ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
Revision: 1.32
Committed: Sat Apr 22 16:38:01 2006 UTC (18 years, 1 month ago) by dl
Branch: MAIN
Changes since 1.31: +272 -317 lines
Log Message:
Internal submap refactorings

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9
10 /**
11 * A Red-Black tree based {@link NavigableMap} implementation.
12 * The map is sorted according to the {@linkplain Comparable natural
13 * ordering} of its keys, or by a {@link Comparator} provided at map
14 * creation time, depending on which constructor is used.
15 *
16 * <p>This implementation provides guaranteed log(n) time cost for the
17 * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
18 * operations. Algorithms are adaptations of those in Cormen, Leiserson, and
19 * Rivest's <I>Introduction to Algorithms</I>.
20 *
21 * <p>Note that the ordering maintained by a sorted map (whether or not an
22 * explicit comparator is provided) must be <i>consistent with equals</i> if
23 * this sorted map is to correctly implement the <tt>Map</tt> interface. (See
24 * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
25 * <i>consistent with equals</i>.) This is so because the <tt>Map</tt>
26 * interface is defined in terms of the equals operation, but a map performs
27 * all key comparisons using its <tt>compareTo</tt> (or <tt>compare</tt>)
28 * method, so two keys that are deemed equal by this method are, from the
29 * standpoint of the sorted map, equal. The behavior of a sorted map
30 * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
31 * just fails to obey the general contract of the <tt>Map</tt> interface.
32 *
33 * <p><strong>Note that this implementation is not synchronized.</strong>
34 * If multiple threads access a map concurrently, and at least one of the
35 * threads modifies the map structurally, it <i>must</i> be synchronized
36 * externally. (A structural modification is any operation that adds or
37 * deletes one or more mappings; merely changing the value associated
38 * with an existing key is not a structural modification.) This is
39 * typically accomplished by synchronizing on some object that naturally
40 * encapsulates the map.
41 * If no such object exists, the map should be "wrapped" using the
42 * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
43 * method. This is best done at creation time, to prevent accidental
44 * unsynchronized access to the map: <pre>
45 * SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
46 *
47 * <p>The iterators returned by the <tt>iterator</tt> method of the collections
48 * returned by all of this class's "collection view methods" are
49 * <i>fail-fast</i>: if the map is structurally modified at any time after the
50 * iterator is created, in any way except through the iterator's own
51 * <tt>remove</tt> method, the iterator will throw a {@link
52 * ConcurrentModificationException}. Thus, in the face of concurrent
53 * modification, the iterator fails quickly and cleanly, rather than risking
54 * arbitrary, non-deterministic behavior at an undetermined time in the future.
55 *
56 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
57 * as it is, generally speaking, impossible to make any hard guarantees in the
58 * presence of unsynchronized concurrent modification. Fail-fast iterators
59 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
60 * Therefore, it would be wrong to write a program that depended on this
61 * exception for its correctness: <i>the fail-fast behavior of iterators
62 * should be used only to detect bugs.</i>
63 *
64 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
65 * and its views represent snapshots of mappings at the time they were
66 * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
67 * method. (Note however that it is possible to change mappings in the
68 * associated map using <tt>put</tt>.)
69 *
70 * <p>This class is a member of the
71 * <a href="{@docRoot}/../guide/collections/index.html">
72 * Java Collections Framework</a>.
73 *
74 * @param <K> the type of keys maintained by this map
75 * @param <V> the type of mapped values
76 *
77 * @author Josh Bloch and Doug Lea
78 * @version %I%, %G%
79 * @see Map
80 * @see HashMap
81 * @see Hashtable
82 * @see Comparable
83 * @see Comparator
84 * @see Collection
85 * @since 1.2
86 */
87
88 public class TreeMap<K,V>
89 extends AbstractMap<K,V>
90 implements NavigableMap<K,V>, Cloneable, java.io.Serializable
91 {
92 /**
93 * The comparator used to maintain order in this tree map, or
94 * null if it uses the natural ordering of its keys.
95 *
96 * @serial
97 */
98 private final Comparator<? super K> comparator;
99
100 private transient Entry<K,V> root = null;
101
102 /**
103 * The number of entries in the tree
104 */
105 private transient int size = 0;
106
107 /**
108 * The number of structural modifications to the tree.
109 */
110 private transient int modCount = 0;
111
112 private void incrementSize() { modCount++; size++; }
113 private void decrementSize() { modCount++; size--; }
114
115 /**
116 * Constructs a new, empty tree map, using the natural ordering of its
117 * keys. All keys inserted into the map must implement the {@link
118 * Comparable} interface. Furthermore, all such keys must be
119 * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
120 * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
121 * <tt>k2</tt> in the map. If the user attempts to put a key into the
122 * map that violates this constraint (for example, the user attempts to
123 * put a string key into a map whose keys are integers), the
124 * <tt>put(Object key, Object value)</tt> call will throw a
125 * <tt>ClassCastException</tt>.
126 */
127 public TreeMap() {
128 comparator = null;
129 }
130
131 /**
132 * Constructs a new, empty tree map, ordered according to the given
133 * comparator. All keys inserted into the map must be <i>mutually
134 * comparable</i> by the given comparator: <tt>comparator.compare(k1,
135 * k2)</tt> must not throw a <tt>ClassCastException</tt> for any keys
136 * <tt>k1</tt> and <tt>k2</tt> in the map. If the user attempts to put
137 * a key into the map that violates this constraint, the <tt>put(Object
138 * key, Object value)</tt> call will throw a
139 * <tt>ClassCastException</tt>.
140 *
141 * @param comparator the comparator that will be used to order this map.
142 * If <tt>null</tt>, the {@linkplain Comparable natural
143 * ordering} of the keys will be used.
144 */
145 public TreeMap(Comparator<? super K> comparator) {
146 this.comparator = comparator;
147 }
148
149 /**
150 * Constructs a new tree map containing the same mappings as the given
151 * map, ordered according to the <i>natural ordering</i> of its keys.
152 * All keys inserted into the new map must implement the {@link
153 * Comparable} interface. Furthermore, all such keys must be
154 * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
155 * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
156 * <tt>k2</tt> in the map. This method runs in n*log(n) time.
157 *
158 * @param m the map whose mappings are to be placed in this map
159 * @throws ClassCastException if the keys in m are not {@link Comparable},
160 * or are not mutually comparable
161 * @throws NullPointerException if the specified map is null
162 */
163 public TreeMap(Map<? extends K, ? extends V> m) {
164 comparator = null;
165 putAll(m);
166 }
167
168 /**
169 * Constructs a new tree map containing the same mappings and
170 * using the same ordering as the specified sorted map. This
171 * method runs in linear time.
172 *
173 * @param m the sorted map whose mappings are to be placed in this map,
174 * and whose comparator is to be used to sort this map
175 * @throws NullPointerException if the specified map is null
176 */
177 public TreeMap(SortedMap<K, ? extends V> m) {
178 comparator = m.comparator();
179 try {
180 buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
181 } catch (java.io.IOException cannotHappen) {
182 } catch (ClassNotFoundException cannotHappen) {
183 }
184 }
185
186
187 // Query Operations
188
189 /**
190 * Returns the number of key-value mappings in this map.
191 *
192 * @return the number of key-value mappings in this map
193 */
194 public int size() {
195 return size;
196 }
197
198 /**
199 * Returns <tt>true</tt> if this map contains a mapping for the specified
200 * key.
201 *
202 * @param key key whose presence in this map is to be tested
203 * @return <tt>true</tt> if this map contains a mapping for the
204 * specified key
205 * @throws ClassCastException if the specified key cannot be compared
206 * with the keys currently in the map
207 * @throws NullPointerException if the specified key is null
208 * and this map uses natural ordering, or its comparator
209 * does not permit null keys
210 */
211 public boolean containsKey(Object key) {
212 return getEntry(key) != null;
213 }
214
215 /**
216 * Returns <tt>true</tt> if this map maps one or more keys to the
217 * specified value. More formally, returns <tt>true</tt> if and only if
218 * this map contains at least one mapping to a value <tt>v</tt> such
219 * that <tt>(value==null ? v==null : value.equals(v))</tt>. This
220 * operation will probably require time linear in the map size for
221 * most implementations.
222 *
223 * @param value value whose presence in this map is to be tested
224 * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
225 * <tt>false</tt> otherwise
226 * @since 1.2
227 */
228 public boolean containsValue(Object value) {
229 return (root==null ? false :
230 (value==null ? valueSearchNull(root)
231 : valueSearchNonNull(root, value)));
232 }
233
234 private boolean valueSearchNull(Entry n) {
235 if (n.value == null)
236 return true;
237
238 // Check left and right subtrees for value
239 return (n.left != null && valueSearchNull(n.left)) ||
240 (n.right != null && valueSearchNull(n.right));
241 }
242
243 private boolean valueSearchNonNull(Entry n, Object value) {
244 // Check this node for the value
245 if (value.equals(n.value))
246 return true;
247
248 // Check left and right subtrees for value
249 return (n.left != null && valueSearchNonNull(n.left, value)) ||
250 (n.right != null && valueSearchNonNull(n.right, value));
251 }
252
253 /**
254 * Returns the value to which the specified key is mapped,
255 * or {@code null} if this map contains no mapping for the key.
256 *
257 * <p>More formally, if this map contains a mapping from a key
258 * {@code k} to a value {@code v} such that {@code key} compares
259 * equal to {@code k} according to the map's ordering, then this
260 * method returns {@code v}; otherwise it returns {@code null}.
261 * (There can be at most one such mapping.)
262 *
263 * <p>A return value of {@code null} does not <i>necessarily</i>
264 * indicate that the map contains no mapping for the key; it's also
265 * possible that the map explicitly maps the key to {@code null}.
266 * The {@link #containsKey containsKey} operation may be used to
267 * distinguish these two cases.
268 *
269 * @throws ClassCastException if the specified key cannot be compared
270 * with the keys currently in the map
271 * @throws NullPointerException if the specified key is null
272 * and this map uses natural ordering, or its comparator
273 * does not permit null keys
274 */
275 public V get(Object key) {
276 Entry<K,V> p = getEntry(key);
277 return (p==null ? null : p.value);
278 }
279
280 public Comparator<? super K> comparator() {
281 return comparator;
282 }
283
284 /**
285 * @throws NoSuchElementException {@inheritDoc}
286 */
287 public K firstKey() {
288 return key(getFirstEntry());
289 }
290
291 /**
292 * @throws NoSuchElementException {@inheritDoc}
293 */
294 public K lastKey() {
295 return key(getLastEntry());
296 }
297
298 /**
299 * Copies all of the mappings from the specified map to this map.
300 * These mappings replace any mappings that this map had for any
301 * of the keys currently in the specified map.
302 *
303 * @param map mappings to be stored in this map
304 * @throws ClassCastException if the class of a key or value in
305 * the specified map prevents it from being stored in this map
306 * @throws NullPointerException if the specified map is null or
307 * the specified map contains a null key and this map does not
308 * permit null keys
309 */
310 public void putAll(Map<? extends K, ? extends V> map) {
311 int mapSize = map.size();
312 if (size==0 && mapSize!=0 && map instanceof SortedMap) {
313 Comparator c = ((SortedMap)map).comparator();
314 if (c == comparator || (c != null && c.equals(comparator))) {
315 ++modCount;
316 try {
317 buildFromSorted(mapSize, map.entrySet().iterator(),
318 null, null);
319 } catch (java.io.IOException cannotHappen) {
320 } catch (ClassNotFoundException cannotHappen) {
321 }
322 return;
323 }
324 }
325 super.putAll(map);
326 }
327
328 /**
329 * Returns this map's entry for the given key, or <tt>null</tt> if the map
330 * does not contain an entry for the key.
331 *
332 * @return this map's entry for the given key, or <tt>null</tt> if the map
333 * does not contain an entry for the key
334 * @throws ClassCastException if the specified key cannot be compared
335 * with the keys currently in the map
336 * @throws NullPointerException if the specified key is null
337 * and this map uses natural ordering, or its comparator
338 * does not permit null keys
339 */
340 final Entry<K,V> getEntry(Object key) {
341 // Offload comparator-based version for sake of performance
342 if (comparator != null)
343 return getEntryUsingComparator(key);
344 if (key == null)
345 throw new NullPointerException();
346 Comparable<? super K> k = (Comparable<? super K>) key;
347 Entry<K,V> p = root;
348 while (p != null) {
349 int cmp = k.compareTo(p.key);
350 if (cmp < 0)
351 p = p.left;
352 else if (cmp > 0)
353 p = p.right;
354 else
355 return p;
356 }
357 return null;
358 }
359
360 /**
361 * Version of getEntry using comparator. Split off from getEntry
362 * for performance. (This is not worth doing for most methods,
363 * that are less dependent on comparator performance, but is
364 * worthwhile for get and put.)
365 */
366 final Entry<K,V> getEntryUsingComparator(Object key) {
367 K k = (K) key;
368 Comparator<? super K> cpr = comparator;
369 Entry<K,V> p = root;
370 while (p != null) {
371 int cmp = cpr.compare(k, p.key);
372 if (cmp < 0)
373 p = p.left;
374 else if (cmp > 0)
375 p = p.right;
376 else
377 return p;
378 }
379 return null;
380 }
381
382 /**
383 * Gets the entry corresponding to the specified key; if no such entry
384 * exists, returns the entry for the least key greater than the specified
385 * key; if no such entry exists (i.e., the greatest key in the Tree is less
386 * than the specified key), returns <tt>null</tt>.
387 */
388 final Entry<K,V> getCeilingEntry(K key) {
389 Entry<K,V> p = root;
390 while (p != null) {
391 int cmp = compare(key, p.key);
392 if (cmp < 0) {
393 if (p.left != null)
394 p = p.left;
395 else
396 return p;
397 } else if (cmp > 0) {
398 if (p.right != null) {
399 p = p.right;
400 } else {
401 Entry<K,V> parent = p.parent;
402 Entry<K,V> ch = p;
403 while (parent != null && ch == parent.right) {
404 ch = parent;
405 parent = parent.parent;
406 }
407 return parent;
408 }
409 } else
410 return p;
411 }
412 return null;
413 }
414
415 /**
416 * Gets the entry corresponding to the specified key; if no such entry
417 * exists, returns the entry for the greatest key less than the specified
418 * key; if no such entry exists, returns <tt>null</tt>.
419 */
420 final Entry<K,V> getFloorEntry(K key) {
421 Entry<K,V> p = root;
422 while (p != null) {
423 int cmp = compare(key, p.key);
424 if (cmp > 0) {
425 if (p.right != null)
426 p = p.right;
427 else
428 return p;
429 } else if (cmp < 0) {
430 if (p.left != null) {
431 p = p.left;
432 } else {
433 Entry<K,V> parent = p.parent;
434 Entry<K,V> ch = p;
435 while (parent != null && ch == parent.left) {
436 ch = parent;
437 parent = parent.parent;
438 }
439 return parent;
440 }
441 } else
442 return p;
443
444 }
445 return null;
446 }
447
448 /**
449 * Gets the entry for the least key greater than the specified
450 * key; if no such entry exists, returns the entry for the least
451 * key greater than the specified key; if no such entry exists
452 * returns <tt>null</tt>.
453 */
454 final Entry<K,V> getHigherEntry(K key) {
455 Entry<K,V> p = root;
456 while (p != null) {
457 int cmp = compare(key, p.key);
458 if (cmp < 0) {
459 if (p.left != null)
460 p = p.left;
461 else
462 return p;
463 } else {
464 if (p.right != null) {
465 p = p.right;
466 } else {
467 Entry<K,V> parent = p.parent;
468 Entry<K,V> ch = p;
469 while (parent != null && ch == parent.right) {
470 ch = parent;
471 parent = parent.parent;
472 }
473 return parent;
474 }
475 }
476 }
477 return null;
478 }
479
480 /**
481 * Returns the entry for the greatest key less than the specified key; if
482 * no such entry exists (i.e., the least key in the Tree is greater than
483 * the specified key), returns <tt>null</tt>.
484 */
485 final Entry<K,V> getLowerEntry(K key) {
486 Entry<K,V> p = root;
487 while (p != null) {
488 int cmp = compare(key, p.key);
489 if (cmp > 0) {
490 if (p.right != null)
491 p = p.right;
492 else
493 return p;
494 } else {
495 if (p.left != null) {
496 p = p.left;
497 } else {
498 Entry<K,V> parent = p.parent;
499 Entry<K,V> ch = p;
500 while (parent != null && ch == parent.left) {
501 ch = parent;
502 parent = parent.parent;
503 }
504 return parent;
505 }
506 }
507 }
508 return null;
509 }
510
511 /**
512 * Returns the key corresponding to the specified Entry.
513 * @throws NoSuchElementException if the Entry is null
514 */
515 static <K> K key(Entry<K,?> e) {
516 if (e==null)
517 throw new NoSuchElementException();
518 return e.key;
519 }
520
521 /**
522 * Associates the specified value with the specified key in this map.
523 * If the map previously contained a mapping for the key, the old
524 * value is replaced.
525 *
526 * @param key key with which the specified value is to be associated
527 * @param value value to be associated with the specified key
528 *
529 * @return the previous value associated with <tt>key</tt>, or
530 * <tt>null</tt> if there was no mapping for <tt>key</tt>.
531 * (A <tt>null</tt> return can also indicate that the map
532 * previously associated <tt>null</tt> with <tt>key</tt>.)
533 * @throws ClassCastException if the specified key cannot be compared
534 * with the keys currently in the map
535 * @throws NullPointerException if the specified key is null
536 * and this map uses natural ordering, or its comparator
537 * does not permit null keys
538 */
539 public V put(K key, V value) {
540 // Offload comparator-based version for sake of performance
541 if (comparator != null)
542 return putUsingComparator(key, value);
543 if (key == null)
544 throw new NullPointerException();
545 Comparable<? super K> k = (Comparable<? super K>) key;
546
547 Entry<K,V> t = root;
548 while (t != null) {
549 int cmp = k.compareTo(t.key);
550 if (cmp == 0) {
551 return t.setValue(value);
552 } else if (cmp < 0) {
553 if (t.left != null) {
554 t = t.left;
555 } else {
556 incrementSize();
557 fixAfterInsertion(t.left = new Entry<K,V>(key, value, t));
558 return null;
559 }
560 } else { // cmp > 0
561 if (t.right != null) {
562 t = t.right;
563 } else {
564 incrementSize();
565 fixAfterInsertion(t.right = new Entry<K,V>(key, value, t));
566 return null;
567 }
568 }
569 }
570 incrementSize();
571 root = new Entry<K,V>(key, value, null);
572 return null;
573 }
574
575 /**
576 * Version of put using comparator. Split off from put for
577 * performance.
578 */
579 final V putUsingComparator(K key, V value) {
580 Comparator<? super K> cpr = comparator;
581 Entry<K,V> t = root;
582 while (t != null) {
583 int cmp = cpr.compare(key, t.key);
584 if (cmp == 0) {
585 return t.setValue(value);
586 } else if (cmp < 0) {
587 if (t.left != null) {
588 t = t.left;
589 } else {
590 incrementSize();
591 fixAfterInsertion(t.left = new Entry<K,V>(key, value, t));
592 return null;
593 }
594 } else { // cmp > 0
595 if (t.right != null) {
596 t = t.right;
597 } else {
598 incrementSize();
599 fixAfterInsertion(t.right = new Entry<K,V>(key, value, t));
600 return null;
601 }
602 }
603 }
604 cpr.compare(key, key); // type check
605 incrementSize();
606 root = new Entry<K,V>(key, value, null);
607 return null;
608 }
609
610 /**
611 * Removes the mapping for this key from this TreeMap if present.
612 *
613 * @param key key for which mapping should be removed
614 * @return the previous value associated with <tt>key</tt>, or
615 * <tt>null</tt> if there was no mapping for <tt>key</tt>.
616 * (A <tt>null</tt> return can also indicate that the map
617 * previously associated <tt>null</tt> with <tt>key</tt>.)
618 * @throws ClassCastException if the specified key cannot be compared
619 * with the keys currently in the map
620 * @throws NullPointerException if the specified key is null
621 * and this map uses natural ordering, or its comparator
622 * does not permit null keys
623 */
624 public V remove(Object key) {
625 Entry<K,V> p = getEntry(key);
626 if (p == null)
627 return null;
628
629 V oldValue = p.value;
630 deleteEntry(p);
631 return oldValue;
632 }
633
634 /**
635 * Removes all of the mappings from this map.
636 * The map will be empty after this call returns.
637 */
638 public void clear() {
639 modCount++;
640 size = 0;
641 root = null;
642 }
643
644 /**
645 * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
646 * values themselves are not cloned.)
647 *
648 * @return a shallow copy of this map
649 */
650 public Object clone() {
651 TreeMap<K,V> clone = null;
652 try {
653 clone = (TreeMap<K,V>) super.clone();
654 } catch (CloneNotSupportedException e) {
655 throw new InternalError();
656 }
657
658 // Put clone into "virgin" state (except for comparator)
659 clone.root = null;
660 clone.size = 0;
661 clone.modCount = 0;
662 clone.entrySet = null;
663 clone.navigableKeySet = null;
664 clone.descendingMap = null;
665
666 // Initialize clone with our mappings
667 try {
668 clone.buildFromSorted(size, entrySet().iterator(), null, null);
669 } catch (java.io.IOException cannotHappen) {
670 } catch (ClassNotFoundException cannotHappen) {
671 }
672
673 return clone;
674 }
675
676 // NavigableMap API methods
677
678 /**
679 * @since 1.6
680 */
681 public Map.Entry<K,V> firstEntry() {
682 Entry<K,V> e = getFirstEntry();
683 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
684 }
685
686 /**
687 * @since 1.6
688 */
689 public Map.Entry<K,V> lastEntry() {
690 Entry<K,V> e = getLastEntry();
691 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
692 }
693
694 /**
695 * @since 1.6
696 */
697 public Map.Entry<K,V> pollFirstEntry() {
698 Entry<K,V> p = getFirstEntry();
699 if (p == null)
700 return null;
701 Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
702 deleteEntry(p);
703 return result;
704 }
705
706 /**
707 * @since 1.6
708 */
709 public Map.Entry<K,V> pollLastEntry() {
710 Entry<K,V> p = getLastEntry();
711 if (p == null)
712 return null;
713 Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
714 deleteEntry(p);
715 return result;
716 }
717
718 /**
719 * @throws ClassCastException {@inheritDoc}
720 * @throws NullPointerException if the specified key is null
721 * and this map uses natural ordering, or its comparator
722 * does not permit null keys
723 * @since 1.6
724 */
725 public Map.Entry<K,V> lowerEntry(K key) {
726 Entry<K,V> e = getLowerEntry(key);
727 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
728 }
729
730 /**
731 * @throws ClassCastException {@inheritDoc}
732 * @throws NullPointerException if the specified key is null
733 * and this map uses natural ordering, or its comparator
734 * does not permit null keys
735 * @since 1.6
736 */
737 public K lowerKey(K key) {
738 Entry<K,V> e = getLowerEntry(key);
739 return (e == null)? null : e.key;
740 }
741
742 /**
743 * @throws ClassCastException {@inheritDoc}
744 * @throws NullPointerException if the specified key is null
745 * and this map uses natural ordering, or its comparator
746 * does not permit null keys
747 * @since 1.6
748 */
749 public Map.Entry<K,V> floorEntry(K key) {
750 Entry<K,V> e = getFloorEntry(key);
751 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
752 }
753
754 /**
755 * @throws ClassCastException {@inheritDoc}
756 * @throws NullPointerException if the specified key is null
757 * and this map uses natural ordering, or its comparator
758 * does not permit null keys
759 * @since 1.6
760 */
761 public K floorKey(K key) {
762 Entry<K,V> e = getFloorEntry(key);
763 return (e == null)? null : e.key;
764 }
765
766 /**
767 * @throws ClassCastException {@inheritDoc}
768 * @throws NullPointerException if the specified key is null
769 * and this map uses natural ordering, or its comparator
770 * does not permit null keys
771 * @since 1.6
772 */
773 public Map.Entry<K,V> ceilingEntry(K key) {
774 Entry<K,V> e = getCeilingEntry(key);
775 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
776 }
777
778 /**
779 * @throws ClassCastException {@inheritDoc}
780 * @throws NullPointerException if the specified key is null
781 * and this map uses natural ordering, or its comparator
782 * does not permit null keys
783 * @since 1.6
784 */
785 public K ceilingKey(K key) {
786 Entry<K,V> e = getCeilingEntry(key);
787 return (e == null)? null : e.key;
788 }
789
790 /**
791 * @throws ClassCastException {@inheritDoc}
792 * @throws NullPointerException if the specified key is null
793 * and this map uses natural ordering, or its comparator
794 * does not permit null keys
795 * @since 1.6
796 */
797 public Map.Entry<K,V> higherEntry(K key) {
798 Entry<K,V> e = getHigherEntry(key);
799 return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
800 }
801
802 /**
803 * @throws ClassCastException {@inheritDoc}
804 * @throws NullPointerException if the specified key is null
805 * and this map uses natural ordering, or its comparator
806 * does not permit null keys
807 * @since 1.6
808 */
809 public K higherKey(K key) {
810 Entry<K,V> e = getHigherEntry(key);
811 return (e == null)? null : e.key;
812 }
813
814 // Views
815
816 /**
817 * Fields initialized to contain an instance of the entry set view
818 * the first time this view is requested. Views are stateless, so
819 * there's no reason to create more than one.
820 */
821 private transient EntrySet entrySet = null;
822 private transient KeySet<K> navigableKeySet = null;
823 private transient NavigableMap<K,V> descendingMap = null;
824
825 /**
826 * Returns a {@link Set} view of the keys contained in this map.
827 * The set's iterator returns the keys in ascending order.
828 * The set is backed by the map, so changes to the map are
829 * reflected in the set, and vice-versa. If the map is modified
830 * while an iteration over the set is in progress (except through
831 * the iterator's own <tt>remove</tt> operation), the results of
832 * the iteration are undefined. The set supports element removal,
833 * which removes the corresponding mapping from the map, via the
834 * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
835 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
836 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
837 * operations.
838 */
839 public Set<K> keySet() {
840 return navigableKeySet();
841 }
842
843 /**
844 * @since 1.6
845 */
846 public NavigableSet<K> navigableKeySet() {
847 KeySet<K> nks = navigableKeySet;
848 return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
849 }
850
851 /**
852 * @since 1.6
853 */
854 public NavigableSet<K> descendingKeySet() {
855 return descendingMap().navigableKeySet();
856 }
857
858 /**
859 * Returns a {@link Collection} view of the values contained in this map.
860 * The collection's iterator returns the values in ascending order
861 * of the corresponding keys.
862 * The collection is backed by the map, so changes to the map are
863 * reflected in the collection, and vice-versa. If the map is
864 * modified while an iteration over the collection is in progress
865 * (except through the iterator's own <tt>remove</tt> operation),
866 * the results of the iteration are undefined. The collection
867 * supports element removal, which removes the corresponding
868 * mapping from the map, via the <tt>Iterator.remove</tt>,
869 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
870 * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
871 * support the <tt>add</tt> or <tt>addAll</tt> operations.
872 */
873 public Collection<V> values() {
874 Collection<V> vs = values;
875 return (vs != null) ? vs : (values = new Values());
876 }
877
878 /**
879 * Returns a {@link Set} view of the mappings contained in this map.
880 * The set's iterator returns the entries in ascending key order.
881 * The set is backed by the map, so changes to the map are
882 * reflected in the set, and vice-versa. If the map is modified
883 * while an iteration over the set is in progress (except through
884 * the iterator's own <tt>remove</tt> operation, or through the
885 * <tt>setValue</tt> operation on a map entry returned by the
886 * iterator) the results of the iteration are undefined. The set
887 * supports element removal, which removes the corresponding
888 * mapping from the map, via the <tt>Iterator.remove</tt>,
889 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
890 * <tt>clear</tt> operations. It does not support the
891 * <tt>add</tt> or <tt>addAll</tt> operations.
892 */
893 public Set<Map.Entry<K,V>> entrySet() {
894 EntrySet es = entrySet;
895 return (es != null) ? es : (entrySet = new EntrySet());
896 }
897
898 /**
899 * @since 1.6
900 */
901 public NavigableMap<K, V> descendingMap() {
902 NavigableMap<K, V> km = descendingMap;
903 return (km != null) ? km :
904 (descendingMap = new DescendingSubMap(this,
905 true, null, true,
906 true, null, true));
907 }
908
909 /**
910 * @throws ClassCastException {@inheritDoc}
911 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
912 * null and this map uses natural ordering, or its comparator
913 * does not permit null keys
914 * @throws IllegalArgumentException {@inheritDoc}
915 * @since 1.6
916 */
917 public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
918 K toKey, boolean toInclusive) {
919 return new AscendingSubMap(this,
920 false, fromKey, fromInclusive,
921 false, toKey, toInclusive);
922 }
923
924 /**
925 * @throws ClassCastException {@inheritDoc}
926 * @throws NullPointerException if <tt>toKey</tt> is null
927 * and this map uses natural ordering, or its comparator
928 * does not permit null keys
929 * @throws IllegalArgumentException {@inheritDoc}
930 * @since 1.6
931 */
932 public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
933 return new AscendingSubMap(this,
934 true, null, true,
935 false, toKey, inclusive);
936 }
937
938 /**
939 * @throws ClassCastException {@inheritDoc}
940 * @throws NullPointerException if <tt>fromKey</tt> is null
941 * and this map uses natural ordering, or its comparator
942 * does not permit null keys
943 * @throws IllegalArgumentException {@inheritDoc}
944 * @since 1.6
945 */
946 public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
947 return new AscendingSubMap(this,
948 false, fromKey, inclusive,
949 true, null, true);
950 }
951
952 /**
953 * @throws ClassCastException {@inheritDoc}
954 * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
955 * null and this map uses natural ordering, or its comparator
956 * does not permit null keys
957 * @throws IllegalArgumentException {@inheritDoc}
958 */
959 public SortedMap<K,V> subMap(K fromKey, K toKey) {
960 return subMap(fromKey, true, toKey, false);
961 }
962
963 /**
964 * @throws ClassCastException {@inheritDoc}
965 * @throws NullPointerException if <tt>toKey</tt> is null
966 * and this map uses natural ordering, or its comparator
967 * does not permit null keys
968 * @throws IllegalArgumentException {@inheritDoc}
969 */
970 public SortedMap<K,V> headMap(K toKey) {
971 return headMap(toKey, false);
972 }
973
974 /**
975 * @throws ClassCastException {@inheritDoc}
976 * @throws NullPointerException if <tt>fromKey</tt> is null
977 * and this map uses natural ordering, or its comparator
978 * does not permit null keys
979 * @throws IllegalArgumentException {@inheritDoc}
980 */
981 public SortedMap<K,V> tailMap(K fromKey) {
982 return tailMap(fromKey, true);
983 }
984
985 // View class support
986
987 class Values extends AbstractCollection<V> {
988 public Iterator<V> iterator() {
989 return new ValueIterator(getFirstEntry());
990 }
991
992 public int size() {
993 return TreeMap.this.size();
994 }
995
996 public boolean contains(Object o) {
997 for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
998 if (valEquals(e.getValue(), o))
999 return true;
1000 return false;
1001 }
1002
1003 public boolean remove(Object o) {
1004 for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
1005 if (valEquals(e.getValue(), o)) {
1006 deleteEntry(e);
1007 return true;
1008 }
1009 }
1010 return false;
1011 }
1012
1013 public void clear() {
1014 TreeMap.this.clear();
1015 }
1016 }
1017
1018 class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1019 public Iterator<Map.Entry<K,V>> iterator() {
1020 return new EntryIterator(getFirstEntry());
1021 }
1022
1023 public boolean contains(Object o) {
1024 if (!(o instanceof Map.Entry))
1025 return false;
1026 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1027 V value = entry.getValue();
1028 Entry<K,V> p = getEntry(entry.getKey());
1029 return p != null && valEquals(p.getValue(), value);
1030 }
1031
1032 public boolean remove(Object o) {
1033 if (!(o instanceof Map.Entry))
1034 return false;
1035 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1036 V value = entry.getValue();
1037 Entry<K,V> p = getEntry(entry.getKey());
1038 if (p != null && valEquals(p.getValue(), value)) {
1039 deleteEntry(p);
1040 return true;
1041 }
1042 return false;
1043 }
1044
1045 public int size() {
1046 return TreeMap.this.size();
1047 }
1048
1049 public void clear() {
1050 TreeMap.this.clear();
1051 }
1052 }
1053
1054 /*
1055 * Unlike Values and EntrySet, the KeySet class is static,
1056 * delegating to a NavigableMap to allow use by SubMaps, which
1057 * outweighs the ugliness of needing type-tests for the following
1058 * Iterator methods that are defined appropriately in main versus
1059 * submap classes.
1060 */
1061
1062 Iterator<K> keyIterator() {
1063 return new KeyIterator(getFirstEntry());
1064 }
1065
1066 Iterator<K> descendingKeyIterator() {
1067 return new DescendingKeyIterator(getFirstEntry());
1068 }
1069
1070 static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1071 private final NavigableMap<E, Object> m;
1072 KeySet(NavigableMap<E,Object> map) { m = map; }
1073
1074 public Iterator<E> iterator() {
1075 if (m instanceof TreeMap)
1076 return ((TreeMap<E,Object>)m).keyIterator();
1077 else
1078 return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
1079 }
1080
1081 public Iterator<E> descendingIterator() {
1082 if (m instanceof TreeMap)
1083 return ((TreeMap<E,Object>)m).descendingKeyIterator();
1084 else
1085 return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
1086 }
1087
1088 public int size() { return m.size(); }
1089 public boolean isEmpty() { return m.isEmpty(); }
1090 public boolean contains(Object o) { return m.containsKey(o); }
1091 public void clear() { m.clear(); }
1092 public E lower(E e) { return m.lowerKey(e); }
1093 public E floor(E e) { return m.floorKey(e); }
1094 public E ceiling(E e) { return m.ceilingKey(e); }
1095 public E higher(E e) { return m.higherKey(e); }
1096 public E first() { return m.firstKey(); }
1097 public E last() { return m.lastKey(); }
1098 public Comparator<? super E> comparator() { return m.comparator(); }
1099 public E pollFirst() {
1100 Map.Entry<E,Object> e = m.pollFirstEntry();
1101 return e == null? null : e.getKey();
1102 }
1103 public E pollLast() {
1104 Map.Entry<E,Object> e = m.pollLastEntry();
1105 return e == null? null : e.getKey();
1106 }
1107 public boolean remove(Object o) {
1108 int oldSize = size();
1109 m.remove(o);
1110 return size() != oldSize;
1111 }
1112 public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1113 E toElement, boolean toInclusive) {
1114 return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
1115 toElement, toInclusive));
1116 }
1117 public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1118 return new TreeSet<E>(m.headMap(toElement, inclusive));
1119 }
1120 public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1121 return new TreeSet<E>(m.tailMap(fromElement, inclusive));
1122 }
1123 public SortedSet<E> subSet(E fromElement, E toElement) {
1124 return subSet(fromElement, true, toElement, false);
1125 }
1126 public SortedSet<E> headSet(E toElement) {
1127 return headSet(toElement, false);
1128 }
1129 public SortedSet<E> tailSet(E fromElement) {
1130 return tailSet(fromElement, true);
1131 }
1132 public NavigableSet<E> descendingSet() {
1133 return new TreeSet(m.descendingMap());
1134 }
1135 }
1136
1137 /**
1138 * Base class for TreeMap Iterators
1139 */
1140 abstract class PrivateEntryIterator<T> implements Iterator<T> {
1141 Entry<K,V> next;
1142 Entry<K,V> lastReturned;
1143 int expectedModCount;
1144
1145 PrivateEntryIterator(Entry<K,V> first) {
1146 expectedModCount = modCount;
1147 lastReturned = null;
1148 next = first;
1149 }
1150
1151 public final boolean hasNext() {
1152 return next != null;
1153 }
1154
1155 final Entry<K,V> nextEntry() {
1156 Entry<K,V> e = lastReturned = next;
1157 if (e == null)
1158 throw new NoSuchElementException();
1159 if (modCount != expectedModCount)
1160 throw new ConcurrentModificationException();
1161 next = successor(e);
1162 return e;
1163 }
1164
1165 final Entry<K,V> prevEntry() {
1166 Entry<K,V> e = lastReturned= next;
1167 if (e == null)
1168 throw new NoSuchElementException();
1169 if (modCount != expectedModCount)
1170 throw new ConcurrentModificationException();
1171 next = predecessor(e);
1172 return e;
1173 }
1174
1175 public void remove() {
1176 if (lastReturned == null)
1177 throw new IllegalStateException();
1178 if (modCount != expectedModCount)
1179 throw new ConcurrentModificationException();
1180 if (lastReturned.left != null && lastReturned.right != null)
1181 next = lastReturned;
1182 deleteEntry(lastReturned);
1183 expectedModCount++;
1184 lastReturned = null;
1185 }
1186 }
1187
1188 final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1189 EntryIterator(Entry<K,V> first) {
1190 super(first);
1191 }
1192 public Map.Entry<K,V> next() {
1193 return nextEntry();
1194 }
1195 }
1196
1197 final class ValueIterator extends PrivateEntryIterator<V> {
1198 ValueIterator(Entry<K,V> first) {
1199 super(first);
1200 }
1201 public V next() {
1202 return nextEntry().value;
1203 }
1204 }
1205
1206 final class KeyIterator extends PrivateEntryIterator<K> {
1207 KeyIterator(Entry<K,V> first) {
1208 super(first);
1209 }
1210 public K next() {
1211 return nextEntry().key;
1212 }
1213 }
1214
1215 final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1216 DescendingKeyIterator(Entry<K,V> first) {
1217 super(first);
1218 }
1219 public K next() {
1220 return prevEntry().key;
1221 }
1222 }
1223
1224 // SubMaps
1225
1226 static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>
1227 implements NavigableMap<K,V>, java.io.Serializable {
1228 /*
1229 * The backing map.
1230 */
1231 final TreeMap<K,V> m;
1232
1233 /*
1234 * Endpoints are represented as triples (fromStart, lo,
1235 * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1236 * true, then the low (absolute) bound is the start of the
1237 * backing map, and the other values are ignored. Otherwise,
1238 * if loInclusive is true, lo is the inclusive bound, else lo
1239 * is the exclusive bound. Similarly for the upper bound.
1240 */
1241
1242 final K lo, hi;
1243 final boolean fromStart, toEnd;
1244 final boolean loInclusive, hiInclusive;
1245
1246 NavigableSubMap(TreeMap<K,V> m,
1247 boolean fromStart, K lo, boolean loInclusive,
1248 boolean toEnd, K hi, boolean hiInclusive) {
1249 if (!fromStart && !toEnd) {
1250 if (m.compare(lo, hi) > 0)
1251 throw new IllegalArgumentException("fromKey > toKey");
1252 } else {
1253 if (!fromStart) // type check
1254 m.compare(lo, lo);
1255 if (!toEnd)
1256 m.compare(hi, hi);
1257 }
1258
1259 this.m = m;
1260 this.fromStart = fromStart;
1261 this.lo = lo;
1262 this.loInclusive = loInclusive;
1263 this.toEnd = toEnd;
1264 this.hi = hi;
1265 this.hiInclusive = hiInclusive;
1266 }
1267
1268 // internal utilities
1269
1270 final boolean tooLow(Object key) {
1271 if (!fromStart) {
1272 int c = m.compare(key, lo);
1273 if (c < 0 || (c == 0 && !loInclusive))
1274 return true;
1275 }
1276 return false;
1277 }
1278
1279 final boolean tooHigh(Object key) {
1280 if (!toEnd) {
1281 int c = m.compare(key, hi);
1282 if (c > 0 || (c == 0 && !hiInclusive))
1283 return true;
1284 }
1285 return false;
1286 }
1287
1288 final boolean inRange(Object key) {
1289 return !tooLow(key) && !tooHigh(key);
1290 }
1291
1292 final boolean inClosedRange(Object key) {
1293 return (fromStart || m.compare(key, lo) >= 0)
1294 && (toEnd || m.compare(hi, key) >= 0);
1295 }
1296
1297 final boolean inRange(Object key, boolean inclusive) {
1298 return inclusive ? inRange(key) : inClosedRange(key);
1299 }
1300
1301 /**
1302 * Return SimpleImmutableEntry for entry, or null if null
1303 */
1304 static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
1305 return e == null? null :
1306 new AbstractMap.SimpleImmutableEntry<K,V>(e);
1307 }
1308
1309 /**
1310 * Return key for entry, or null if null
1311 */
1312 static <K,V> K exportKey(TreeMap.Entry<K,V> e) {
1313 return e == null? null : e.key;
1314 }
1315
1316 /*
1317 * Absolute versions of relation operations.
1318 * Subclasses map to these using like-named "sub"
1319 * versions that invert senses for descending maps
1320 */
1321
1322 final TreeMap.Entry<K,V> absLowest() {
1323 TreeMap.Entry<K,V> e =
1324 (fromStart ? m.getFirstEntry() :
1325 (loInclusive ? m.getCeilingEntry(lo) :
1326 m.getHigherEntry(lo)));
1327 return (e == null || tooHigh(e.key)) ? null : e;
1328 }
1329
1330 final TreeMap.Entry<K,V> absHighest() {
1331 TreeMap.Entry<K,V> e =
1332 (toEnd ? m.getLastEntry() :
1333 (hiInclusive ? m.getFloorEntry(hi) :
1334 m.getLowerEntry(hi)));
1335 return (e == null || tooLow(e.key)) ? null : e;
1336 }
1337
1338 final TreeMap.Entry<K,V> absCeiling(K key) {
1339 if (tooLow(key))
1340 return absLowest();
1341 TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1342 return (e == null || tooHigh(e.key)) ? null : e;
1343 }
1344
1345 final TreeMap.Entry<K,V> absHigher(K key) {
1346 if (tooLow(key))
1347 return absLowest();
1348 TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1349 return (e == null || tooHigh(e.key)) ? null : e;
1350 }
1351
1352 final TreeMap.Entry<K,V> absFloor(K key) {
1353 if (tooHigh(key))
1354 return absHighest();
1355 TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1356 return (e == null || tooLow(e.key)) ? null : e;
1357 }
1358
1359 final TreeMap.Entry<K,V> absLower(K key) {
1360 if (tooHigh(key))
1361 return absHighest();
1362 TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1363 return (e == null || tooLow(e.key)) ? null : e;
1364 }
1365
1366 /** Returns the absolute high fence for ascending traversal */
1367 final TreeMap.Entry<K,V> absHighFence() {
1368 return (toEnd ? null : (hiInclusive ?
1369 m.getHigherEntry(hi) :
1370 m.getCeilingEntry(hi)));
1371 }
1372
1373 /** Return the absolute low fence for descending traversal */
1374 final TreeMap.Entry<K,V> absLowFence() {
1375 return (fromStart ? null : (loInclusive ?
1376 m.getLowerEntry(lo) :
1377 m.getFloorEntry(lo)));
1378 }
1379
1380 // Abstract methods defined in ascending vs descending classes
1381 // These relay to the appropriate absolute versions
1382
1383 abstract TreeMap.Entry<K,V> subLowest();
1384 abstract TreeMap.Entry<K,V> subHighest();
1385 abstract TreeMap.Entry<K,V> subCeiling(K key);
1386 abstract TreeMap.Entry<K,V> subHigher(K key);
1387 abstract TreeMap.Entry<K,V> subFloor(K key);
1388 abstract TreeMap.Entry<K,V> subLower(K key);
1389
1390 /** Returns ascending iterator from the perspective of this submap */
1391 abstract Iterator<K> keyIterator();
1392
1393 /** Returns descending iterator from the perspective of this submap */
1394 abstract Iterator<K> descendingKeyIterator();
1395
1396 // public methods
1397
1398 public boolean isEmpty() {
1399 return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1400 }
1401
1402 public int size() {
1403 return (fromStart && toEnd) ? m.size() : entrySet().size();
1404 }
1405
1406 public final boolean containsKey(Object key) {
1407 return inRange(key) && m.containsKey(key);
1408 }
1409
1410 public final V put(K key, V value) {
1411 if (!inRange(key))
1412 throw new IllegalArgumentException("key out of range");
1413 return m.put(key, value);
1414 }
1415
1416 public final V get(Object key) {
1417 return !inRange(key)? null : m.get(key);
1418 }
1419
1420 public final V remove(Object key) {
1421 return !inRange(key)? null : m.remove(key);
1422 }
1423
1424 public final Map.Entry<K,V> ceilingEntry(K key) {
1425 return exportEntry(subCeiling(key));
1426 }
1427
1428 public final K ceilingKey(K key) {
1429 return exportKey(subCeiling(key));
1430 }
1431
1432 public final Map.Entry<K,V> higherEntry(K key) {
1433 return exportEntry(subHigher(key));
1434 }
1435
1436 public final K higherKey(K key) {
1437 return exportKey(subHigher(key));
1438 }
1439
1440 public final Map.Entry<K,V> floorEntry(K key) {
1441 return exportEntry(subFloor(key));
1442 }
1443
1444 public final K floorKey(K key) {
1445 return exportKey(subFloor(key));
1446 }
1447
1448 public final Map.Entry<K,V> lowerEntry(K key) {
1449 return exportEntry(subLower(key));
1450 }
1451
1452 public final K lowerKey(K key) {
1453 return exportKey(subLower(key));
1454 }
1455
1456 public final K firstKey() {
1457 return key(subLowest());
1458 }
1459
1460 public final K lastKey() {
1461 return key(subHighest());
1462 }
1463
1464 public final Map.Entry<K,V> firstEntry() {
1465 return exportEntry(subLowest());
1466 }
1467
1468 public final Map.Entry<K,V> lastEntry() {
1469 return exportEntry(subHighest());
1470 }
1471
1472 public final Map.Entry<K,V> pollFirstEntry() {
1473 TreeMap.Entry<K,V> e = subLowest();
1474 Map.Entry<K,V> result = exportEntry(e);
1475 if (e != null)
1476 m.deleteEntry(e);
1477 return result;
1478 }
1479
1480 public final Map.Entry<K,V> pollLastEntry() {
1481 TreeMap.Entry<K,V> e = subHighest();
1482 Map.Entry<K,V> result = exportEntry(e);
1483 if (e != null)
1484 m.deleteEntry(e);
1485 return result;
1486 }
1487
1488 // Views
1489 transient NavigableMap<K,V> descendingMapView = null;
1490 transient EntrySetView entrySetView = null;
1491 transient KeySet<K> navigableKeySetView = null;
1492
1493 public final NavigableSet<K> navigableKeySet() {
1494 KeySet<K> nksv = navigableKeySetView;
1495 return (nksv != null) ? nksv :
1496 (navigableKeySetView = new TreeMap.KeySet(this));
1497 }
1498
1499 public final Set<K> keySet() {
1500 return navigableKeySet();
1501 }
1502
1503 public NavigableSet<K> descendingKeySet() {
1504 return descendingMap().navigableKeySet();
1505 }
1506
1507 public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1508 return subMap(fromKey, true, toKey, false);
1509 }
1510
1511 public final SortedMap<K,V> headMap(K toKey) {
1512 return headMap(toKey, false);
1513 }
1514
1515 public final SortedMap<K,V> tailMap(K fromKey) {
1516 return tailMap(fromKey, true);
1517 }
1518
1519 // View classes
1520
1521 abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1522 private transient int size = -1, sizeModCount;
1523
1524 public int size() {
1525 if (fromStart && toEnd)
1526 return m.size();
1527 if (size == -1 || sizeModCount != m.modCount) {
1528 sizeModCount = m.modCount;
1529 size = 0;
1530 Iterator i = iterator();
1531 while (i.hasNext()) {
1532 size++;
1533 i.next();
1534 }
1535 }
1536 return size;
1537 }
1538
1539 public boolean isEmpty() {
1540 TreeMap.Entry<K,V> n = absLowest();
1541 return n == null || tooHigh(n.key);
1542 }
1543
1544 public boolean contains(Object o) {
1545 if (!(o instanceof Map.Entry))
1546 return false;
1547 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1548 K key = entry.getKey();
1549 if (!inRange(key))
1550 return false;
1551 TreeMap.Entry node = m.getEntry(key);
1552 return node != null &&
1553 valEquals(node.getValue(), entry.getValue());
1554 }
1555
1556 public boolean remove(Object o) {
1557 if (!(o instanceof Map.Entry))
1558 return false;
1559 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1560 K key = entry.getKey();
1561 if (!inRange(key))
1562 return false;
1563 TreeMap.Entry<K,V> node = m.getEntry(key);
1564 if (node!=null && valEquals(node.getValue(),entry.getValue())){
1565 m.deleteEntry(node);
1566 return true;
1567 }
1568 return false;
1569 }
1570 }
1571
1572 /**
1573 * Iterators for SubMaps
1574 */
1575 abstract class SubMapIterator<T> implements Iterator<T> {
1576 TreeMap.Entry<K,V> lastReturned;
1577 TreeMap.Entry<K,V> next;
1578 final K fenceKey;
1579 int expectedModCount;
1580
1581 SubMapIterator(TreeMap.Entry<K,V> first,
1582 TreeMap.Entry<K,V> fence) {
1583 expectedModCount = m.modCount;
1584 lastReturned = null;
1585 next = first;
1586 fenceKey = fence == null ? null : fence.key;
1587 }
1588
1589 public final boolean hasNext() {
1590 return next != null && next.key != fenceKey;
1591 }
1592
1593 final TreeMap.Entry<K,V> nextEntry() {
1594 TreeMap.Entry<K,V> e = lastReturned = next;
1595 if (e == null || e.key == fenceKey)
1596 throw new NoSuchElementException();
1597 if (m.modCount != expectedModCount)
1598 throw new ConcurrentModificationException();
1599 next = successor(e);
1600 return e;
1601 }
1602
1603 final TreeMap.Entry<K,V> prevEntry() {
1604 TreeMap.Entry<K,V> e = lastReturned = next;
1605 if (e == null || e.key == fenceKey)
1606 throw new NoSuchElementException();
1607 if (m.modCount != expectedModCount)
1608 throw new ConcurrentModificationException();
1609 next = predecessor(e);
1610 return e;
1611 }
1612
1613 public void remove() {
1614 if (lastReturned == null)
1615 throw new IllegalStateException();
1616 if (m.modCount != expectedModCount)
1617 throw new ConcurrentModificationException();
1618 if (lastReturned.left != null && lastReturned.right != null)
1619 next = lastReturned;
1620 m.deleteEntry(lastReturned);
1621 expectedModCount++;
1622 lastReturned = null;
1623 }
1624 }
1625
1626 final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1627 SubMapEntryIterator(TreeMap.Entry<K,V> first,
1628 TreeMap.Entry<K,V> fence) {
1629 super(first, fence);
1630 }
1631 public Map.Entry<K,V> next() {
1632 return nextEntry();
1633 }
1634 }
1635
1636 final class SubMapKeyIterator extends SubMapIterator<K> {
1637 SubMapKeyIterator(TreeMap.Entry<K,V> first,
1638 TreeMap.Entry<K,V> fence) {
1639 super(first, fence);
1640 }
1641 public K next() {
1642 return nextEntry().key;
1643 }
1644 }
1645
1646 final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1647 DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1648 TreeMap.Entry<K,V> fence) {
1649 super(last, fence);
1650 }
1651
1652 public Map.Entry<K,V> next() {
1653 return prevEntry();
1654 }
1655 }
1656
1657 final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
1658 DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1659 TreeMap.Entry<K,V> fence) {
1660 super(last, fence);
1661 }
1662 public K next() {
1663 return prevEntry().key;
1664 }
1665 }
1666 }
1667
1668 static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1669 private static final long serialVersionUID = 912986545866124060L;
1670
1671 AscendingSubMap(TreeMap<K,V> m,
1672 boolean fromStart, K lo, boolean loInclusive,
1673 boolean toEnd, K hi, boolean hiInclusive) {
1674 super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1675 }
1676
1677 public Comparator<? super K> comparator() {
1678 return m.comparator();
1679 }
1680
1681 public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1682 K toKey, boolean toInclusive) {
1683 if (!inRange(fromKey, fromInclusive))
1684 throw new IllegalArgumentException("fromKey out of range");
1685 if (!inRange(toKey, toInclusive))
1686 throw new IllegalArgumentException("toKey out of range");
1687 return new AscendingSubMap(m,
1688 false, fromKey, fromInclusive,
1689 false, toKey, toInclusive);
1690 }
1691
1692 public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1693 if (!inClosedRange(toKey))
1694 throw new IllegalArgumentException("toKey out of range");
1695 return new AscendingSubMap(m,
1696 fromStart, lo, loInclusive,
1697 false, toKey, inclusive);
1698 }
1699
1700 public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1701 if (!inRange(fromKey, inclusive))
1702 throw new IllegalArgumentException("fromKey out of range");
1703 return new AscendingSubMap(m,
1704 false, fromKey, inclusive,
1705 toEnd, hi, hiInclusive);
1706 }
1707
1708 public NavigableMap<K,V> descendingMap() {
1709 NavigableMap<K,V> mv = descendingMapView;
1710 return (mv != null) ? mv :
1711 (descendingMapView =
1712 new DescendingSubMap(m,
1713 fromStart, lo, loInclusive,
1714 toEnd, hi, hiInclusive));
1715 }
1716
1717 Iterator<K> keyIterator() {
1718 return new SubMapKeyIterator(absLowest(), absHighFence());
1719 }
1720
1721 Iterator<K> descendingKeyIterator() {
1722 return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1723 }
1724
1725 final class AscendingEntrySetView extends EntrySetView {
1726 public Iterator<Map.Entry<K,V>> iterator() {
1727 return new SubMapEntryIterator(absLowest(), absHighFence());
1728 }
1729 }
1730
1731 public Set<Map.Entry<K,V>> entrySet() {
1732 EntrySetView es = entrySetView;
1733 return (es != null) ? es : new AscendingEntrySetView();
1734 }
1735
1736 TreeMap.Entry<K,V> subLowest() { return absLowest(); }
1737 TreeMap.Entry<K,V> subHighest() { return absHighest(); }
1738 TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
1739 TreeMap.Entry<K,V> subHigher(K key) { return absHigher(key); }
1740 TreeMap.Entry<K,V> subFloor(K key) { return absFloor(key); }
1741 TreeMap.Entry<K,V> subLower(K key) { return absLower(key); }
1742 }
1743
1744 static final class DescendingSubMap<K,V> extends NavigableSubMap<K,V> {
1745 private static final long serialVersionUID = 912986545866120460L;
1746 DescendingSubMap(TreeMap<K,V> m,
1747 boolean fromStart, K lo, boolean loInclusive,
1748 boolean toEnd, K hi, boolean hiInclusive) {
1749 super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1750 }
1751
1752 private final Comparator<? super K> reverseComparator =
1753 Collections.reverseOrder(m.comparator);
1754
1755 public Comparator<? super K> comparator() {
1756 return reverseComparator;
1757 }
1758
1759 public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1760 K toKey, boolean toInclusive) {
1761 if (!inRange(fromKey, fromInclusive))
1762 throw new IllegalArgumentException("fromKey out of range");
1763 if (!inRange(toKey, toInclusive))
1764 throw new IllegalArgumentException("toKey out of range");
1765 return new DescendingSubMap(m,
1766 false, toKey, toInclusive,
1767 false, fromKey, fromInclusive);
1768 }
1769
1770 public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1771 if (!inRange(toKey, inclusive))
1772 throw new IllegalArgumentException("toKey out of range");
1773 return new DescendingSubMap(m,
1774 false, toKey, inclusive,
1775 toEnd, hi, hiInclusive);
1776 }
1777
1778 public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1779 if (!inRange(fromKey, inclusive))
1780 throw new IllegalArgumentException("fromKey out of range");
1781 return new DescendingSubMap(m,
1782 fromStart, lo, loInclusive,
1783 false, fromKey, inclusive);
1784 }
1785
1786 public NavigableMap<K,V> descendingMap() {
1787 NavigableMap<K,V> mv = descendingMapView;
1788 return (mv != null) ? mv :
1789 (descendingMapView =
1790 new AscendingSubMap(m,
1791 fromStart, lo, loInclusive,
1792 toEnd, hi, hiInclusive));
1793 }
1794
1795 Iterator<K> keyIterator() {
1796 return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1797 }
1798
1799 Iterator<K> descendingKeyIterator() {
1800 return new SubMapKeyIterator(absLowest(), absHighFence());
1801 }
1802
1803 final class DescendingEntrySetView extends EntrySetView {
1804 public Iterator<Map.Entry<K,V>> iterator() {
1805 return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
1806 }
1807 }
1808
1809 public Set<Map.Entry<K,V>> entrySet() {
1810 EntrySetView es = entrySetView;
1811 return (es != null) ? es : new DescendingEntrySetView();
1812 }
1813
1814 TreeMap.Entry<K,V> subLowest() { return absHighest(); }
1815 TreeMap.Entry<K,V> subHighest() { return absLowest(); }
1816 TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
1817 TreeMap.Entry<K,V> subHigher(K key) { return absLower(key); }
1818 TreeMap.Entry<K,V> subFloor(K key) { return absCeiling(key); }
1819 TreeMap.Entry<K,V> subLower(K key) { return absHigher(key); }
1820 }
1821
1822 /**
1823 * Compares two keys using the correct comparison method for this TreeMap.
1824 */
1825 final int compare(Object k1, Object k2) {
1826 return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1827 : comparator.compare((K)k1, (K)k2);
1828 }
1829
1830 /**
1831 * Test two values for equality. Differs from o1.equals(o2) only in
1832 * that it copes with <tt>null</tt> o1 properly.
1833 */
1834 final static boolean valEquals(Object o1, Object o2) {
1835 return (o1==null ? o2==null : o1.equals(o2));
1836 }
1837
1838 /**
1839 * This class exists solely for the sake of serialization
1840 * compatibility with previous releases of TreeMap that did not
1841 * support NavigableMap. It translates an old-version SubMap into
1842 * a new-version AscendingSubMap. This class is never otherwise
1843 * used.
1844 */
1845 private class SubMap extends AbstractMap<K,V>
1846 implements SortedMap<K,V>, java.io.Serializable {
1847 private static final long serialVersionUID = -6520786458950516097L;
1848 private boolean fromStart = false, toEnd = false;
1849 private K fromKey, toKey;
1850 private Object readResolve() {
1851 return new AscendingSubMap(TreeMap.this,
1852 fromStart, fromKey, true,
1853 toEnd, toKey, false);
1854 }
1855 public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1856 public K lastKey() { throw new InternalError(); }
1857 public K firstKey() { throw new InternalError(); }
1858 public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1859 public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1860 public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1861 public Comparator<? super K> comparator() { throw new InternalError(); }
1862 }
1863
1864
1865 private static final boolean RED = false;
1866 private static final boolean BLACK = true;
1867
1868 /**
1869 * Node in the Tree. Doubles as a means to pass key-value pairs back to
1870 * user (see Map.Entry).
1871 */
1872
1873 static final class Entry<K,V> implements Map.Entry<K,V> {
1874 K key;
1875 V value;
1876 Entry<K,V> left = null;
1877 Entry<K,V> right = null;
1878 Entry<K,V> parent;
1879 boolean color = BLACK;
1880
1881 /**
1882 * Make a new cell with given key, value, and parent, and with
1883 * <tt>null</tt> child links, and BLACK color.
1884 */
1885 Entry(K key, V value, Entry<K,V> parent) {
1886 this.key = key;
1887 this.value = value;
1888 this.parent = parent;
1889 }
1890
1891 /**
1892 * Returns the key.
1893 *
1894 * @return the key
1895 */
1896 public K getKey() {
1897 return key;
1898 }
1899
1900 /**
1901 * Returns the value associated with the key.
1902 *
1903 * @return the value associated with the key
1904 */
1905 public V getValue() {
1906 return value;
1907 }
1908
1909 /**
1910 * Replaces the value currently associated with the key with the given
1911 * value.
1912 *
1913 * @return the value associated with the key before this method was
1914 * called
1915 */
1916 public V setValue(V value) {
1917 V oldValue = this.value;
1918 this.value = value;
1919 return oldValue;
1920 }
1921
1922 public boolean equals(Object o) {
1923 if (!(o instanceof Map.Entry))
1924 return false;
1925 Map.Entry e = (Map.Entry)o;
1926
1927 return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1928 }
1929
1930 public int hashCode() {
1931 int keyHash = (key==null ? 0 : key.hashCode());
1932 int valueHash = (value==null ? 0 : value.hashCode());
1933 return keyHash ^ valueHash;
1934 }
1935
1936 public String toString() {
1937 return key + "=" + value;
1938 }
1939 }
1940
1941 /**
1942 * Returns the first Entry in the TreeMap (according to the TreeMap's
1943 * key-sort function). Returns null if the TreeMap is empty.
1944 */
1945 final Entry<K,V> getFirstEntry() {
1946 Entry<K,V> p = root;
1947 if (p != null)
1948 while (p.left != null)
1949 p = p.left;
1950 return p;
1951 }
1952
1953 /**
1954 * Returns the last Entry in the TreeMap (according to the TreeMap's
1955 * key-sort function). Returns null if the TreeMap is empty.
1956 */
1957 final Entry<K,V> getLastEntry() {
1958 Entry<K,V> p = root;
1959 if (p != null)
1960 while (p.right != null)
1961 p = p.right;
1962 return p;
1963 }
1964
1965 /**
1966 * Returns the successor of the specified Entry, or null if no such.
1967 */
1968 static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
1969 if (t == null)
1970 return null;
1971 else if (t.right != null) {
1972 Entry<K,V> p = t.right;
1973 while (p.left != null)
1974 p = p.left;
1975 return p;
1976 } else {
1977 Entry<K,V> p = t.parent;
1978 Entry<K,V> ch = t;
1979 while (p != null && ch == p.right) {
1980 ch = p;
1981 p = p.parent;
1982 }
1983 return p;
1984 }
1985 }
1986
1987 /**
1988 * Returns the predecessor of the specified Entry, or null if no such.
1989 */
1990 static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
1991 if (t == null)
1992 return null;
1993 else if (t.left != null) {
1994 Entry<K,V> p = t.left;
1995 while (p.right != null)
1996 p = p.right;
1997 return p;
1998 } else {
1999 Entry<K,V> p = t.parent;
2000 Entry<K,V> ch = t;
2001 while (p != null && ch == p.left) {
2002 ch = p;
2003 p = p.parent;
2004 }
2005 return p;
2006 }
2007 }
2008
2009 /**
2010 * Balancing operations.
2011 *
2012 * Implementations of rebalancings during insertion and deletion are
2013 * slightly different than the CLR version. Rather than using dummy
2014 * nilnodes, we use a set of accessors that deal properly with null. They
2015 * are used to avoid messiness surrounding nullness checks in the main
2016 * algorithms.
2017 */
2018
2019 private static <K,V> boolean colorOf(Entry<K,V> p) {
2020 return (p == null ? BLACK : p.color);
2021 }
2022
2023 private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
2024 return (p == null ? null: p.parent);
2025 }
2026
2027 private static <K,V> void setColor(Entry<K,V> p, boolean c) {
2028 if (p != null)
2029 p.color = c;
2030 }
2031
2032 private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
2033 return (p == null) ? null: p.left;
2034 }
2035
2036 private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
2037 return (p == null) ? null: p.right;
2038 }
2039
2040 /** From CLR **/
2041 private void rotateLeft(Entry<K,V> p) {
2042 Entry<K,V> r = p.right;
2043 p.right = r.left;
2044 if (r.left != null)
2045 r.left.parent = p;
2046 r.parent = p.parent;
2047 if (p.parent == null)
2048 root = r;
2049 else if (p.parent.left == p)
2050 p.parent.left = r;
2051 else
2052 p.parent.right = r;
2053 r.left = p;
2054 p.parent = r;
2055 }
2056
2057 /** From CLR **/
2058 private void rotateRight(Entry<K,V> p) {
2059 Entry<K,V> l = p.left;
2060 p.left = l.right;
2061 if (l.right != null) l.right.parent = p;
2062 l.parent = p.parent;
2063 if (p.parent == null)
2064 root = l;
2065 else if (p.parent.right == p)
2066 p.parent.right = l;
2067 else p.parent.left = l;
2068 l.right = p;
2069 p.parent = l;
2070 }
2071
2072
2073 /** From CLR **/
2074 private void fixAfterInsertion(Entry<K,V> x) {
2075 x.color = RED;
2076
2077 while (x != null && x != root && x.parent.color == RED) {
2078 if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
2079 Entry<K,V> y = rightOf(parentOf(parentOf(x)));
2080 if (colorOf(y) == RED) {
2081 setColor(parentOf(x), BLACK);
2082 setColor(y, BLACK);
2083 setColor(parentOf(parentOf(x)), RED);
2084 x = parentOf(parentOf(x));
2085 } else {
2086 if (x == rightOf(parentOf(x))) {
2087 x = parentOf(x);
2088 rotateLeft(x);
2089 }
2090 setColor(parentOf(x), BLACK);
2091 setColor(parentOf(parentOf(x)), RED);
2092 if (parentOf(parentOf(x)) != null)
2093 rotateRight(parentOf(parentOf(x)));
2094 }
2095 } else {
2096 Entry<K,V> y = leftOf(parentOf(parentOf(x)));
2097 if (colorOf(y) == RED) {
2098 setColor(parentOf(x), BLACK);
2099 setColor(y, BLACK);
2100 setColor(parentOf(parentOf(x)), RED);
2101 x = parentOf(parentOf(x));
2102 } else {
2103 if (x == leftOf(parentOf(x))) {
2104 x = parentOf(x);
2105 rotateRight(x);
2106 }
2107 setColor(parentOf(x), BLACK);
2108 setColor(parentOf(parentOf(x)), RED);
2109 if (parentOf(parentOf(x)) != null)
2110 rotateLeft(parentOf(parentOf(x)));
2111 }
2112 }
2113 }
2114 root.color = BLACK;
2115 }
2116
2117 /**
2118 * Delete node p, and then rebalance the tree.
2119 */
2120
2121 private void deleteEntry(Entry<K,V> p) {
2122 decrementSize();
2123
2124 // If strictly internal, copy successor's element to p and then make p
2125 // point to successor.
2126 if (p.left != null && p.right != null) {
2127 Entry<K,V> s = successor (p);
2128 p.key = s.key;
2129 p.value = s.value;
2130 p = s;
2131 } // p has 2 children
2132
2133 // Start fixup at replacement node, if it exists.
2134 Entry<K,V> replacement = (p.left != null ? p.left : p.right);
2135
2136 if (replacement != null) {
2137 // Link replacement to parent
2138 replacement.parent = p.parent;
2139 if (p.parent == null)
2140 root = replacement;
2141 else if (p == p.parent.left)
2142 p.parent.left = replacement;
2143 else
2144 p.parent.right = replacement;
2145
2146 // Null out links so they are OK to use by fixAfterDeletion.
2147 p.left = p.right = p.parent = null;
2148
2149 // Fix replacement
2150 if (p.color == BLACK)
2151 fixAfterDeletion(replacement);
2152 } else if (p.parent == null) { // return if we are the only node.
2153 root = null;
2154 } else { // No children. Use self as phantom replacement and unlink.
2155 if (p.color == BLACK)
2156 fixAfterDeletion(p);
2157
2158 if (p.parent != null) {
2159 if (p == p.parent.left)
2160 p.parent.left = null;
2161 else if (p == p.parent.right)
2162 p.parent.right = null;
2163 p.parent = null;
2164 }
2165 }
2166 }
2167
2168 /** From CLR **/
2169 private void fixAfterDeletion(Entry<K,V> x) {
2170 while (x != root && colorOf(x) == BLACK) {
2171 if (x == leftOf(parentOf(x))) {
2172 Entry<K,V> sib = rightOf(parentOf(x));
2173
2174 if (colorOf(sib) == RED) {
2175 setColor(sib, BLACK);
2176 setColor(parentOf(x), RED);
2177 rotateLeft(parentOf(x));
2178 sib = rightOf(parentOf(x));
2179 }
2180
2181 if (colorOf(leftOf(sib)) == BLACK &&
2182 colorOf(rightOf(sib)) == BLACK) {
2183 setColor(sib, RED);
2184 x = parentOf(x);
2185 } else {
2186 if (colorOf(rightOf(sib)) == BLACK) {
2187 setColor(leftOf(sib), BLACK);
2188 setColor(sib, RED);
2189 rotateRight(sib);
2190 sib = rightOf(parentOf(x));
2191 }
2192 setColor(sib, colorOf(parentOf(x)));
2193 setColor(parentOf(x), BLACK);
2194 setColor(rightOf(sib), BLACK);
2195 rotateLeft(parentOf(x));
2196 x = root;
2197 }
2198 } else { // symmetric
2199 Entry<K,V> sib = leftOf(parentOf(x));
2200
2201 if (colorOf(sib) == RED) {
2202 setColor(sib, BLACK);
2203 setColor(parentOf(x), RED);
2204 rotateRight(parentOf(x));
2205 sib = leftOf(parentOf(x));
2206 }
2207
2208 if (colorOf(rightOf(sib)) == BLACK &&
2209 colorOf(leftOf(sib)) == BLACK) {
2210 setColor(sib, RED);
2211 x = parentOf(x);
2212 } else {
2213 if (colorOf(leftOf(sib)) == BLACK) {
2214 setColor(rightOf(sib), BLACK);
2215 setColor(sib, RED);
2216 rotateLeft(sib);
2217 sib = leftOf(parentOf(x));
2218 }
2219 setColor(sib, colorOf(parentOf(x)));
2220 setColor(parentOf(x), BLACK);
2221 setColor(leftOf(sib), BLACK);
2222 rotateRight(parentOf(x));
2223 x = root;
2224 }
2225 }
2226 }
2227
2228 setColor(x, BLACK);
2229 }
2230
2231 private static final long serialVersionUID = 919286545866124006L;
2232
2233 /**
2234 * Save the state of the <tt>TreeMap</tt> instance to a stream (i.e.,
2235 * serialize it).
2236 *
2237 * @serialData The <i>size</i> of the TreeMap (the number of key-value
2238 * mappings) is emitted (int), followed by the key (Object)
2239 * and value (Object) for each key-value mapping represented
2240 * by the TreeMap. The key-value mappings are emitted in
2241 * key-order (as determined by the TreeMap's Comparator,
2242 * or by the keys' natural ordering if the TreeMap has no
2243 * Comparator).
2244 */
2245 private void writeObject(java.io.ObjectOutputStream s)
2246 throws java.io.IOException {
2247 // Write out the Comparator and any hidden stuff
2248 s.defaultWriteObject();
2249
2250 // Write out size (number of Mappings)
2251 s.writeInt(size);
2252
2253 // Write out keys and values (alternating)
2254 for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
2255 Map.Entry<K,V> e = i.next();
2256 s.writeObject(e.getKey());
2257 s.writeObject(e.getValue());
2258 }
2259 }
2260
2261 /**
2262 * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2263 * deserialize it).
2264 */
2265 private void readObject(final java.io.ObjectInputStream s)
2266 throws java.io.IOException, ClassNotFoundException {
2267 // Read in the Comparator and any hidden stuff
2268 s.defaultReadObject();
2269
2270 // Read in size
2271 int size = s.readInt();
2272
2273 buildFromSorted(size, null, s, null);
2274 }
2275
2276 /** Intended to be called only from TreeSet.readObject **/
2277 void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2278 throws java.io.IOException, ClassNotFoundException {
2279 buildFromSorted(size, null, s, defaultVal);
2280 }
2281
2282 /** Intended to be called only from TreeSet.addAll **/
2283 void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2284 try {
2285 buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2286 } catch (java.io.IOException cannotHappen) {
2287 } catch (ClassNotFoundException cannotHappen) {
2288 }
2289 }
2290
2291
2292 /**
2293 * Linear time tree building algorithm from sorted data. Can accept keys
2294 * and/or values from iterator or stream. This leads to too many
2295 * parameters, but seems better than alternatives. The four formats
2296 * that this method accepts are:
2297 *
2298 * 1) An iterator of Map.Entries. (it != null, defaultVal == null).
2299 * 2) An iterator of keys. (it != null, defaultVal != null).
2300 * 3) A stream of alternating serialized keys and values.
2301 * (it == null, defaultVal == null).
2302 * 4) A stream of serialized keys. (it == null, defaultVal != null).
2303 *
2304 * It is assumed that the comparator of the TreeMap is already set prior
2305 * to calling this method.
2306 *
2307 * @param size the number of keys (or key-value pairs) to be read from
2308 * the iterator or stream
2309 * @param it If non-null, new entries are created from entries
2310 * or keys read from this iterator.
2311 * @param str If non-null, new entries are created from keys and
2312 * possibly values read from this stream in serialized form.
2313 * Exactly one of it and str should be non-null.
2314 * @param defaultVal if non-null, this default value is used for
2315 * each value in the map. If null, each value is read from
2316 * iterator or stream, as described above.
2317 * @throws IOException propagated from stream reads. This cannot
2318 * occur if str is null.
2319 * @throws ClassNotFoundException propagated from readObject.
2320 * This cannot occur if str is null.
2321 */
2322 private void buildFromSorted(int size, Iterator it,
2323 java.io.ObjectInputStream str,
2324 V defaultVal)
2325 throws java.io.IOException, ClassNotFoundException {
2326 this.size = size;
2327 root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2328 it, str, defaultVal);
2329 }
2330
2331 /**
2332 * Recursive "helper method" that does the real work of the
2333 * previous method. Identically named parameters have
2334 * identical definitions. Additional parameters are documented below.
2335 * It is assumed that the comparator and size fields of the TreeMap are
2336 * already set prior to calling this method. (It ignores both fields.)
2337 *
2338 * @param level the current level of tree. Initial call should be 0.
2339 * @param lo the first element index of this subtree. Initial should be 0.
2340 * @param hi the last element index of this subtree. Initial should be
2341 * size-1.
2342 * @param redLevel the level at which nodes should be red.
2343 * Must be equal to computeRedLevel for tree of this size.
2344 */
2345 private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2346 int redLevel,
2347 Iterator it,
2348 java.io.ObjectInputStream str,
2349 V defaultVal)
2350 throws java.io.IOException, ClassNotFoundException {
2351 /*
2352 * Strategy: The root is the middlemost element. To get to it, we
2353 * have to first recursively construct the entire left subtree,
2354 * so as to grab all of its elements. We can then proceed with right
2355 * subtree.
2356 *
2357 * The lo and hi arguments are the minimum and maximum
2358 * indices to pull out of the iterator or stream for current subtree.
2359 * They are not actually indexed, we just proceed sequentially,
2360 * ensuring that items are extracted in corresponding order.
2361 */
2362
2363 if (hi < lo) return null;
2364
2365 int mid = (lo + hi) / 2;
2366
2367 Entry<K,V> left = null;
2368 if (lo < mid)
2369 left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2370 it, str, defaultVal);
2371
2372 // extract key and/or value from iterator or stream
2373 K key;
2374 V value;
2375 if (it != null) {
2376 if (defaultVal==null) {
2377 Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
2378 key = entry.getKey();
2379 value = entry.getValue();
2380 } else {
2381 key = (K)it.next();
2382 value = defaultVal;
2383 }
2384 } else { // use stream
2385 key = (K) str.readObject();
2386 value = (defaultVal != null ? defaultVal : (V) str.readObject());
2387 }
2388
2389 Entry<K,V> middle = new Entry<K,V>(key, value, null);
2390
2391 // color nodes in non-full bottommost level red
2392 if (level == redLevel)
2393 middle.color = RED;
2394
2395 if (left != null) {
2396 middle.left = left;
2397 left.parent = middle;
2398 }
2399
2400 if (mid < hi) {
2401 Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2402 it, str, defaultVal);
2403 middle.right = right;
2404 right.parent = middle;
2405 }
2406
2407 return middle;
2408 }
2409
2410 /**
2411 * Find the level down to which to assign all nodes BLACK. This is the
2412 * last `full' level of the complete binary tree produced by
2413 * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2414 * set of color assignments wrt future insertions.) This level number is
2415 * computed by finding the number of splits needed to reach the zeroeth
2416 * node. (The answer is ~lg(N), but in any case must be computed by same
2417 * quick O(lg(N)) loop.)
2418 */
2419 private static int computeRedLevel(int sz) {
2420 int level = 0;
2421 for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2422 level++;
2423 return level;
2424 }
2425 }