968     }
969    
970     /**
971     * Returns a set view of the mappings contained in this map. The set's
972     * iterator returns the mappings in ascending key order. Each element in
973     * the returned set is a <tt>Map.Entry</tt>. The set is backed by this
974     * map, so changes to this map are reflected in the set, and vice-versa.
975     * The set supports element removal, which removes the corresponding
976     * mapping from the TreeMap, through the <tt>Iterator.remove</tt>,
977     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
978     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
979     * <tt>addAll</tt> operations.
980     *
981     * @return a set view of the mappings contained in this map.
982     * @see Map.Entry
983     */
984     public Set<Map.Entry<K,V>> entrySet() {
985     Set<Map.Entry<K,V>> es = entrySet;
986     return (es != null) ? es : (entrySet = new EntrySet());
987     }
988    
989     class EntrySet extends AbstractSet<Map.Entry<K,V>> {
990     public Iterator<Map.Entry<K,V>> iterator() {
991     return new EntryIterator(getFirstEntry());
992     }
993    
994     public boolean contains(Object o) {
995     if (!(o instanceof Map.Entry))
996     return false;
997     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
998     V value = entry.getValue();
999     Entry<K,V> p = getEntry(entry.getKey());
1000     return p != null && valEquals(p.getValue(), value);
1001     }
1002    
1003     public boolean remove(Object o) {
1004     if (!(o instanceof Map.Entry))
1005     return false;
1006     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1007     V value = entry.getValue();
1008     Entry<K,V> p = getEntry(entry.getKey());
1009     if (p != null && valEquals(p.getValue(), value)) {
1010     deleteEntry(p);
1011     return true;
1012     }
1013     return false;
1014     }
1015    
1016     public int size() {
1017     return TreeMap.this.size();
1018     }
1019    
1020     public void clear() {
1021     TreeMap.this.clear();
1022     }
1023     }
1024    
1025     /**
1026     * Returns a set view of the mappings contained in this map. The
1027 dl 1.3 * set's iterator returns the mappings in descending key order.
1028 dl 1.1 * Each element in the returned set is a <tt>Map.Entry</tt>. The
1029     * set is backed by this map, so changes to this map are reflected
1030     * in the set, and vice-versa. The set supports element removal,
1031     * which removes the corresponding mapping from the TreeMap,
1032     * through the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1033     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1034     * operations. It does not support the <tt>add</tt> or
1035     * <tt>addAll</tt> operations.
1036     *
1037     * @return a set view of the mappings contained in this map, in
1038     * descending key order
1039     * @see Map.Entry
1040     */
1041     public Set<Map.Entry<K,V>> descendingEntrySet() {
1042     Set<Map.Entry<K,V>> es = descendingEntrySet;
1043     return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
1044     }
1045    
1046     class DescendingEntrySet extends EntrySet {
1047     public Iterator<Map.Entry<K,V>> iterator() {
1048     return new DescendingEntryIterator(getLastEntry());
1049     }
1050     }
1051    
1052     /**
1053     * Returns a Set view of the keys contained in this map. The
1054     * set's iterator will return the keys in descending order. The
1055     * map is backed by this <tt>TreeMap</tt> instance, so changes to
1056     * this map are reflected in the Set, and vice-versa. The Set
1057     * supports element removal, which removes the corresponding
1058     * mapping from the map, via the <tt>Iterator.remove</tt>,
1059     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>,
1060     * and <tt>clear</tt> operations. It does not support the
1061     * <tt>add</tt> or <tt>addAll</tt> operations.
1062     *
1063     * @return a set view of the keys contained in this TreeMap.
1064     */
1065     public Set<K> descendingKeySet() {
1066     Set<K> ks = descendingKeySet;
1067     return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1068     }
1069    
1070     class DescendingKeySet extends KeySet {
1071     public Iterator<K> iterator() {
1072     return new DescendingKeyIterator(getLastEntry());
1073     }
1074     }
1075    
1076     /**
1077     * Returns a view of the portion of this map whose keys range from
1078     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive. (If
1079 dl 1.4 * <tt>fromKey</tt> and <tt>toKey</tt> are equal, the returned
1080     * navigable map is empty.) The returned navigable map is backed
1081     * by this map, so changes in the returned navigable map are
1082     * reflected in this map, and vice-versa. The returned navigable
1083     * map supports all optional map operations.<p>
1084 dl 1.1 *
1085 dl 1.4 * The navigable map returned by this method will throw an
1086 dl 1.1 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1087     * less than <tt>fromKey</tt> or greater than or equal to
1088     * <tt>toKey</tt>.<p>
1089     *
1090     * Note: this method always returns a <i>half-open range</i> (which
1091     * includes its low endpoint but not its high endpoint). If you need a
1092     * <i>closed range</i> (which includes both endpoints), and the key type
1093 dl 1.4 * allows for calculation of the successor of a given key, merely request the
1094 dl 1.1 * subrange from <tt>lowEndpoint</tt> to <tt>successor(highEndpoint)</tt>.
1095 dl 1.4 * For example, suppose that <tt>m</tt> is a navigable map whose keys are
1096 dl 1.1 * strings. The following idiom obtains a view containing all of the
1097     * key-value mappings in <tt>m</tt> whose keys are between <tt>low</tt>
1098     * and <tt>high</tt>, inclusive:
1099 dl 1.4 * <pre> NavigableMap sub = m.navigableSubMap(low, high+"\0");</pre>
1100 dl 1.1 * A similar technique can be used to generate an <i>open range</i> (which
1101     * contains neither endpoint). The following idiom obtains a view
1102     * containing all of the key-value mappings in <tt>m</tt> whose keys are
1103     * between <tt>low</tt> and <tt>high</tt>, exclusive:
1104 dl 1.4 * <pre> NavigableMap sub = m.navigableSubMap(low+"\0", high);</pre>
1105 dl 1.1 *
1106     * @param fromKey low endpoint (inclusive) of the subMap.
1107     * @param toKey high endpoint (exclusive) of the subMap.
1108     *
1109     * @return a view of the portion of this map whose keys range from
1110     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
1111     *
1112     * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
1113     * cannot be compared to one another using this map's comparator
1114     * (or, if the map has no comparator, using natural ordering).
1115     * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
1116     * <tt>toKey</tt>.
1117     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
1118     * <tt>null</tt> and this map uses natural order, or its
1119     * comparator does not tolerate <tt>null</tt> keys.
1120     */
1121 dl 1.4 public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1122 dl 1.1 return new SubMap(fromKey, toKey);
1123     }
1124    
1125 dl 1.4
1126 dl 1.1 /**
1127     * Returns a view of the portion of this map whose keys are strictly less
1128 dl 1.4 * than <tt>toKey</tt>. The returned navigable map is backed by this map, so
1129     * changes in the returned navigable map are reflected in this map, and
1130     * vice-versa. The returned navigable map supports all optional map
1131 dl 1.1 * operations.<p>
1132     *
1133 dl 1.4 * The navigable map returned by this method will throw an
1134 dl 1.1 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1135     * greater than or equal to <tt>toKey</tt>.<p>
1136     *
1137     * Note: this method always returns a view that does not contain its
1138     * (high) endpoint. If you need a view that does contain this endpoint,
1139 dl 1.4 * and the key type allows for calculation of the successor of a given key,
1140 dl 1.1 * merely request a headMap bounded by <tt>successor(highEndpoint)</tt>.
1141 dl 1.4 * For example, suppose that suppose that <tt>m</tt> is a navigable map whose
1142 dl 1.1 * keys are strings. The following idiom obtains a view containing all of
1143     * the key-value mappings in <tt>m</tt> whose keys are less than or equal
1144     * to <tt>high</tt>:
1145     * <pre>
1146 dl 1.6 * NavigableMap head = m.navigableHeadMap(high+"\0");
1147 dl 1.1 * </pre>
1148     *
1149     * @param toKey high endpoint (exclusive) of the headMap.
1150     * @return a view of the portion of this map whose keys are strictly
1151     * less than <tt>toKey</tt>.
1152     *
1153     * @throws ClassCastException if <tt>toKey</tt> is not compatible
1154     * with this map's comparator (or, if the map has no comparator,
1155     * if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
1156     * @throws IllegalArgumentException if this map is itself a subMap,
1157     * headMap, or tailMap, and <tt>toKey</tt> is not within the
1158     * specified range of the subMap, headMap, or tailMap.
1159     * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt> and
1160     * this map uses natural order, or its comparator does not
1161     * tolerate <tt>null</tt> keys.
1162     */
1163 dl 1.4 public NavigableMap<K,V> navigableHeadMap(K toKey) {
1164 dl 1.1 return new SubMap(toKey, true);
1165     }
1166    
1167     /**
1168     * Returns a view of the portion of this map whose keys are greater than
1169 dl 1.4 * or equal to <tt>fromKey</tt>. The returned navigable map is backed by
1170     * this map, so changes in the returned navigable map are reflected in this
1171     * map, and vice-versa. The returned navigable map supports all optional map
1172 dl 1.1 * operations.<p>
1173     *
1174 dl 1.4 * The navigable map returned by this method will throw an
1175 dl 1.1 * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1176     * less than <tt>fromKey</tt>.<p>
1177     *
1178     * Note: this method always returns a view that contains its (low)
1179     * endpoint. If you need a view that does not contain this endpoint, and
1180 dl 1.4 * the element type allows for calculation of the successor of a given value,
1181 dl 1.1 * merely request a tailMap bounded by <tt>successor(lowEndpoint)</tt>.
1182 dl 1.4 * For example, suppose that <tt>m</tt> is a navigable map whose keys
1183 dl 1.1 * are strings. The following idiom obtains a view containing
1184     * all of the key-value mappings in <tt>m</tt> whose keys are strictly
1185     * greater than <tt>low</tt>: <pre>
1186 dl 1.6 * NavigableMap tail = m.navigableTailMap(low+"\0");
1187 dl 1.1 * </pre>
1188     *
1189     * @param fromKey low endpoint (inclusive) of the tailMap.
1190     * @return a view of the portion of this map whose keys are greater
1191     * than or equal to <tt>fromKey</tt>.
1192     * @throws ClassCastException if <tt>fromKey</tt> is not compatible
1193     * with this map's comparator (or, if the map has no comparator,
1194     * if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
1195     * @throws IllegalArgumentException if this map is itself a subMap,
1196     * headMap, or tailMap, and <tt>fromKey</tt> is not within the
1197     * specified range of the subMap, headMap, or tailMap.
1198     * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt> and
1199     * this map uses natural order, or its comparator does not
1200     * tolerate <tt>null</tt> keys.
1201     */
1202 dl 1.4 public NavigableMap<K,V> navigableTailMap(K fromKey) {
1203     return new SubMap(fromKey, false);
1204     }
1205    
1206     /**
1207     * Equivalent to <tt>navigableSubMap</tt> but with a return
1208     * type conforming to the <tt>SortedMap</tt> interface.
1209     * @param fromKey low endpoint (inclusive) of the subMap.
1210     * @param toKey high endpoint (exclusive) of the subMap.
1211     *
1212     * @return a view of the portion of this map whose keys range from
1213     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
1214     *
1215     * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
1216     * cannot be compared to one another using this map's comparator
1217     * (or, if the map has no comparator, using natural ordering).
1218     * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
1219     * <tt>toKey</tt>.
1220     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
1221     * <tt>null</tt> and this map uses natural order, or its
1222     * comparator does not tolerate <tt>null</tt> keys.
1223     */
1224     public SortedMap<K,V> subMap(K fromKey, K toKey) {
1225     return new SubMap(fromKey, toKey);
1226     }
1227    
1228    
1229     /**
1230     * Equivalent to <tt>navigableHeadMap</tt> but with a return
1231     * type conforming to the <tt>SortedMap</tt> interface.
1232     *
1233     * @param toKey high endpoint (exclusive) of the headMap.
1234     * @return a view of the portion of this map whose keys are strictly
1235     * less than <tt>toKey</tt>.
1236     *
1237     * @throws ClassCastException if <tt>toKey</tt> is not compatible
1238     * with this map's comparator (or, if the map has no comparator,
1239     * if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
1240     * @throws IllegalArgumentException if this map is itself a subMap,
1241     * headMap, or tailMap, and <tt>toKey</tt> is not within the
1242     * specified range of the subMap, headMap, or tailMap.
1243     * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt> and
1244     * this map uses natural order, or its comparator does not
1245     * tolerate <tt>null</tt> keys.
1246     */
1247     public SortedMap<K,V> headMap(K toKey) {
1248     return new SubMap(toKey, true);
1249     }
1250    
1251     /**
1252     * Equivalent to <tt>navigableTailMap</tt> but with a return
1253     * type conforming to the <tt>SortedMap</tt> interface.
1254     *
1255     * @param fromKey low endpoint (inclusive) of the tailMap.
1256     * @return a view of the portion of this map whose keys are greater
1257     * than or equal to <tt>fromKey</tt>.
1258     * @throws ClassCastException if <tt>fromKey</tt> is not compatible
1259     * with this map's comparator (or, if the map has no comparator,
1260     * if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
1261     * @throws IllegalArgumentException if this map is itself a subMap,
1262     * headMap, or tailMap, and <tt>fromKey</tt> is not within the
1263     * specified range of the subMap, headMap, or tailMap.
1264     * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt> and
1265     * this map uses natural order, or its comparator does not
1266     * tolerate <tt>null</tt> keys.
1267     */
1268     public SortedMap<K,V> tailMap(K fromKey) {
1269 dl 1.1 return new SubMap(fromKey, false);
1270     }
1271    
1272     private class SubMap
1273     extends AbstractMap<K,V>
1274     implements NavigableMap<K,V>, java.io.Serializable {
1275     private static final long serialVersionUID = -6520786458950516097L;
1276    
1277     /**
1278     * fromKey is significant only if fromStart is false. Similarly,
1279     * toKey is significant only if toStart is false.
1280     */
1281     private boolean fromStart = false, toEnd = false;
1282     private K fromKey, toKey;
1283    
1284     SubMap(K fromKey, K toKey) {
1285     if (compare(fromKey, toKey) > 0)
1286     throw new IllegalArgumentException("fromKey > toKey");
1287     this.fromKey = fromKey;
1288     this.toKey = toKey;
1289     }
1290    
1291     SubMap(K key, boolean headMap) {
1292     compare(key, key); // Type-check key
1293    
1294     if (headMap) {
1295     fromStart = true;
1296     toKey = key;
1297     } else {
1298     toEnd = true;
1299     fromKey = key;
1300     }
1301     }
1302    
1303     SubMap(boolean fromStart, K fromKey, boolean toEnd, K toKey) {
1304     this.fromStart = fromStart;
1305     this.fromKey= fromKey;
1306     this.toEnd = toEnd;
1307     this.toKey = toKey;
1308     }
1309    
1310     public boolean isEmpty() {
1311     return entrySet.isEmpty();
1312     }
1313    
1314     public boolean containsKey(Object key) {
1315     return inRange((K) key) && TreeMap.this.containsKey(key);
1316     }
1317    
1318     public V get(Object key) {
1319     if (!inRange((K) key))
1320     return null;
1321     return TreeMap.this.get(key);
1322     }
1323    
1324     public V put(K key, V value) {
1325     if (!inRange(key))
1326     throw new IllegalArgumentException("key out of range");
1327     return TreeMap.this.put(key, value);
1328     }
1329    
1330     public V remove(Object key) {
1331     if (!inRange((K) key))
1332     return null;
1333     return TreeMap.this.remove(key);
1334     }
1335    
1336     public Comparator<? super K> comparator() {
1337     return comparator;
1338     }
1339    
1340     public K firstKey() {
1341     TreeMap.Entry<K,V> e = fromStart ? getFirstEntry() : getCeilingEntry(fromKey);
1342     K first = key(e);
1343     if (!toEnd && compare(first, toKey) >= 0)
1344     throw(new NoSuchElementException());
1345     return first;
1346     }
1347    
1348     public K lastKey() {
1349     TreeMap.Entry<K,V> e = toEnd ? getLastEntry() : getLowerEntry(toKey);
1350     K last = key(e);
1351     if (!fromStart && compare(last, fromKey) < 0)
1352     throw(new NoSuchElementException());
1353     return last;
1354     }
1355    
1356     public Map.Entry<K,V> firstEntry() {
1357     TreeMap.Entry<K,V> e = fromStart ?
1358     getFirstEntry() : getCeilingEntry(fromKey);
1359     if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1360     return null;
1361     return e;
1362     }
1363    
1364     public Map.Entry<K,V> lastEntry() {
1365     TreeMap.Entry<K,V> e = toEnd ?
1366     getLastEntry() : getLowerEntry(toKey);
1367     if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1368     return null;
1369     return e;
1370     }
1371    
1372     public Map.Entry<K,V> pollFirstEntry() {
1373     TreeMap.Entry<K,V> e = fromStart ?
1374     getFirstEntry() : getCeilingEntry(fromKey);
1375     if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1376     return null;
1377 dl 1.2 Map.Entry result = new AbstractMap.SimpleImmutableEntry(e);
1378 dl 1.1 deleteEntry(e);
1379     return result;
1380     }
1381    
1382     public Map.Entry<K,V> pollLastEntry() {
1383     TreeMap.Entry<K,V> e = toEnd ?
1384     getLastEntry() : getLowerEntry(toKey);
1385     if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1386     return null;
1387 dl 1.2 Map.Entry result = new AbstractMap.SimpleImmutableEntry(e);
1388 dl 1.1 deleteEntry(e);
1389     return result;
1390     }
1391    
1392     private TreeMap.Entry<K,V> subceiling(K key) {
1393     TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1394     getCeilingEntry(fromKey) : getCeilingEntry(key);
1395     if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1396     return null;
1397     return e;
1398     }
1399    
1400     public Map.Entry<K,V> ceilingEntry(K key) {
1401     TreeMap.Entry<K,V> e = subceiling(key);
1402 dl 1.2 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1403 dl 1.1 }
1404    
1405     public K ceilingKey(K key) {
1406     TreeMap.Entry<K,V> e = subceiling(key);
1407     return e == null? null : e.key;
1408     }
1409    
1410    
1411     private TreeMap.Entry<K,V> subhigher(K key) {
1412     TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1413     getCeilingEntry(fromKey) : getHigherEntry(key);
1414     if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1415     return null;
1416     return e;
1417     }
1418    
1419     public Map.Entry<K,V> higherEntry(K key) {
1420     TreeMap.Entry<K,V> e = subhigher(key);
1421 dl 1.2 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1422 dl 1.1 }
1423    
1424     public K higherKey(K key) {
1425     TreeMap.Entry<K,V> e = subhigher(key);
1426     return e == null? null : e.key;
1427     }
1428    
1429     private TreeMap.Entry<K,V> subfloor(K key) {
1430     TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1431     getLowerEntry(toKey) : getFloorEntry(key);
1432     if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1433     return null;
1434     return e;
1435     }
1436    
1437     public Map.Entry<K,V> floorEntry(K key) {
1438     TreeMap.Entry<K,V> e = subfloor(key);
1439 dl 1.2 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1440 dl 1.1 }
1441    
1442     public K floorKey(K key) {
1443     TreeMap.Entry<K,V> e = subfloor(key);
1444     return e == null? null : e.key;
1445     }
1446    
1447     private TreeMap.Entry<K,V> sublower(K key) {
1448     TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1449     getLowerEntry(toKey) : getLowerEntry(key);
1450     if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1451     return null;
1452     return e;
1453     }
1454    
1455     public Map.Entry<K,V> lowerEntry(K key) {
1456     TreeMap.Entry<K,V> e = sublower(key);
1457 dl 1.2 return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1458 dl 1.1 }
1459    
1460     public K lowerKey(K key) {
1461     TreeMap.Entry<K,V> e = sublower(key);
1462     return e == null? null : e.key;
1463     }
1464    
1465     private transient Set<Map.Entry<K,V>> entrySet = new EntrySetView();
1466    
1467     public Set<Map.Entry<K,V>> entrySet() {
1468     return entrySet;
1469     }
1470    
1471     private class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1472     private transient int size = -1, sizeModCount;
1473    
1474     public int size() {
1475     if (size == -1 || sizeModCount != TreeMap.this.modCount) {
1476     size = 0; sizeModCount = TreeMap.this.modCount;
1477     Iterator i = iterator();
1478     while (i.hasNext()) {
1479     size++;
1480     i.next();
1481     }
1482     }
1483     return size;
1484     }
1485    
1486     public boolean isEmpty() {
1487     return !iterator().hasNext();
1488     }
1489    
1490     public boolean contains(Object o) {
1491     if (!(o instanceof Map.Entry))
1492     return false;
1493     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1494     K key = entry.getKey();
1495     if (!inRange(key))
1496     return false;
1497     TreeMap.Entry node = getEntry(key);
1498     return node != null &&
1499     valEquals(node.getValue(), entry.getValue());
1500     }
1501    
1502     public boolean remove(Object o) {
1503     if (!(o instanceof Map.Entry))
1504     return false;
1505     Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1506     K key = entry.getKey();
1507     if (!inRange(key))
1508     return false;
1509     TreeMap.Entry<K,V> node = getEntry(key);
1510     if (node!=null && valEquals(node.getValue(),entry.getValue())){
1511     deleteEntry(node);
1512     return true;
1513     }
1514     return false;
1515     }
1516    
1517     public Iterator<Map.Entry<K,V>> iterator() {
1518     return new SubMapEntryIterator(
1519     (fromStart ? getFirstEntry() : getCeilingEntry(fromKey)),
1520     (toEnd ? null : getCeilingEntry(toKey)));
1521     }
1522     }
1523    
1524     private transient Set<Map.Entry<K,V>> descendingEntrySetView = null;
1525     private transient Set<K> descendingKeySetView = null;
1526    
1527     public Set<Map.Entry<K,V>> descendingEntrySet() {
1528     Set<Map.Entry<K,V>> es = descendingEntrySetView;
1529     return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
1530     }
1531    
1532     public Set<K> descendingKeySet() {
1533     Set<K> ks = descendingKeySetView;
1534     return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
1535     }
1536    
1537     private class DescendingEntrySetView extends EntrySetView {
1538     public Iterator<Map.Entry<K,V>> iterator() {
1539     return new DescendingSubMapEntryIterator
1540     ((toEnd ? getLastEntry() : getLowerEntry(toKey)),
1541     (fromStart ? null : getLowerEntry(fromKey)));
1542     }
1543     }
1544    
1545     private class DescendingKeySetView extends AbstractSet<K> {
1546     public Iterator<K> iterator() {
1547     return new Iterator<K>() {
1548     private Iterator<Entry<K,V>> i = descendingEntrySet().iterator();
1549    
1550     public boolean hasNext() { return i.hasNext(); }
1551     public K next() { return i.next().getKey(); }
1552     public void remove() { i.remove(); }
1553     };
1554     }
1555    
1556     public int size() {
1557     return SubMap.this.size();
1558     }
1559    
1560     public boolean contains(Object k) {
1561     return SubMap.this.containsKey(k);
1562     }
1563     }
1564    
1565    
1566 dl 1.4 public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1567 dl 1.1 if (!inRange2(fromKey))
1568     throw new IllegalArgumentException("fromKey out of range");
1569     if (!inRange2(toKey))
1570     throw new IllegalArgumentException("toKey out of range");
1571     return new SubMap(fromKey, toKey);
1572     }
1573    
1574 dl 1.4 public NavigableMap<K,V> navigableHeadMap(K toKey) {
1575 dl 1.1 if (!inRange2(toKey))
1576     throw new IllegalArgumentException("toKey out of range");
1577     return new SubMap(fromStart, fromKey, false, toKey);
1578     }
1579    
1580 dl 1.4 public NavigableMap<K,V> navigableTailMap(K fromKey) {
1581 dl 1.1 if (!inRange2(fromKey))
1582     throw new IllegalArgumentException("fromKey out of range");
1583     return new SubMap(false, fromKey, toEnd, toKey);
1584     }
1585    
1586 dl 1.4
1587     public SortedMap<K,V> subMap(K fromKey, K toKey) {
1588     return navigableSubMap(fromKey, toKey);
1589     }
1590    
1591     public SortedMap<K,V> headMap(K toKey) {
1592     return navigableHeadMap(toKey);
1593     }
1594    
1595     public SortedMap<K,V> tailMap(K fromKey) {
1596     return navigableTailMap(fromKey);
1597     }
1598    
1599 dl 1.1 private boolean inRange(K key) {
1600     return (fromStart || compare(key, fromKey) >= 0) &&
1601     (toEnd || compare(key, toKey) < 0);
1602     }
1603    
1604     // This form allows the high endpoint (as well as all legit keys)
1605     private boolean inRange2(K key) {
1606     return (fromStart || compare(key, fromKey) >= 0) &&
1607     (toEnd || compare(key, toKey) <= 0);
1608     }
1609     }
1610    
1611     /**
1612     * TreeMap Iterator.
1613     */
1614     abstract class PrivateEntryIterator<T> implements Iterator<T> {
1615     int expectedModCount = TreeMap.this.modCount;
1616     Entry<K,V> lastReturned = null;
1617     Entry<K,V> next;
1618    
1619     PrivateEntryIterator(Entry<K,V> first) {
1620     next = first;
1621     }
1622    
1623     public boolean hasNext() {
1624     return next != null;
1625     }
1626    
1627     Entry<K,V> nextEntry() {
1628     if (next == null)
1629     throw new NoSuchElementException();
1630     if (modCount != expectedModCount)
1631     throw new ConcurrentModificationException();
1632     lastReturned = next;
1633     next = successor(next);
1634     return lastReturned;
1635     }
1636    
1637     public void remove() {
1638     if (lastReturned == null)
1639     throw new IllegalStateException();
1640     if (modCount != expectedModCount)
1641     throw new ConcurrentModificationException();
1642     if (lastReturned.left != null && lastReturned.right != null)
1643     next = lastReturned;
1644     deleteEntry(lastReturned);
1645     expectedModCount++;
1646     lastReturned = null;
1647     }
1648     }
1649    
1650     class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1651     EntryIterator(Entry<K,V> first) {
1652     super(first);
1653     }
1654    
1655     public Map.Entry<K,V> next() {
1656     return nextEntry();
1657     }
1658     }
1659    
1660     class KeyIterator extends PrivateEntryIterator<K> {
1661     KeyIterator(Entry<K,V> first) {
1662     super(first);
1663     }
1664     public K next() {
1665     return nextEntry().key;
1666     }
1667     }
1668    
1669     class ValueIterator extends PrivateEntryIterator<V> {
1670     ValueIterator(Entry<K,V> first) {
1671     super(first);
1672     }
1673     public V next() {
1674     return nextEntry().value;
1675     }
1676     }
1677    
1678     class SubMapEntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1679     private final K firstExcludedKey;
1680    
1681     SubMapEntryIterator(Entry<K,V> first, Entry<K,V> firstExcluded) {
1682     super(first);
1683     firstExcludedKey = (firstExcluded == null
1684     ? null
1685     : firstExcluded.key);
1686     }
1687    
1688     public boolean hasNext() {
1689     return next != null && next.key != firstExcludedKey;
1690     }
1691    
1692     public Map.Entry<K,V> next() {
1693     if (next == null || next.key == firstExcludedKey)
1694     throw new NoSuchElementException();
1695     return nextEntry();
1696     }
1697     }
1698    
1699    
1700     /**
1701     * Base for Descending Iterators.
1702     */
1703     abstract class DescendingPrivateEntryIterator<T> extends PrivateEntryIterator<T> {
1704     DescendingPrivateEntryIterator(Entry<K,V> first) {
1705     super(first);
1706     }
1707    
1708     Entry<K,V> nextEntry() {
1709     if (next == null)
1710     throw new NoSuchElementException();
1711     if (modCount != expectedModCount)
1712     throw new ConcurrentModificationException();
1713     lastReturned = next;
1714     next = predecessor(next);
1715     return lastReturned;
1716     }
1717     }
1718    
1719     class DescendingEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1720     DescendingEntryIterator(Entry<K,V> first) {
1721     super(first);
1722     }
1723     public Map.Entry<K,V> next() {
1724     return nextEntry();
1725     }
1726     }
1727    
1728     class DescendingKeyIterator extends DescendingPrivateEntryIterator<K> {
1729     DescendingKeyIterator(Entry<K,V> first) {
1730     super(first);
1731     }
1732     public K next() {
1733     return nextEntry().key;
1734     }
1735     }
1736    
1737    
1738     class DescendingSubMapEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1739     private final K lastExcludedKey;
1740    
1741     DescendingSubMapEntryIterator(Entry<K,V> last, Entry<K,V> lastExcluded) {
1742     super(last);
1743     lastExcludedKey = (lastExcluded == null
1744     ? null
1745     : lastExcluded.key);
1746     }
1747    
1748     public boolean hasNext() {
1749     return next != null && next.key != lastExcludedKey;
1750     }
1751    
1752     public Map.Entry<K,V> next() {
1753     if (next == null || next.key == lastExcludedKey)
1754     throw new NoSuchElementException();
1755     return nextEntry();
1756     }
1757    
1758     }
1759    
1760    
1761     /**
1762     * Compares two keys using the correct comparison method for this TreeMap.
1763     */
1764     private int compare(K k1, K k2) {
1765     return (comparator==null ? ((Comparable</*-*/K>)k1).compareTo(k2)
1766     : comparator.compare((K)k1, (K)k2));
1767     }
1768    
1769     /**
1770     * Test two values for equality. Differs from o1.equals(o2) only in
1771     * that it copes with <tt>null</tt> o1 properly.
1772     */
1773     private static boolean valEquals(Object o1, Object o2) {
1774     return (o1==null ? o2==null : o1.equals(o2));
1775     }
1776    
1777     private static final boolean RED = false;
1778     private static final boolean BLACK = true;
1779    
1780     /**
1781     * Node in the Tree. Doubles as a means to pass key-value pairs back to
1782     * user (see Map.Entry).
1783     */
1784    
1785     static class Entry<K,V> implements Map.Entry<K,V> {
1786     K key;
1787     V value;
1788     Entry<K,V> left = null;
1789     Entry<K,V> right = null;
1790     Entry<K,V> parent;
1791     boolean color = BLACK;
1792    
1793     /**
1794     * Make a new cell with given key, value, and parent, and with
1795     * <tt>null</tt> child links, and BLACK color.
1796     */
1797     Entry(K key, V value, Entry<K,V> parent) {
1798     this.key = key;
1799     this.value = value;
1800     this.parent = parent;
1801     }
1802    
1803     /**
1804     * Returns the key.
1805     *
1806     * @return the key.
1807     */
1808     public K getKey() {
1809     return key;
1810     }
1811    
1812     /**
1813     * Returns the value associated with the key.
1814     *
1815     * @return the value associated with the key.
1816     */
1817     public V getValue() {
1818     return value;
1819     }
1820    
1821     /**
1822     * Replaces the value currently associated with the key with the given
1823     * value.
1824     *
1825     * @return the value associated with the key before this method was
1826     * called.
1827     */
1828     public V setValue(V value) {
1829     V oldValue = this.value;
1830     this.value = value;
1831     return oldValue;
1832     }
1833    
1834     public boolean equals(Object o) {
1835     if (!(o instanceof Map.Entry))
1836     return false;
1837     Map.Entry e = (Map.Entry)o;
1838    
1839     return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1840     }
1841    
1842     public int hashCode() {
1843     int keyHash = (key==null ? 0 : key.hashCode());
1844     int valueHash = (value==null ? 0 : value.hashCode());
1845     return keyHash ^ valueHash;
1846     }
1847    
1848     public String toString() {
1849     return key + "=" + value;
1850     }
1851     }
1852    
1853     /**
1854     * Returns the first Entry in the TreeMap (according to the TreeMap's
1855     * key-sort function). Returns null if the TreeMap is empty.
1856     */
1857     private Entry<K,V> getFirstEntry() {
1858     Entry<K,V> p = root;
1859     if (p != null)
1860     while (p.left != null)
1861     p = p.left;
1862     return p;
1863     }
1864    
1865     /**
1866     * Returns the last Entry in the TreeMap (according to the TreeMap's
1867     * key-sort function). Returns null if the TreeMap is empty.
1868     */
1869     private Entry<K,V> getLastEntry() {
1870     Entry<K,V> p = root;
1871     if (p != null)
1872     while (p.right != null)
1873     p = p.right;
1874     return p;
1875     }
1876    
1877     /**
1878     * Returns the successor of the specified Entry, or null if no such.
1879     */
1880     private Entry<K,V> successor(Entry<K,V> t) {
1881     if (t == null)
1882     return null;
1883     else if (t.right != null) {
1884     Entry<K,V> p = t.right;
1885     while (p.left != null)
1886     p = p.left;
1887     return p;
1888     } else {
1889     Entry<K,V> p = t.parent;
1890     Entry<K,V> ch = t;
1891     while (p != null && ch == p.right) {
1892     ch = p;
1893     p = p.parent;
1894     }
1895     return p;
1896     }
1897     }
1898    
1899     /**
1900     * Returns the predecessor of the specified Entry, or null if no such.
1901     */
1902     private Entry<K,V> predecessor(Entry<K,V> t) {
1903     if (t == null)
1904     return null;
1905     else if (t.left != null) {
1906     Entry<K,V> p = t.left;
1907     while (p.right != null)
1908     p = p.right;
1909     return p;
1910     } else {
1911     Entry<K,V> p = t.parent;
1912     Entry<K,V> ch = t;
1913     while (p != null && ch == p.left) {
1914     ch = p;
1915     p = p.parent;
1916     }
1917     return p;
1918     }
1919     }
1920    
1921     /**
1922     * Balancing operations.
1923     *
1924     * Implementations of rebalancings during insertion and deletion are
1925     * slightly different than the CLR version. Rather than using dummy
1926     * nilnodes, we use a set of accessors that deal properly with null. They
1927     * are used to avoid messiness surrounding nullness checks in the main
1928     * algorithms.
1929     */
1930    
1931     private static <K,V> boolean colorOf(Entry<K,V> p) {
1932     return (p == null ? BLACK : p.color);
1933     }
1934    
1935     private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
1936     return (p == null ? null: p.parent);
1937     }
1938    
1939     private static <K,V> void setColor(Entry<K,V> p, boolean c) {
1940     if (p != null)
1941     p.color = c;
1942     }
1943    
1944     private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
1945     return (p == null) ? null: p.left;
1946     }
1947    
1948     private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
1949     return (p == null) ? null: p.right;
1950     }
1951    
1952     /** From CLR **/
1953     private void rotateLeft(Entry<K,V> p) {
1954     Entry<K,V> r = p.right;
1955     p.right = r.left;
1956     if (r.left != null)
1957     r.left.parent = p;
1958     r.parent = p.parent;
1959     if (p.parent == null)
1960     root = r;
1961     else if (p.parent.left == p)
1962     p.parent.left = r;
1963     else
1964     p.parent.right = r;
1965     r.left = p;
1966     p.parent = r;
1967     }
1968    
1969     /** From CLR **/
1970     private void rotateRight(Entry<K,V> p) {
1971     Entry<K,V> l = p.left;
1972     p.left = l.right;
1973     if (l.right != null) l.right.parent = p;
1974     l.parent = p.parent;
1975     if (p.parent == null)
1976     root = l;
1977     else if (p.parent.right == p)
1978     p.parent.right = l;
1979     else p.parent.left = l;
1980     l.right = p;
1981     p.parent = l;
1982     }
1983    
1984    
1985     /** From CLR **/
1986     private void fixAfterInsertion(Entry<K,V> x) {
1987     x.color = RED;
1988    
1989     while (x != null && x != root && x.parent.color == RED) {
1990     if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
1991     Entry<K,V> y = rightOf(parentOf(parentOf(x)));
1992     if (colorOf(y) == RED) {
1993     setColor(parentOf(x), BLACK);
1994     setColor(y, BLACK);
1995     setColor(parentOf(parentOf(x)), RED);
1996     x = parentOf(parentOf(x));
1997     } else {
1998     if (x == rightOf(parentOf(x))) {
1999     x = parentOf(x);
2000     rotateLeft(x);
2001     }
2002     setColor(parentOf(x), BLACK);
2003     setColor(parentOf(parentOf(x)), RED);
2004     if (parentOf(parentOf(x)) != null)
2005     rotateRight(parentOf(parentOf(x)));
2006     }
2007     } else {
2008     Entry<K,V> y = leftOf(parentOf(parentOf(x)));
2009     if (colorOf(y) == RED) {
2010     setColor(parentOf(x), BLACK);
2011     setColor(y, BLACK);
2012     setColor(parentOf(parentOf(x)), RED);
2013     x = parentOf(parentOf(x));
2014     } else {
2015     if (x == leftOf(parentOf(x))) {
2016     x = parentOf(x);
2017     rotateRight(x);
2018     }
2019     setColor(parentOf(x), BLACK);
2020     setColor(parentOf(parentOf(x)), RED);
2021     if (parentOf(parentOf(x)) != null)
2022     rotateLeft(parentOf(parentOf(x)));
2023     }
2024     }
2025     }
2026     root.color = BLACK;
2027     }
2028    
2029     /**
2030     * Delete node p, and then rebalance the tree.
2031     */
2032    
2033     private void deleteEntry(Entry<K,V> p) {
2034     decrementSize();
2035    
2036     // If strictly internal, copy successor's element to p and then make p
2037     // point to successor.
2038     if (p.left != null && p.right != null) {
2039     Entry<K,V> s = successor (p);
2040     p.key = s.key;
2041     p.value = s.value;
2042     p = s;
2043     } // p has 2 children
2044    
2045     // Start fixup at replacement node, if it exists.
2046     Entry<K,V> replacement = (p.left != null ? p.left : p.right);
2047    
2048     if (replacement != null) {
2049     // Link replacement to parent
2050     replacement.parent = p.parent;
2051     if (p.parent == null)
2052     root = replacement;
2053     else if (p == p.parent.left)
2054     p.parent.left = replacement;
2055     else
2056     p.parent.right = replacement;
2057    
2058     // Null out links so they are OK to use by fixAfterDeletion.
2059     p.left = p.right = p.parent = null;
2060    
2061     // Fix replacement
2062     if (p.color == BLACK)
2063     fixAfterDeletion(replacement);
2064     } else if (p.parent == null) { // return if we are the only node.
2065     root = null;
2066     } else { // No children. Use self as phantom replacement and unlink.
2067     if (p.color == BLACK)
2068     fixAfterDeletion(p);
2069    
2070     if (p.parent != null) {
2071     if (p == p.parent.left)
2072     p.parent.left = null;
2073     else if (p == p.parent.right)
2074     p.parent.right = null;
2075     p.parent = null;
2076     }
2077     }
2078     }
2079    
2080     /** From CLR **/
2081     private void fixAfterDeletion(Entry<K,V> x) {
2082     while (x != root && colorOf(x) == BLACK) {
2083     if (x == leftOf(parentOf(x))) {
2084     Entry<K,V> sib = rightOf(parentOf(x));
2085    
2086     if (colorOf(sib) == RED) {
2087     setColor(sib, BLACK);
2088     setColor(parentOf(x), RED);
2089     rotateLeft(parentOf(x));
2090     sib = rightOf(parentOf(x));
2091     }
2092    
2093     if (colorOf(leftOf(sib)) == BLACK &&
2094     colorOf(rightOf(sib)) == BLACK) {
2095     setColor(sib, RED);
2096     x = parentOf(x);
2097     } else {
2098     if (colorOf(rightOf(sib)) == BLACK) {
2099     setColor(leftOf(sib), BLACK);
2100     setColor(sib, RED);
2101     rotateRight(sib);
2102     sib = rightOf(parentOf(x));
2103     }
2104     setColor(sib, colorOf(parentOf(x)));
2105     setColor(parentOf(x), BLACK);
2106     setColor(rightOf(sib), BLACK);
2107     rotateLeft(parentOf(x));
2108     x = root;
2109     }
2110     } else { // symmetric
2111     Entry<K,V> sib = leftOf(parentOf(x));
2112    
2113     if (colorOf(sib) == RED) {
2114     setColor(sib, BLACK);
2115     setColor(parentOf(x), RED);
2116     rotateRight(parentOf(x));
2117     sib = leftOf(parentOf(x));
2118     }
2119    
2120     if (colorOf(rightOf(sib)) == BLACK &&
2121     colorOf(leftOf(sib)) == BLACK) {
2122     setColor(sib, RED);
2123     x = parentOf(x);
2124     } else {
2125     if (colorOf(leftOf(sib)) == BLACK) {
2126     setColor(rightOf(sib), BLACK);
2127     setColor(sib, RED);
2128     rotateLeft(sib);
2129     sib = leftOf(parentOf(x));
2130     }
2131     setColor(sib, colorOf(parentOf(x)));
2132     setColor(parentOf(x), BLACK);
2133     setColor(leftOf(sib), BLACK);
2134     rotateRight(parentOf(x));
2135     x = root;
2136     }
2137     }
2138     }
2139    
2140     setColor(x, BLACK);
2141     }
2142    
2143     private static final long serialVersionUID = 919286545866124006L;
2144    
2145     /**
2146     * Save the state of the <tt>TreeMap</tt> instance to a stream (i.e.,
2147     * serialize it).
2148     *
2149     * @serialData The <i>size</i> of the TreeMap (the number of key-value
2150     * mappings) is emitted (int), followed by the key (Object)
2151     * and value (Object) for each key-value mapping represented
2152     * by the TreeMap. The key-value mappings are emitted in
2153     * key-order (as determined by the TreeMap's Comparator,
2154     * or by the keys' natural ordering if the TreeMap has no
2155     * Comparator).
2156     */
2157     private void writeObject(java.io.ObjectOutputStream s)
2158     throws java.io.IOException {
2159     // Write out the Comparator and any hidden stuff
2160     s.defaultWriteObject();
2161    
2162     // Write out size (number of Mappings)
2163     s.writeInt(size);
2164    
2165     // Write out keys and values (alternating)
2166     for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
2167     Map.Entry<K,V> e = i.next();
2168     s.writeObject(e.getKey());
2169     s.writeObject(e.getValue());
2170     }
2171     }
2172    
2173    
2174    
2175     /**
2176     * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2177     * deserialize it).
2178     */
2179     private void readObject(final java.io.ObjectInputStream s)
2180     throws java.io.IOException, ClassNotFoundException {
2181     // Read in the Comparator and any hidden stuff
2182     s.defaultReadObject();
2183    
2184     // Read in size
2185     int size = s.readInt();
2186    
2187     buildFromSorted(size, null, s, null);
2188     }
2189    
2190     /** Intended to be called only from TreeSet.readObject **/
2191     void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2192     throws java.io.IOException, ClassNotFoundException {
2193     buildFromSorted(size, null, s, defaultVal);
2194     }
2195    
2196     /** Intended to be called only from TreeSet.addAll **/
2197     void addAllForTreeSet(SortedSet<Map.Entry<K,V>> set, V defaultVal) {
2198     try {
2199     buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2200     } catch (java.io.IOException cannotHappen) {
2201     } catch (ClassNotFoundException cannotHappen) {
2202     }
2203     }
2204    
2205    
2206     /**
2207     * Linear time tree building algorithm from sorted data. Can accept keys
2208     * and/or values from iterator or stream. This leads to too many
2209     * parameters, but seems better than alternatives. The four formats
2210     * that this method accepts are:
2211     *
2212     * 1) An iterator of Map.Entries. (it != null, defaultVal == null).
2213     * 2) An iterator of keys. (it != null, defaultVal != null).
2214     * 3) A stream of alternating serialized keys and values.
2215     * (it == null, defaultVal == null).
2216     * 4) A stream of serialized keys. (it == null, defaultVal != null).
2217     *
2218     * It is assumed that the comparator of the TreeMap is already set prior
2219     * to calling this method.
2220     *
2221     * @param size the number of keys (or key-value pairs) to be read from
2222     * the iterator or stream.
2223     * @param it If non-null, new entries are created from entries
2224     * or keys read from this iterator.
2225     * @param str If non-null, new entries are created from keys and
2226     * possibly values read from this stream in serialized form.
2227     * Exactly one of it and str should be non-null.
2228     * @param defaultVal if non-null, this default value is used for
2229     * each value in the map. If null, each value is read from
2230     * iterator or stream, as described above.
2231     * @throws IOException propagated from stream reads. This cannot
2232     * occur if str is null.
2233     * @throws ClassNotFoundException propagated from readObject.
2234     * This cannot occur if str is null.
2235     */
2236     private
2237     void buildFromSorted(int size, Iterator it,
2238     java.io.ObjectInputStream str,
2239     V defaultVal)
2240     throws java.io.IOException, ClassNotFoundException {
2241     this.size = size;
2242     root =
2243     buildFromSorted(0, 0, size-1, computeRedLevel(size),
2244     it, str, defaultVal);
2245     }
2246    
2247     /**
2248     * Recursive "helper method" that does the real work of the
2249     * of the previous method. Identically named parameters have
2250     * identical definitions. Additional parameters are documented below.
2251     * It is assumed that the comparator and size fields of the TreeMap are
2252     * already set prior to calling this method. (It ignores both fields.)
2253     *
2254     * @param level the current level of tree. Initial call should be 0.
2255     * @param lo the first element index of this subtree. Initial should be 0.
2256     * @param hi the last element index of this subtree. Initial should be
2257     * size-1.
2258     * @param redLevel the level at which nodes should be red.
2259     * Must be equal to computeRedLevel for tree of this size.
2260     */
2261     private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2262     int redLevel,
2263     Iterator it,
2264     java.io.ObjectInputStream str,
2265     V defaultVal)
2266     throws java.io.IOException, ClassNotFoundException {
2267     /*
2268     * Strategy: The root is the middlemost element. To get to it, we
2269     * have to first recursively construct the entire left subtree,
2270     * so as to grab all of its elements. We can then proceed with right
2271     * subtree.
2272     *
2273     * The lo and hi arguments are the minimum and maximum
2274     * indices to pull out of the iterator or stream for current subtree.
2275     * They are not actually indexed, we just proceed sequentially,
2276     * ensuring that items are extracted in corresponding order.
2277     */
2278    
2279     if (hi < lo) return null;
2280    
2281     int mid = (lo + hi) / 2;
2282    
2283     Entry<K,V> left = null;
2284     if (lo < mid)
2285     left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2286     it, str, defaultVal);
2287    
2288     // extract key and/or value from iterator or stream
2289     K key;
2290     V value;
2291     if (it != null) {
2292     if (defaultVal==null) {
2293     Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
2294     key = entry.getKey();
2295     value = entry.getValue();
2296     } else {
2297     key = (K)it.next();
2298     value = defaultVal;
2299     }
2300     } else { // use stream
2301     key = (K) str.readObject();
2302     value = (defaultVal != null ? defaultVal : (V) str.readObject());
2303     }
2304    
2305     Entry<K,V> middle = new Entry<K,V>(key, value, null);
2306    
2307     // color nodes in non-full bottommost level red
2308     if (level == redLevel)
2309     middle.color = RED;
2310    
2311     if (left != null) {
2312     middle.left = left;
2313     left.parent = middle;
2314     }
2315    
2316     if (mid < hi) {
2317     Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2318     it, str, defaultVal);
2319     middle.right = right;
2320     right.parent = middle;
2321     }
2322    
2323     return middle;
2324     }
2325    
2326     /**
2327     * Find the level down to which to assign all nodes BLACK. This is the
2328     * last `full' level of the complete binary tree produced by
2329     * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2330     * set of color assignments wrt future insertions.) This level number is
2331     * computed by finding the number of splits needed to reach the zeroeth
2332     * node. (The answer is ~lg(N), but in any case must be computed by same
2333     * quick O(lg(N)) loop.)
2334     */
2335     private static int computeRedLevel(int sz) {
2336     int level = 0;
2337     for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2338     level++;
2339     return level;
2340     }
2341    
2342     }