ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/TreeMap.java (file contents):
Revision 1.1 by dl, Tue Dec 28 12:14:07 2004 UTC vs.
Revision 1.39 by dl, Wed May 10 19:45:01 2006 UTC

# Line 1 | Line 1
1   /*
2   * %W% %E%
3   *
4 < * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
4 > * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5   * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6   */
7  
8 < package java.util;  
9 <
8 > package java.util;
9  
10   /**
11 < * Red-Black tree based implementation of the <tt>NavigableMap</tt> interface.
12 < * This class guarantees that the map will be in ascending key order, sorted
13 < * according to the <i>natural order</i> for the key's class (see
14 < * <tt>Comparable</tt>), or by the comparator provided at creation time,
16 < * depending on which constructor is used.<p>
11 > * A Red-Black tree based {@link NavigableMap} implementation.
12 > * The map is sorted according to the {@linkplain Comparable natural
13 > * ordering} of its keys, or by a {@link Comparator} provided at map
14 > * creation time, depending on which constructor is used.
15   *
16 < * This implementation provides guaranteed log(n) time cost for the
16 > * <p>This implementation provides guaranteed log(n) time cost for the
17   * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
18   * operations.  Algorithms are adaptations of those in Cormen, Leiserson, and
19 < * Rivest's <I>Introduction to Algorithms</I>.<p>
19 > * Rivest's <I>Introduction to Algorithms</I>.
20   *
21 < * Note that the ordering maintained by a sorted map (whether or not an
21 > * <p>Note that the ordering maintained by a sorted map (whether or not an
22   * explicit comparator is provided) must be <i>consistent with equals</i> if
23   * this sorted map is to correctly implement the <tt>Map</tt> interface.  (See
24   * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
# Line 30 | Line 28 | package java.util;
28   * method, so two keys that are deemed equal by this method are, from the
29   * standpoint of the sorted map, equal.  The behavior of a sorted map
30   * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
31 < * just fails to obey the general contract of the <tt>Map</tt> interface.<p>
31 > * just fails to obey the general contract of the <tt>Map</tt> interface.
32   *
33 < * <b>Note that this implementation is not synchronized.</b> If multiple
34 < * threads access a map concurrently, and at least one of the threads modifies
35 < * the map structurally, it <i>must</i> be synchronized externally.  (A
36 < * structural modification is any operation that adds or deletes one or more
37 < * mappings; merely changing the value associated with an existing key is not
38 < * a structural modification.)  This is typically accomplished by
39 < * synchronizing on some object that naturally encapsulates the map.  If no
40 < * such object exists, the map should be "wrapped" using the
41 < * <tt>Collections.synchronizedMap</tt> method.  This is best done at creation
42 < * time, to prevent accidental unsynchronized access to the map:
43 < * <pre>
44 < *     Map m = Collections.synchronizedMap(new TreeMap(...));
45 < * </pre><p>
33 > * <p><strong>Note that this implementation is not synchronized.</strong>
34 > * If multiple threads access a map concurrently, and at least one of the
35 > * threads modifies the map structurally, it <i>must</i> be synchronized
36 > * externally.  (A structural modification is any operation that adds or
37 > * deletes one or more mappings; merely changing the value associated
38 > * with an existing key is not a structural modification.)  This is
39 > * typically accomplished by synchronizing on some object that naturally
40 > * encapsulates the map.
41 > * If no such object exists, the map should be "wrapped" using the
42 > * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
43 > * method.  This is best done at creation time, to prevent accidental
44 > * unsynchronized access to the map: <pre>
45 > *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
46   *
47 < * The iterators returned by all of this class's "collection view methods" are
47 > * <p>The iterators returned by the <tt>iterator</tt> method of the collections
48 > * returned by all of this class's "collection view methods" are
49   * <i>fail-fast</i>: if the map is structurally modified at any time after the
50   * iterator is created, in any way except through the iterator's own
51 < * <tt>remove</tt> or <tt>add</tt> methods, the iterator throws a
52 < * <tt>ConcurrentModificationException</tt>.  Thus, in the face of concurrent
51 > * <tt>remove</tt> method, the iterator will throw a {@link
52 > * ConcurrentModificationException}.  Thus, in the face of concurrent
53   * modification, the iterator fails quickly and cleanly, rather than risking
54 < * arbitrary, non-deterministic behavior at an undetermined time in the
56 < * future.
54 > * arbitrary, non-deterministic behavior at an undetermined time in the future.
55   *
56   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
57   * as it is, generally speaking, impossible to make any hard guarantees in the
# Line 61 | Line 59 | package java.util;
59   * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
60   * Therefore, it would be wrong to write a program that depended on this
61   * exception for its correctness:   <i>the fail-fast behavior of iterators
62 < * should be used only to detect bugs.</i><p>
62 > * should be used only to detect bugs.</i>
63   *
64   * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
65   * and its views represent snapshots of mappings at the time they were
# Line 70 | Line 68 | package java.util;
68   * associated map using <tt>put</tt>.)
69   *
70   * <p>This class is a member of the
71 < * <a href="{@docRoot}/../guide/collections/index.html">
71 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
72   * Java Collections Framework</a>.
73   *
74 + * @param <K> the type of keys maintained by this map
75 + * @param <V> the type of mapped values
76 + *
77   * @author  Josh Bloch and Doug Lea
78   * @version %I%, %G%
79   * @see Map
# Line 81 | Line 82 | package java.util;
82   * @see Comparable
83   * @see Comparator
84   * @see Collection
84 * @see Collections#synchronizedMap(Map)
85   * @since 1.2
86   */
87  
# Line 90 | Line 90 | public class TreeMap<K,V>
90      implements NavigableMap<K,V>, Cloneable, java.io.Serializable
91   {
92      /**
93 <     * The Comparator used to maintain order in this TreeMap, or
94 <     * null if this TreeMap uses its elements natural ordering.
93 >     * The comparator used to maintain order in this tree map, or
94 >     * null if it uses the natural ordering of its keys.
95       *
96       * @serial
97       */
98 <    private Comparator<? super K> comparator = null;
98 >    private final Comparator<? super K> comparator;
99  
100      private transient Entry<K,V> root = null;
101  
# Line 109 | Line 109 | public class TreeMap<K,V>
109       */
110      private transient int modCount = 0;
111  
112    private void incrementSize()   { modCount++; size++; }
113    private void decrementSize()   { modCount++; size--; }
114
112      /**
113 <     * Constructs a new, empty map, sorted according to the keys' natural
114 <     * order.  All keys inserted into the map must implement the
115 <     * <tt>Comparable</tt> interface.  Furthermore, all such keys must be
116 <     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw a
117 <     * ClassCastException for any elements <tt>k1</tt> and <tt>k2</tt> in the
118 <     * map.  If the user attempts to put a key into the map that violates this
119 <     * constraint (for example, the user attempts to put a string key into a
120 <     * map whose keys are integers), the <tt>put(Object key, Object
121 <     * value)</tt> call will throw a <tt>ClassCastException</tt>.
122 <     *
126 <     * @see Comparable
113 >     * Constructs a new, empty tree map, using the natural ordering of its
114 >     * keys.  All keys inserted into the map must implement the {@link
115 >     * Comparable} interface.  Furthermore, all such keys must be
116 >     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
117 >     * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
118 >     * <tt>k2</tt> in the map.  If the user attempts to put a key into the
119 >     * map that violates this constraint (for example, the user attempts to
120 >     * put a string key into a map whose keys are integers), the
121 >     * <tt>put(Object key, Object value)</tt> call will throw a
122 >     * <tt>ClassCastException</tt>.
123       */
124      public TreeMap() {
125 +        comparator = null;
126      }
127  
128      /**
129 <     * Constructs a new, empty map, sorted according to the given comparator.
130 <     * All keys inserted into the map must be <i>mutually comparable</i> by
131 <     * the given comparator: <tt>comparator.compare(k1, k2)</tt> must not
132 <     * throw a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
133 <     * <tt>k2</tt> in the map.  If the user attempts to put a key into the
134 <     * map that violates this constraint, the <tt>put(Object key, Object
135 <     * value)</tt> call will throw a <tt>ClassCastException</tt>.
129 >     * Constructs a new, empty tree map, ordered according to the given
130 >     * comparator.  All keys inserted into the map must be <i>mutually
131 >     * comparable</i> by the given comparator: <tt>comparator.compare(k1,
132 >     * k2)</tt> must not throw a <tt>ClassCastException</tt> for any keys
133 >     * <tt>k1</tt> and <tt>k2</tt> in the map.  If the user attempts to put
134 >     * a key into the map that violates this constraint, the <tt>put(Object
135 >     * key, Object value)</tt> call will throw a
136 >     * <tt>ClassCastException</tt>.
137       *
138 <     * @param c the comparator that will be used to sort this map.  A
139 <     *        <tt>null</tt> value indicates that the keys' <i>natural
140 <     *        ordering</i> should be used.
141 <     */
142 <    public TreeMap(Comparator<? super K> c) {
143 <        this.comparator = c;
138 >     * @param comparator the comparator that will be used to order this map.
139 >     *        If <tt>null</tt>, the {@linkplain Comparable natural
140 >     *        ordering} of the keys will be used.
141 >     */
142 >    public TreeMap(Comparator<? super K> comparator) {
143 >        this.comparator = comparator;
144      }
145  
146      /**
147 <     * Constructs a new map containing the same mappings as the given map,
148 <     * sorted according to the keys' <i>natural order</i>.  All keys inserted
149 <     * into the new map must implement the <tt>Comparable</tt> interface.
150 <     * Furthermore, all such keys must be <i>mutually comparable</i>:
151 <     * <tt>k1.compareTo(k2)</tt> must not throw a <tt>ClassCastException</tt>
152 <     * for any elements <tt>k1</tt> and <tt>k2</tt> in the map.  This method
153 <     * runs in n*log(n) time.
154 <     *
155 <     * @param  m the map whose mappings are to be placed in this map.
156 <     * @throws ClassCastException the keys in t are not Comparable, or
157 <     *         are not mutually comparable.
158 <     * @throws NullPointerException if the specified map is null.
147 >     * Constructs a new tree map containing the same mappings as the given
148 >     * map, ordered according to the <i>natural ordering</i> of its keys.
149 >     * All keys inserted into the new map must implement the {@link
150 >     * Comparable} interface.  Furthermore, all such keys must be
151 >     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
152 >     * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
153 >     * <tt>k2</tt> in the map.  This method runs in n*log(n) time.
154 >     *
155 >     * @param  m the map whose mappings are to be placed in this map
156 >     * @throws ClassCastException if the keys in m are not {@link Comparable},
157 >     *         or are not mutually comparable
158 >     * @throws NullPointerException if the specified map is null
159       */
160      public TreeMap(Map<? extends K, ? extends V> m) {
161 +        comparator = null;
162          putAll(m);
163      }
164  
165      /**
166 <     * Constructs a new map containing the same mappings as the given
167 <     * <tt>SortedMap</tt>, sorted according to the same ordering.  This method
168 <     * runs in linear time.
166 >     * Constructs a new tree map containing the same mappings and
167 >     * using the same ordering as the specified sorted map.  This
168 >     * method runs in linear time.
169       *
170       * @param  m the sorted map whose mappings are to be placed in this map,
171 <     *         and whose comparator is to be used to sort this map.
172 <     * @throws NullPointerException if the specified sorted map is null.
171 >     *         and whose comparator is to be used to sort this map
172 >     * @throws NullPointerException if the specified map is null
173       */
174      public TreeMap(SortedMap<K, ? extends V> m) {
175          comparator = m.comparator();
# Line 187 | Line 186 | public class TreeMap<K,V>
186      /**
187       * Returns the number of key-value mappings in this map.
188       *
189 <     * @return the number of key-value mappings in this map.
189 >     * @return the number of key-value mappings in this map
190       */
191      public int size() {
192          return size;
# Line 197 | Line 196 | public class TreeMap<K,V>
196       * Returns <tt>true</tt> if this map contains a mapping for the specified
197       * key.
198       *
199 <     * @param key key whose presence in this map is to be tested.
201 <     *
199 >     * @param key key whose presence in this map is to be tested
200       * @return <tt>true</tt> if this map contains a mapping for the
201 <     *            specified key.
202 <     * @throws ClassCastException if the key cannot be compared with the keys
203 <     *                  currently in the map.
204 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
205 <     *                  natural ordering, or its comparator does not tolerate
206 <     *            <tt>null</tt> keys.
201 >     *         specified key
202 >     * @throws ClassCastException if the specified key cannot be compared
203 >     *         with the keys currently in the map
204 >     * @throws NullPointerException if the specified key is null
205 >     *         and this map uses natural ordering, or its comparator
206 >     *         does not permit null keys
207       */
208      public boolean containsKey(Object key) {
209          return getEntry(key) != null;
# Line 216 | Line 214 | public class TreeMap<K,V>
214       * specified value.  More formally, returns <tt>true</tt> if and only if
215       * this map contains at least one mapping to a value <tt>v</tt> such
216       * that <tt>(value==null ? v==null : value.equals(v))</tt>.  This
217 <     * operation will probably require time linear in the Map size for most
218 <     * implementations of Map.
217 >     * operation will probably require time linear in the map size for
218 >     * most implementations.
219       *
220 <     * @param value value whose presence in this Map is to be tested.
221 <     * @return  <tt>true</tt> if a mapping to <tt>value</tt> exists;
222 <     *          <tt>false</tt> otherwise.
220 >     * @param value value whose presence in this map is to be tested
221 >     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
222 >     *         <tt>false</tt> otherwise
223       * @since 1.2
224       */
225      public boolean containsValue(Object value) {
226 <        return (root==null ? false :
227 <                (value==null ? valueSearchNull(root)
228 <                             : valueSearchNonNull(root, value)));
229 <    }
232 <
233 <    private boolean valueSearchNull(Entry n) {
234 <        if (n.value == null)
235 <            return true;
236 <
237 <        // Check left and right subtrees for value
238 <        return (n.left  != null && valueSearchNull(n.left)) ||
239 <               (n.right != null && valueSearchNull(n.right));
240 <    }
241 <
242 <    private boolean valueSearchNonNull(Entry n, Object value) {
243 <        // Check this node for the value
244 <        if (value.equals(n.value))
245 <            return true;
246 <
247 <        // Check left and right subtrees for value
248 <        return (n.left  != null && valueSearchNonNull(n.left, value)) ||
249 <               (n.right != null && valueSearchNonNull(n.right, value));
226 >        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
227 >            if (valEquals(value, e.value))
228 >                return true;
229 >        return false;
230      }
231  
232      /**
233 <     * Returns the value to which this map maps the specified key.  Returns
234 <     * <tt>null</tt> if the map contains no mapping for this key.  A return
255 <     * value of <tt>null</tt> does not <i>necessarily</i> indicate that the
256 <     * map contains no mapping for the key; it's also possible that the map
257 <     * explicitly maps the key to <tt>null</tt>.  The <tt>containsKey</tt>
258 <     * operation may be used to distinguish these two cases.
259 <     *
260 <     * @param key key whose associated value is to be returned.
261 <     * @return the value to which this map maps the specified key, or
262 <     *               <tt>null</tt> if the map contains no mapping for the key.
263 <     * @throws    ClassCastException key cannot be compared with the keys
264 <     *                  currently in the map.
265 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
266 <     *                  natural ordering, or its comparator does not tolerate
267 <     *                  <tt>null</tt> keys.
233 >     * Returns the value to which the specified key is mapped,
234 >     * or {@code null} if this map contains no mapping for the key.
235       *
236 <     * @see #containsKey(Object)
236 >     * <p>More formally, if this map contains a mapping from a key
237 >     * {@code k} to a value {@code v} such that {@code key} compares
238 >     * equal to {@code k} according to the map's ordering, then this
239 >     * method returns {@code v}; otherwise it returns {@code null}.
240 >     * (There can be at most one such mapping.)
241 >     *
242 >     * <p>A return value of {@code null} does not <i>necessarily</i>
243 >     * indicate that the map contains no mapping for the key; it's also
244 >     * possible that the map explicitly maps the key to {@code null}.
245 >     * The {@link #containsKey containsKey} operation may be used to
246 >     * distinguish these two cases.
247 >     *
248 >     * @throws ClassCastException if the specified key cannot be compared
249 >     *         with the keys currently in the map
250 >     * @throws NullPointerException if the specified key is null
251 >     *         and this map uses natural ordering, or its comparator
252 >     *         does not permit null keys
253       */
254      public V get(Object key) {
255          Entry<K,V> p = getEntry(key);
256          return (p==null ? null : p.value);
257      }
258  
276    /**
277     * Returns the comparator used to order this map, or <tt>null</tt> if this
278     * map uses its keys' natural order.
279     *
280     * @return the comparator associated with this sorted map, or
281     *                <tt>null</tt> if it uses its keys' natural sort method.
282     */
259      public Comparator<? super K> comparator() {
260          return comparator;
261      }
262  
263      /**
264 <     * Returns the first (lowest) key currently in this sorted map.
289 <     *
290 <     * @return the first (lowest) key currently in this sorted map.
291 <     * @throws    NoSuchElementException Map is empty.
264 >     * @throws NoSuchElementException {@inheritDoc}
265       */
266      public K firstKey() {
267          return key(getFirstEntry());
268      }
269  
270      /**
271 <     * Returns the last (highest) key currently in this sorted map.
299 <     *
300 <     * @return the last (highest) key currently in this sorted map.
301 <     * @throws    NoSuchElementException Map is empty.
271 >     * @throws NoSuchElementException {@inheritDoc}
272       */
273      public K lastKey() {
274          return key(getLastEntry());
275      }
276  
277      /**
278 <     * Copies all of the mappings from the specified map to this map.  These
279 <     * mappings replace any mappings that this map had for any of the keys
280 <     * currently in the specified map.
281 <     *
282 <     * @param     map mappings to be stored in this map.
283 <     * @throws    ClassCastException class of a key or value in the specified
284 <     *                   map prevents it from being stored in this map.
285 <     *
286 <     * @throws NullPointerException if the given map is <tt>null</tt> or
287 <     *         this map does not permit <tt>null</tt> keys and a
318 <     *         key in the specified map is <tt>null</tt>.
278 >     * Copies all of the mappings from the specified map to this map.
279 >     * These mappings replace any mappings that this map had for any
280 >     * of the keys currently in the specified map.
281 >     *
282 >     * @param  map mappings to be stored in this map
283 >     * @throws ClassCastException if the class of a key or value in
284 >     *         the specified map prevents it from being stored in this map
285 >     * @throws NullPointerException if the specified map is null or
286 >     *         the specified map contains a null key and this map does not
287 >     *         permit null keys
288       */
289      public void putAll(Map<? extends K, ? extends V> map) {
290          int mapSize = map.size();
# Line 340 | Line 309 | public class TreeMap<K,V>
309       * does not contain an entry for the key.
310       *
311       * @return this map's entry for the given key, or <tt>null</tt> if the map
312 <     *                does not contain an entry for the key.
313 <     * @throws ClassCastException if the key cannot be compared with the keys
314 <     *                  currently in the map.
315 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
316 <     *                  natural order, or its comparator does not tolerate *
317 <     *                  <tt>null</tt> keys.
312 >     *         does not contain an entry for the key
313 >     * @throws ClassCastException if the specified key cannot be compared
314 >     *         with the keys currently in the map
315 >     * @throws NullPointerException if the specified key is null
316 >     *         and this map uses natural ordering, or its comparator
317 >     *         does not permit null keys
318       */
319 <    private Entry<K,V> getEntry(Object key) {
319 >    final Entry<K,V> getEntry(Object key) {
320          // Offload comparator-based version for sake of performance
321          if (comparator != null)
322              return getEntryUsingComparator(key);
323 <        Comparable<K> k = (Comparable<K>) key;
323 >        if (key == null)
324 >            throw new NullPointerException();
325 >        Comparable<? super K> k = (Comparable<? super K>) key;
326          Entry<K,V> p = root;
327          while (p != null) {
328              int cmp = k.compareTo(p.key);
# Line 371 | Line 342 | public class TreeMap<K,V>
342       * that are less dependent on comparator performance, but is
343       * worthwhile here.)
344       */
345 <    private Entry<K,V> getEntryUsingComparator(Object key) {
345 >    final Entry<K,V> getEntryUsingComparator(Object key) {
346          K k = (K) key;
347          Comparator<? super K> cpr = comparator;
348 <        Entry<K,V> p = root;
349 <        while (p != null) {
350 <            int cmp = cpr.compare(k, p.key);
351 <            if (cmp < 0)
352 <                p = p.left;
353 <            else if (cmp > 0)
354 <                p = p.right;
355 <            else
356 <                return p;
348 >        if (cpr != null) {
349 >            Entry<K,V> p = root;
350 >            while (p != null) {
351 >                int cmp = cpr.compare(k, p.key);
352 >                if (cmp < 0)
353 >                    p = p.left;
354 >                else if (cmp > 0)
355 >                    p = p.right;
356 >                else
357 >                    return p;
358 >            }
359          }
360          return null;
361      }
# Line 393 | Line 366 | public class TreeMap<K,V>
366       * key; if no such entry exists (i.e., the greatest key in the Tree is less
367       * than the specified key), returns <tt>null</tt>.
368       */
369 <    private Entry<K,V> getCeilingEntry(K key) {
369 >    final Entry<K,V> getCeilingEntry(K key) {
370          Entry<K,V> p = root;
371 <        if (p==null)
399 <            return null;
400 <
401 <        while (true) {
371 >        while (p != null) {
372              int cmp = compare(key, p.key);
373              if (cmp < 0) {
374                  if (p.left != null)
# Line 420 | Line 390 | public class TreeMap<K,V>
390              } else
391                  return p;
392          }
393 +        return null;
394      }
395  
396      /**
# Line 427 | Line 398 | public class TreeMap<K,V>
398       * exists, returns the entry for the greatest key less than the specified
399       * key; if no such entry exists, returns <tt>null</tt>.
400       */
401 <    private Entry<K,V> getFloorEntry(K key) {
401 >    final Entry<K,V> getFloorEntry(K key) {
402          Entry<K,V> p = root;
403 <        if (p==null)
433 <            return null;
434 <
435 <        while (true) {
403 >        while (p != null) {
404              int cmp = compare(key, p.key);
405              if (cmp > 0) {
406                  if (p.right != null)
# Line 455 | Line 423 | public class TreeMap<K,V>
423                  return p;
424  
425          }
426 +        return null;
427      }
428  
429      /**
# Line 463 | Line 432 | public class TreeMap<K,V>
432       * key greater than the specified key; if no such entry exists
433       * returns <tt>null</tt>.
434       */
435 <    private Entry<K,V> getHigherEntry(K key) {
435 >    final Entry<K,V> getHigherEntry(K key) {
436          Entry<K,V> p = root;
437 <        if (p==null)
469 <            return null;
470 <
471 <        while (true) {
437 >        while (p != null) {
438              int cmp = compare(key, p.key);
439              if (cmp < 0) {
440                  if (p.left != null)
# Line 489 | Line 455 | public class TreeMap<K,V>
455                  }
456              }
457          }
458 +        return null;
459      }
460  
461      /**
# Line 496 | Line 463 | public class TreeMap<K,V>
463       * no such entry exists (i.e., the least key in the Tree is greater than
464       * the specified key), returns <tt>null</tt>.
465       */
466 <    private Entry<K,V> getLowerEntry(K key) {
466 >    final Entry<K,V> getLowerEntry(K key) {
467          Entry<K,V> p = root;
468 <        if (p==null)
502 <            return null;
503 <
504 <        while (true) {
468 >        while (p != null) {
469              int cmp = compare(key, p.key);
470              if (cmp > 0) {
471                  if (p.right != null)
# Line 522 | Line 486 | public class TreeMap<K,V>
486                  }
487              }
488          }
489 <    }
526 <
527 <    /**
528 <     * Returns the key corresponding to the specified Entry.  Throw
529 <     * NoSuchElementException if the Entry is <tt>null</tt>.
530 <     */
531 <    private static <K> K key(Entry<K,?> e) {
532 <        if (e==null)
533 <            throw new NoSuchElementException();
534 <        return e.key;
489 >        return null;
490      }
491  
492      /**
493       * Associates the specified value with the specified key in this map.
494 <     * If the map previously contained a mapping for this key, the old
494 >     * If the map previously contained a mapping for the key, the old
495       * value is replaced.
496       *
497 <     * @param key key with which the specified value is to be associated.
498 <     * @param value value to be associated with the specified key.
497 >     * @param key key with which the specified value is to be associated
498 >     * @param value value to be associated with the specified key
499       *
500 <     * @return previous value associated with specified key, or <tt>null</tt>
501 <     *         if there was no mapping for key.  A <tt>null</tt> return can
502 <     *         also indicate that the map previously associated <tt>null</tt>
503 <     *         with the specified key.
504 <     * @throws    ClassCastException key cannot be compared with the keys
505 <     *            currently in the map.
506 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
507 <     *         natural order, or its comparator does not tolerate
508 <     *         <tt>null</tt> keys.
500 >     * @return the previous value associated with <tt>key</tt>, or
501 >     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
502 >     *         (A <tt>null</tt> return can also indicate that the map
503 >     *         previously associated <tt>null</tt> with <tt>key</tt>.)
504 >     * @throws ClassCastException if the specified key cannot be compared
505 >     *         with the keys currently in the map
506 >     * @throws NullPointerException if the specified key is null
507 >     *         and this map uses natural ordering, or its comparator
508 >     *         does not permit null keys
509       */
510      public V put(K key, V value) {
511          Entry<K,V> t = root;
557
512          if (t == null) {
513 <            incrementSize();
513 >            // TBD:
514 >            // 5045147: (coll) Adding null to an empty TreeSet should
515 >            // throw NullPointerException
516 >            //
517 >            // compare(key, key); // type check
518              root = new Entry<K,V>(key, value, null);
519 +            size = 1;
520 +            modCount++;
521              return null;
522 <       }
523 <
524 <        while (true) {
525 <            int cmp = compare(key, t.key);
526 <            if (cmp == 0) {
527 <                return t.setValue(value);
528 <            } else if (cmp < 0) {
529 <                if (t.left != null) {
522 >        }
523 >        int cmp;
524 >        Entry<K,V> parent;
525 >        // split comparator and comparable paths
526 >        Comparator<? super K> cpr = comparator;
527 >        if (cpr != null) {
528 >            do {
529 >                parent = t;
530 >                cmp = cpr.compare(key, t.key);
531 >                if (cmp < 0)
532                      t = t.left;
533 <                } else {
572 <                    incrementSize();
573 <                    t.left = new Entry<K,V>(key, value, t);
574 <                    fixAfterInsertion(t.left);
575 <                    return null;
576 <                }
577 <            } else { // cmp > 0
578 <                if (t.right != null) {
533 >                else if (cmp > 0)
534                      t = t.right;
535 <                } else {
536 <                    incrementSize();
537 <                    t.right = new Entry<K,V>(key, value, t);
583 <                    fixAfterInsertion(t.right);
584 <                    return null;
585 <                }
586 <            }
535 >                else
536 >                    return t.setValue(value);
537 >            } while (t != null);
538          }
539 +        else {
540 +            if (key == null)
541 +                throw new NullPointerException();
542 +            Comparable<? super K> k = (Comparable<? super K>) key;
543 +            do {
544 +                parent = t;
545 +                cmp = k.compareTo(t.key);
546 +                if (cmp < 0)
547 +                    t = t.left;
548 +                else if (cmp > 0)
549 +                    t = t.right;
550 +                else
551 +                    return t.setValue(value);
552 +            } while (t != null);
553 +        }
554 +        Entry<K,V> e = new Entry<K,V>(key, value, parent);
555 +        if (cmp < 0)
556 +            parent.left = e;
557 +        else
558 +            parent.right = e;
559 +        fixAfterInsertion(e);
560 +        size++;
561 +        modCount++;
562 +        return null;
563      }
564  
565      /**
566       * Removes the mapping for this key from this TreeMap if present.
567       *
568       * @param  key key for which mapping should be removed
569 <     * @return previous value associated with specified key, or <tt>null</tt>
570 <     *         if there was no mapping for key.  A <tt>null</tt> return can
571 <     *         also indicate that the map previously associated
572 <     *         <tt>null</tt> with the specified key.
573 <     *
574 <     * @throws    ClassCastException key cannot be compared with the keys
575 <     *            currently in the map.
576 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
577 <     *         natural order, or its comparator does not tolerate
603 <     *         <tt>null</tt> keys.
569 >     * @return the previous value associated with <tt>key</tt>, or
570 >     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
571 >     *         (A <tt>null</tt> return can also indicate that the map
572 >     *         previously associated <tt>null</tt> with <tt>key</tt>.)
573 >     * @throws ClassCastException if the specified key cannot be compared
574 >     *         with the keys currently in the map
575 >     * @throws NullPointerException if the specified key is null
576 >     *         and this map uses natural ordering, or its comparator
577 >     *         does not permit null keys
578       */
579      public V remove(Object key) {
580          Entry<K,V> p = getEntry(key);
# Line 613 | Line 587 | public class TreeMap<K,V>
587      }
588  
589      /**
590 <     * Removes all mappings from this TreeMap.
590 >     * Removes all of the mappings from this map.
591 >     * The map will be empty after this call returns.
592       */
593      public void clear() {
594          modCount++;
# Line 625 | Line 600 | public class TreeMap<K,V>
600       * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
601       * values themselves are not cloned.)
602       *
603 <     * @return a shallow copy of this Map.
603 >     * @return a shallow copy of this map
604       */
605      public Object clone() {
606          TreeMap<K,V> clone = null;
# Line 640 | Line 615 | public class TreeMap<K,V>
615          clone.size = 0;
616          clone.modCount = 0;
617          clone.entrySet = null;
618 <        clone.descendingEntrySet = null;
619 <        clone.descendingKeySet = null;
618 >        clone.navigableKeySet = null;
619 >        clone.descendingMap = null;
620  
621          // Initialize clone with our mappings
622          try {
# Line 656 | Line 631 | public class TreeMap<K,V>
631      // NavigableMap API methods
632  
633      /**
634 <     * Returns a key-value mapping associated with the least
660 <     * key in this map, or <tt>null</tt> if the map is empty.
661 <     *
662 <     * @return an Entry with least key, or <tt>null</tt>
663 <     * if the map is empty.
634 >     * @since 1.6
635       */
636      public Map.Entry<K,V> firstEntry() {
637 <        Entry<K,V> e = getFirstEntry();
667 <        return (e == null)? null : new SnapshotEntry(e);
637 >        return exportEntry(getFirstEntry());
638      }
639  
640      /**
641 <     * Returns a key-value mapping associated with the greatest
672 <     * key in this map, or <tt>null</tt> if the map is empty.
673 <     * The returned entry does <em>not</em> support
674 <     * the <tt>Entry.setValue</tt> method.
675 <     *
676 <     * @return an Entry with greatest key, or <tt>null</tt>
677 <     * if the map is empty.
641 >     * @since 1.6
642       */
643      public Map.Entry<K,V> lastEntry() {
644 <        Entry<K,V> e = getLastEntry();
681 <        return (e == null)? null : new SnapshotEntry(e);
644 >        return exportEntry(getLastEntry());
645      }
646  
647      /**
648 <     * Removes and returns a key-value mapping associated with
686 <     * the least key in this map, or <tt>null</tt> if the map is empty.
687 <     *
688 <     * @return the removed first entry of this map, or <tt>null</tt>
689 <     * if the map is empty.
648 >     * @since 1.6
649       */
650      public Map.Entry<K,V> pollFirstEntry() {
651          Entry<K,V> p = getFirstEntry();
652 <        if (p == null)
653 <            return null;
654 <        Map.Entry result = new SnapshotEntry(p);
696 <        deleteEntry(p);
652 >        Map.Entry<K,V> result = exportEntry(p);
653 >        if (p != null)
654 >            deleteEntry(p);
655          return result;
656      }
657  
658      /**
659 <     * Removes and returns a key-value mapping associated with
702 <     * the greatest key in this map, or <tt>null</tt> if the map is empty.
703 <     *
704 <     * @return the removed last entry of this map, or <tt>null</tt>
705 <     * if the map is empty.
659 >     * @since 1.6
660       */
661      public Map.Entry<K,V> pollLastEntry() {
662          Entry<K,V> p = getLastEntry();
663 <        if (p == null)
664 <            return null;
665 <        Map.Entry result = new SnapshotEntry(p);
712 <        deleteEntry(p);
663 >        Map.Entry<K,V> result = exportEntry(p);
664 >        if (p != null)
665 >            deleteEntry(p);
666          return result;
667      }
668  
669      /**
670 <     * Returns a key-value mapping associated with the least key
671 <     * greater than or equal to the given key, or <tt>null</tt> if
672 <     * there is no such entry.
673 <     *
674 <     * @param key the key.
722 <     * @return an Entry associated with ceiling of given key, or
723 <     * <tt>null</tt> if there is no such Entry.
724 <     * @throws ClassCastException if key cannot be compared with the
725 <     * keys currently in the map.
726 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
727 <     *         natural order, or its comparator does not tolerate
728 <     *         <tt>null</tt> keys.
670 >     * @throws ClassCastException {@inheritDoc}
671 >     * @throws NullPointerException if the specified key is null
672 >     *         and this map uses natural ordering, or its comparator
673 >     *         does not permit null keys
674 >     * @since 1.6
675       */
676 <    public Map.Entry<K,V> ceilingEntry(K key) {
677 <        Entry<K,V> e = getCeilingEntry(key);
732 <        return (e == null)? null : new SnapshotEntry(e);
676 >    public Map.Entry<K,V> lowerEntry(K key) {
677 >        return exportEntry(getLowerEntry(key));
678      }
679  
735
680      /**
681 <     * Returns least key greater than or equal to the given key, or
682 <     * <tt>null</tt> if there is no such key.
683 <     *
684 <     * @param key the key.
685 <     * @return the ceiling key, or <tt>null</tt>
742 <     * if there is no such key.
743 <     * @throws ClassCastException if key cannot be compared with the keys
744 <     *            currently in the map.
745 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
746 <     *         natural order, or its comparator does not tolerate
747 <     *         <tt>null</tt> keys.
681 >     * @throws ClassCastException {@inheritDoc}
682 >     * @throws NullPointerException if the specified key is null
683 >     *         and this map uses natural ordering, or its comparator
684 >     *         does not permit null keys
685 >     * @since 1.6
686       */
687 <    public K ceilingKey(K key) {
688 <        Entry<K,V> e = getCeilingEntry(key);
751 <        return (e == null)? null : e.key;
687 >    public K lowerKey(K key) {
688 >        return keyOrNull(getLowerEntry(key));
689      }
690  
754
755
691      /**
692 <     * Returns a key-value mapping associated with the greatest key
693 <     * less than or equal to the given key, or <tt>null</tt> if there
694 <     * is no such entry.
695 <     *
696 <     * @param key the key.
762 <     * @return an Entry associated with floor of given key, or <tt>null</tt>
763 <     * if there is no such Entry.
764 <     * @throws ClassCastException if key cannot be compared with the keys
765 <     *            currently in the map.
766 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
767 <     *         natural order, or its comparator does not tolerate
768 <     *         <tt>null</tt> keys.
692 >     * @throws ClassCastException {@inheritDoc}
693 >     * @throws NullPointerException if the specified key is null
694 >     *         and this map uses natural ordering, or its comparator
695 >     *         does not permit null keys
696 >     * @since 1.6
697       */
698      public Map.Entry<K,V> floorEntry(K key) {
699 <        Entry<K,V> e = getFloorEntry(key);
772 <        return (e == null)? null : new SnapshotEntry(e);
699 >        return exportEntry(getFloorEntry(key));
700      }
701  
702      /**
703 <     * Returns the greatest key
704 <     * less than or equal to the given key, or <tt>null</tt> if there
705 <     * is no such key.
706 <     *
707 <     * @param key the key.
781 <     * @return the floor of given key, or <tt>null</tt> if there is no
782 <     * such key.
783 <     * @throws ClassCastException if key cannot be compared with the keys
784 <     *            currently in the map.
785 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
786 <     *         natural order, or its comparator does not tolerate
787 <     *         <tt>null</tt> keys.
703 >     * @throws ClassCastException {@inheritDoc}
704 >     * @throws NullPointerException if the specified key is null
705 >     *         and this map uses natural ordering, or its comparator
706 >     *         does not permit null keys
707 >     * @since 1.6
708       */
709      public K floorKey(K key) {
710 <        Entry<K,V> e = getFloorEntry(key);
791 <        return (e == null)? null : e.key;
710 >        return keyOrNull(getFloorEntry(key));
711      }
712  
713      /**
714 <     * Returns a key-value mapping associated with the least key
715 <     * strictly greater than the given key, or <tt>null</tt> if there
716 <     * is no such entry.
717 <     *
718 <     * @param key the key.
800 <     * @return an Entry with least key greater than the given key, or
801 <     * <tt>null</tt> if there is no such Entry.
802 <     * @throws ClassCastException if key cannot be compared with the keys
803 <     *            currently in the map.
804 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
805 <     *         natural order, or its comparator does not tolerate
806 <     *         <tt>null</tt> keys.
714 >     * @throws ClassCastException {@inheritDoc}
715 >     * @throws NullPointerException if the specified key is null
716 >     *         and this map uses natural ordering, or its comparator
717 >     *         does not permit null keys
718 >     * @since 1.6
719       */
720 <    public Map.Entry<K,V> higherEntry(K key) {
721 <        Entry<K,V> e = getHigherEntry(key);
810 <        return (e == null)? null : new SnapshotEntry(e);
720 >    public Map.Entry<K,V> ceilingEntry(K key) {
721 >        return exportEntry(getCeilingEntry(key));
722      }
723  
724      /**
725 <     * Returns the least key strictly greater than the given key, or
726 <     * <tt>null</tt> if there is no such key.
727 <     *
728 <     * @param key the key.
729 <     * @return the least key greater than the given key, or
819 <     * <tt>null</tt> if there is no such key.
820 <     * @throws ClassCastException if key cannot be compared with the keys
821 <     *            currently in the map.
822 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
823 <     *         natural order, or its comparator does not tolerate
824 <     *         <tt>null</tt> keys.
725 >     * @throws ClassCastException {@inheritDoc}
726 >     * @throws NullPointerException if the specified key is null
727 >     *         and this map uses natural ordering, or its comparator
728 >     *         does not permit null keys
729 >     * @since 1.6
730       */
731 <    public K higherKey(K key) {
732 <        Entry<K,V> e = getHigherEntry(key);
828 <        return (e == null)? null : e.key;
731 >    public K ceilingKey(K key) {
732 >        return keyOrNull(getCeilingEntry(key));
733      }
734  
735      /**
736 <     * Returns a key-value mapping associated with the greatest
737 <     * key strictly less than the given key, or <tt>null</tt> if there is no
738 <     * such entry.
739 <     *
740 <     * @param key the key.
837 <     * @return an Entry with greatest key less than the given
838 <     * key, or <tt>null</tt> if there is no such Entry.
839 <     * @throws ClassCastException if key cannot be compared with the keys
840 <     *            currently in the map.
841 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
842 <     *         natural order, or its comparator does not tolerate
843 <     *         <tt>null</tt> keys.
736 >     * @throws ClassCastException {@inheritDoc}
737 >     * @throws NullPointerException if the specified key is null
738 >     *         and this map uses natural ordering, or its comparator
739 >     *         does not permit null keys
740 >     * @since 1.6
741       */
742 <    public Map.Entry<K,V> lowerEntry(K key) {
743 <        Entry<K,V> e =  getLowerEntry(key);
847 <        return (e == null)? null : new SnapshotEntry(e);
742 >    public Map.Entry<K,V> higherEntry(K key) {
743 >        return exportEntry(getHigherEntry(key));
744      }
745  
746      /**
747 <     * Returns the greatest key strictly less than the given key, or
748 <     * <tt>null</tt> if there is no such key.
749 <     *
750 <     * @param key the key.
751 <     * @return the greatest key less than the given
856 <     * key, or <tt>null</tt> if there is no such key.
857 <     * @throws ClassCastException if key cannot be compared with the keys
858 <     *            currently in the map.
859 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
860 <     *         natural order, or its comparator does not tolerate
861 <     *         <tt>null</tt> keys.
747 >     * @throws ClassCastException {@inheritDoc}
748 >     * @throws NullPointerException if the specified key is null
749 >     *         and this map uses natural ordering, or its comparator
750 >     *         does not permit null keys
751 >     * @since 1.6
752       */
753 <    public K lowerKey(K key) {
754 <        Entry<K,V> e =  getLowerEntry(key);
865 <        return (e == null)? null : e.key;
753 >    public K higherKey(K key) {
754 >        return keyOrNull(getHigherEntry(key));
755      }
756  
757      // Views
# Line 872 | Line 761 | public class TreeMap<K,V>
761       * the first time this view is requested.  Views are stateless, so
762       * there's no reason to create more than one.
763       */
764 <    private transient Set<Map.Entry<K,V>> entrySet = null;
765 <    private transient Set<Map.Entry<K,V>> descendingEntrySet = null;
766 <    private transient Set<K> descendingKeySet = null;
767 <
768 <    transient Set<K> keySet = null;        // XXX remove when integrated
769 <    transient Collection<V> values = null; // XXX remove when integrated
770 <
771 <    /**
772 <     * Returns a Set view of the keys contained in this map.  The set's
773 <     * iterator will return the keys in ascending order.  The set is backed by
774 <     * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
775 <     * the Set, and vice-versa.  The Set supports element removal, which
776 <     * removes the corresponding mapping from the map, via the
777 <     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>,
778 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not support
779 <     * the <tt>add</tt> or <tt>addAll</tt> operations.
780 <     *
892 <     * @return a set view of the keys contained in this TreeMap.
764 >    private transient EntrySet entrySet = null;
765 >    private transient KeySet<K> navigableKeySet = null;
766 >    private transient NavigableMap<K,V> descendingMap = null;
767 >
768 >    /**
769 >     * Returns a {@link Set} view of the keys contained in this map.
770 >     * The set's iterator returns the keys in ascending order.
771 >     * The set is backed by the map, so changes to the map are
772 >     * reflected in the set, and vice-versa.  If the map is modified
773 >     * while an iteration over the set is in progress (except through
774 >     * the iterator's own <tt>remove</tt> operation), the results of
775 >     * the iteration are undefined.  The set supports element removal,
776 >     * which removes the corresponding mapping from the map, via the
777 >     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
778 >     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
779 >     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
780 >     * operations.
781       */
782      public Set<K> keySet() {
783 <        Set<K> ks = keySet;
896 <        return (ks != null) ? ks : (keySet = new KeySet());
783 >        return navigableKeySet();
784      }
785  
786 <    class KeySet extends AbstractSet<K> {
787 <        public Iterator<K> iterator() {
788 <            return new KeyIterator(getFirstEntry());
789 <        }
790 <        
791 <        public int size() {
905 <            return TreeMap.this.size();
906 <        }
907 <        
908 <        public boolean contains(Object o) {
909 <            return containsKey(o);
910 <        }
911 <        
912 <        public boolean remove(Object o) {
913 <            int oldSize = size;
914 <            TreeMap.this.remove(o);
915 <            return size != oldSize;
916 <        }
917 <        
918 <        public void clear() {
919 <            TreeMap.this.clear();
920 <        }
786 >    /**
787 >     * @since 1.6
788 >     */
789 >    public NavigableSet<K> navigableKeySet() {
790 >        KeySet<K> nks = navigableKeySet;
791 >        return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
792      }
793  
794      /**
795 <     * Returns a collection view of the values contained in this map.  The
796 <     * collection's iterator will return the values in the order that their
797 <     * corresponding keys appear in the tree.  The collection is backed by
798 <     * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
799 <     * the collection, and vice-versa.  The collection supports element
800 <     * removal, which removes the corresponding mapping from the map through
801 <     * the <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
802 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
803 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
804 <     *
805 <     * @return a collection view of the values contained in this map.
795 >     * @since 1.6
796 >     */
797 >    public NavigableSet<K> descendingKeySet() {
798 >        return descendingMap().navigableKeySet();
799 >    }
800 >
801 >    /**
802 >     * Returns a {@link Collection} view of the values contained in this map.
803 >     * The collection's iterator returns the values in ascending order
804 >     * of the corresponding keys.
805 >     * The collection is backed by the map, so changes to the map are
806 >     * reflected in the collection, and vice-versa.  If the map is
807 >     * modified while an iteration over the collection is in progress
808 >     * (except through the iterator's own <tt>remove</tt> operation),
809 >     * the results of the iteration are undefined.  The collection
810 >     * supports element removal, which removes the corresponding
811 >     * mapping from the map, via the <tt>Iterator.remove</tt>,
812 >     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
813 >     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
814 >     * support the <tt>add</tt> or <tt>addAll</tt> operations.
815       */
816      public Collection<V> values() {
817          Collection<V> vs = values;
818          return (vs != null) ? vs : (values = new Values());
819      }
820  
821 +    /**
822 +     * Returns a {@link Set} view of the mappings contained in this map.
823 +     * The set's iterator returns the entries in ascending key order.
824 +     * The set is backed by the map, so changes to the map are
825 +     * reflected in the set, and vice-versa.  If the map is modified
826 +     * while an iteration over the set is in progress (except through
827 +     * the iterator's own <tt>remove</tt> operation, or through the
828 +     * <tt>setValue</tt> operation on a map entry returned by the
829 +     * iterator) the results of the iteration are undefined.  The set
830 +     * supports element removal, which removes the corresponding
831 +     * mapping from the map, via the <tt>Iterator.remove</tt>,
832 +     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
833 +     * <tt>clear</tt> operations.  It does not support the
834 +     * <tt>add</tt> or <tt>addAll</tt> operations.
835 +     */
836 +    public Set<Map.Entry<K,V>> entrySet() {
837 +        EntrySet es = entrySet;
838 +        return (es != null) ? es : (entrySet = new EntrySet());
839 +    }
840 +
841 +    /**
842 +     * @since 1.6
843 +     */
844 +    public NavigableMap<K, V> descendingMap() {
845 +        NavigableMap<K, V> km = descendingMap;
846 +        return (km != null) ? km :
847 +            (descendingMap = new DescendingSubMap(this,
848 +                                                  true, null, true,
849 +                                                  true, null, true));
850 +    }
851 +
852 +    /**
853 +     * @throws ClassCastException       {@inheritDoc}
854 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
855 +     *         null and this map uses natural ordering, or its comparator
856 +     *         does not permit null keys
857 +     * @throws IllegalArgumentException {@inheritDoc}
858 +     * @since 1.6
859 +     */
860 +    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
861 +                                    K toKey,   boolean toInclusive) {
862 +        return new AscendingSubMap(this,
863 +                                   false, fromKey, fromInclusive,
864 +                                   false, toKey,   toInclusive);
865 +    }
866 +
867 +    /**
868 +     * @throws ClassCastException       {@inheritDoc}
869 +     * @throws NullPointerException if <tt>toKey</tt> is null
870 +     *         and this map uses natural ordering, or its comparator
871 +     *         does not permit null keys
872 +     * @throws IllegalArgumentException {@inheritDoc}
873 +     * @since 1.6
874 +     */
875 +    public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
876 +        return new AscendingSubMap(this,
877 +                                   true,  null,  true,
878 +                                   false, toKey, inclusive);
879 +    }
880 +
881 +    /**
882 +     * @throws ClassCastException       {@inheritDoc}
883 +     * @throws NullPointerException if <tt>fromKey</tt> is null
884 +     *         and this map uses natural ordering, or its comparator
885 +     *         does not permit null keys
886 +     * @throws IllegalArgumentException {@inheritDoc}
887 +     * @since 1.6
888 +     */
889 +    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
890 +        return new AscendingSubMap(this,
891 +                                   false, fromKey, inclusive,
892 +                                   true,  null,    true);
893 +    }
894 +
895 +    /**
896 +     * @throws ClassCastException       {@inheritDoc}
897 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
898 +     *         null and this map uses natural ordering, or its comparator
899 +     *         does not permit null keys
900 +     * @throws IllegalArgumentException {@inheritDoc}
901 +     */
902 +    public SortedMap<K,V> subMap(K fromKey, K toKey) {
903 +        return subMap(fromKey, true, toKey, false);
904 +    }
905 +
906 +    /**
907 +     * @throws ClassCastException       {@inheritDoc}
908 +     * @throws NullPointerException if <tt>toKey</tt> is null
909 +     *         and this map uses natural ordering, or its comparator
910 +     *         does not permit null keys
911 +     * @throws IllegalArgumentException {@inheritDoc}
912 +     */
913 +    public SortedMap<K,V> headMap(K toKey) {
914 +        return headMap(toKey, false);
915 +    }
916 +
917 +    /**
918 +     * @throws ClassCastException       {@inheritDoc}
919 +     * @throws NullPointerException if <tt>fromKey</tt> is null
920 +     *         and this map uses natural ordering, or its comparator
921 +     *         does not permit null keys
922 +     * @throws IllegalArgumentException {@inheritDoc}
923 +     */
924 +    public SortedMap<K,V> tailMap(K fromKey) {
925 +        return tailMap(fromKey, true);
926 +    }
927 +
928 +    // View class support
929 +
930      class Values extends AbstractCollection<V> {
931          public Iterator<V> iterator() {
932              return new ValueIterator(getFirstEntry());
933          }
934 <        
934 >
935          public int size() {
936              return TreeMap.this.size();
937          }
938 <        
938 >
939          public boolean contains(Object o) {
940 <            for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
952 <                if (valEquals(e.getValue(), o))
953 <                    return true;
954 <            return false;
940 >            return TreeMap.this.containsValue(o);
941          }
942 <        
942 >
943          public boolean remove(Object o) {
944              for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
945                  if (valEquals(e.getValue(), o)) {
# Line 963 | Line 949 | public class TreeMap<K,V>
949              }
950              return false;
951          }
952 <        
952 >
953          public void clear() {
954              TreeMap.this.clear();
955          }
956      }
957  
972    /**
973     * Returns a set view of the mappings contained in this map.  The set's
974     * iterator returns the mappings in ascending key order.  Each element in
975     * the returned set is a <tt>Map.Entry</tt>.  The set is backed by this
976     * map, so changes to this map are reflected in the set, and vice-versa.
977     * The set supports element removal, which removes the corresponding
978     * mapping from the TreeMap, through the <tt>Iterator.remove</tt>,
979     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
980     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
981     * <tt>addAll</tt> operations.
982     *
983     * @return a set view of the mappings contained in this map.
984     * @see Map.Entry
985     */
986    public Set<Map.Entry<K,V>> entrySet() {
987        Set<Map.Entry<K,V>> es = entrySet;
988        return (es != null) ? es : (entrySet = new EntrySet());
989    }
990
958      class EntrySet extends AbstractSet<Map.Entry<K,V>> {
959          public Iterator<Map.Entry<K,V>> iterator() {
960              return new EntryIterator(getFirstEntry());
961          }
962 <        
962 >
963          public boolean contains(Object o) {
964              if (!(o instanceof Map.Entry))
965                  return false;
# Line 1001 | Line 968 | public class TreeMap<K,V>
968              Entry<K,V> p = getEntry(entry.getKey());
969              return p != null && valEquals(p.getValue(), value);
970          }
971 <        
971 >
972          public boolean remove(Object o) {
973              if (!(o instanceof Map.Entry))
974                  return false;
# Line 1014 | Line 981 | public class TreeMap<K,V>
981              }
982              return false;
983          }
984 <        
984 >
985          public int size() {
986              return TreeMap.this.size();
987          }
988 <        
988 >
989          public void clear() {
990              TreeMap.this.clear();
991          }
992      }
993  
994 <    /**
995 <     * Returns a set view of the mappings contained in this map.  The
996 <     * set's iterator returns the mappings in descrending key order.
997 <     * Each element in the returned set is a <tt>Map.Entry</tt>.  The
998 <     * set is backed by this map, so changes to this map are reflected
999 <     * in the set, and vice-versa.  The set supports element removal,
1000 <     * which removes the corresponding mapping from the TreeMap,
1001 <     * through the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1002 <     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1003 <     * operations.  It does not support the <tt>add</tt> or
1037 <     * <tt>addAll</tt> operations.
1038 <     *
1039 <     * @return a set view of the mappings contained in this map, in
1040 <     * descending key order
1041 <     * @see Map.Entry
1042 <     */
1043 <    public Set<Map.Entry<K,V>> descendingEntrySet() {
1044 <        Set<Map.Entry<K,V>> es = descendingEntrySet;
1045 <        return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
994 >    /*
995 >     * Unlike Values and EntrySet, the KeySet class is static,
996 >     * delegating to a NavigableMap to allow use by SubMaps, which
997 >     * outweighs the ugliness of needing type-tests for the following
998 >     * Iterator methods that are defined appropriately in main versus
999 >     * submap classes.
1000 >     */
1001 >
1002 >    Iterator<K> keyIterator() {
1003 >        return new KeyIterator(getFirstEntry());
1004      }
1005  
1006 <    class DescendingEntrySet extends EntrySet {
1007 <        public Iterator<Map.Entry<K,V>> iterator() {
1008 <            return new DescendingEntryIterator(getLastEntry());
1006 >    Iterator<K> descendingKeyIterator() {
1007 >        return new DescendingKeyIterator(getFirstEntry());
1008 >    }
1009 >
1010 >    static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1011 >        private final NavigableMap<E, Object> m;
1012 >        KeySet(NavigableMap<E,Object> map) { m = map; }
1013 >
1014 >        public Iterator<E> iterator() {
1015 >            if (m instanceof TreeMap)
1016 >                return ((TreeMap<E,Object>)m).keyIterator();
1017 >            else
1018 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
1019 >        }
1020 >
1021 >        public Iterator<E> descendingIterator() {
1022 >            if (m instanceof TreeMap)
1023 >                return ((TreeMap<E,Object>)m).descendingKeyIterator();
1024 >            else
1025 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
1026 >        }
1027 >
1028 >        public int size() { return m.size(); }
1029 >        public boolean isEmpty() { return m.isEmpty(); }
1030 >        public boolean contains(Object o) { return m.containsKey(o); }
1031 >        public void clear() { m.clear(); }
1032 >        public E lower(E e) { return m.lowerKey(e); }
1033 >        public E floor(E e) { return m.floorKey(e); }
1034 >        public E ceiling(E e) { return m.ceilingKey(e); }
1035 >        public E higher(E e) { return m.higherKey(e); }
1036 >        public E first() { return m.firstKey(); }
1037 >        public E last() { return m.lastKey(); }
1038 >        public Comparator<? super E> comparator() { return m.comparator(); }
1039 >        public E pollFirst() {
1040 >            Map.Entry<E,Object> e = m.pollFirstEntry();
1041 >            return e == null? null : e.getKey();
1042 >        }
1043 >        public E pollLast() {
1044 >            Map.Entry<E,Object> e = m.pollLastEntry();
1045 >            return e == null? null : e.getKey();
1046 >        }
1047 >        public boolean remove(Object o) {
1048 >            int oldSize = size();
1049 >            m.remove(o);
1050 >            return size() != oldSize;
1051 >        }
1052 >        public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1053 >                                      E toElement,   boolean toInclusive) {
1054 >            return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
1055 >                                           toElement,   toInclusive));
1056 >        }
1057 >        public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1058 >            return new TreeSet<E>(m.headMap(toElement, inclusive));
1059 >        }
1060 >        public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1061 >            return new TreeSet<E>(m.tailMap(fromElement, inclusive));
1062 >        }
1063 >        public SortedSet<E> subSet(E fromElement, E toElement) {
1064 >            return subSet(fromElement, true, toElement, false);
1065 >        }
1066 >        public SortedSet<E> headSet(E toElement) {
1067 >            return headSet(toElement, false);
1068 >        }
1069 >        public SortedSet<E> tailSet(E fromElement) {
1070 >            return tailSet(fromElement, true);
1071 >        }
1072 >        public NavigableSet<E> descendingSet() {
1073 >            return new TreeSet(m.descendingMap());
1074          }
1075      }
1076  
1077      /**
1078 <     * Returns a Set view of the keys contained in this map.  The
1056 <     * set's iterator will return the keys in descending order.  The
1057 <     * map is backed by this <tt>TreeMap</tt> instance, so changes to
1058 <     * this map are reflected in the Set, and vice-versa.  The Set
1059 <     * supports element removal, which removes the corresponding
1060 <     * mapping from the map, via the <tt>Iterator.remove</tt>,
1061 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>,
1062 <     * and <tt>clear</tt> operations.  It does not support the
1063 <     * <tt>add</tt> or <tt>addAll</tt> operations.
1064 <     *
1065 <     * @return a set view of the keys contained in this TreeMap.
1078 >     * Base class for TreeMap Iterators
1079       */
1080 <    public Set<K> descendingKeySet() {
1081 <        Set<K> ks = descendingKeySet;
1082 <        return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1083 <    }
1084 <
1085 <    class DescendingKeySet extends KeySet {
1086 <        public Iterator<K> iterator() {
1087 <            return new DescendingKeyIterator(getLastEntry());
1080 >    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1081 >        Entry<K,V> next;
1082 >        Entry<K,V> lastReturned;
1083 >        int expectedModCount;
1084 >
1085 >        PrivateEntryIterator(Entry<K,V> first) {
1086 >            expectedModCount = modCount;
1087 >            lastReturned = null;
1088 >            next = first;
1089 >        }
1090 >
1091 >        public final boolean hasNext() {
1092 >            return next != null;
1093 >        }
1094 >
1095 >        final Entry<K,V> nextEntry() {
1096 >            Entry<K,V> e = lastReturned = next;
1097 >            if (e == null)
1098 >                throw new NoSuchElementException();
1099 >            if (modCount != expectedModCount)
1100 >                throw new ConcurrentModificationException();
1101 >            next = successor(e);
1102 >            return e;
1103 >        }
1104 >
1105 >        final Entry<K,V> prevEntry() {
1106 >            Entry<K,V> e = lastReturned= next;
1107 >            if (e == null)
1108 >                throw new NoSuchElementException();
1109 >            if (modCount != expectedModCount)
1110 >                throw new ConcurrentModificationException();
1111 >            next = predecessor(e);
1112 >            return e;
1113 >        }
1114 >
1115 >        public void remove() {
1116 >            if (lastReturned == null)
1117 >                throw new IllegalStateException();
1118 >            if (modCount != expectedModCount)
1119 >                throw new ConcurrentModificationException();
1120 >            // deleted entries are replaced by their successors
1121 >            if (lastReturned.left != null && lastReturned.right != null)
1122 >                next = lastReturned;
1123 >            deleteEntry(lastReturned);
1124 >            expectedModCount = modCount;
1125 >            lastReturned = null;
1126 >        }
1127 >    }
1128 >
1129 >    final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1130 >        EntryIterator(Entry<K,V> first) {
1131 >            super(first);
1132 >        }
1133 >        public Map.Entry<K,V> next() {
1134 >            return nextEntry();
1135 >        }
1136 >    }
1137 >
1138 >    final class ValueIterator extends PrivateEntryIterator<V> {
1139 >        ValueIterator(Entry<K,V> first) {
1140 >            super(first);
1141 >        }
1142 >        public V next() {
1143 >            return nextEntry().value;
1144 >        }
1145 >    }
1146 >
1147 >    final class KeyIterator extends PrivateEntryIterator<K> {
1148 >        KeyIterator(Entry<K,V> first) {
1149 >            super(first);
1150 >        }
1151 >        public K next() {
1152 >            return nextEntry().key;
1153          }
1154      }
1155  
1156 +    final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1157 +        DescendingKeyIterator(Entry<K,V> first) {
1158 +            super(first);
1159 +        }
1160 +        public K next() {
1161 +            return prevEntry().key;
1162 +        }
1163 +    }
1164 +
1165 +    // Little utilities
1166 +
1167      /**
1168 <     * Returns a view of the portion of this map whose keys range from
1080 <     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.  (If
1081 <     * <tt>fromKey</tt> and <tt>toKey</tt> are equal, the returned sorted map
1082 <     * is empty.)  The returned sorted map is backed by this map, so changes
1083 <     * in the returned sorted map are reflected in this map, and vice-versa.
1084 <     * The returned sorted map supports all optional map operations.<p>
1085 <     *
1086 <     * The sorted map returned by this method will throw an
1087 <     * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1088 <     * less than <tt>fromKey</tt> or greater than or equal to
1089 <     * <tt>toKey</tt>.<p>
1090 <     *
1091 <     * Note: this method always returns a <i>half-open range</i> (which
1092 <     * includes its low endpoint but not its high endpoint).  If you need a
1093 <     * <i>closed range</i> (which includes both endpoints), and the key type
1094 <     * allows for calculation of the successor a given key, merely request the
1095 <     * subrange from <tt>lowEndpoint</tt> to <tt>successor(highEndpoint)</tt>.
1096 <     * For example, suppose that <tt>m</tt> is a sorted map whose keys are
1097 <     * strings.  The following idiom obtains a view containing all of the
1098 <     * key-value mappings in <tt>m</tt> whose keys are between <tt>low</tt>
1099 <     * and <tt>high</tt>, inclusive:
1100 <     *             <pre>    NavigableMap sub = m.submap(low, high+"\0");</pre>
1101 <     * A similar technique can be used to generate an <i>open range</i> (which
1102 <     * contains neither endpoint).  The following idiom obtains a view
1103 <     * containing all of the key-value mappings in <tt>m</tt> whose keys are
1104 <     * between <tt>low</tt> and <tt>high</tt>, exclusive:
1105 <     *             <pre>    NavigableMap sub = m.subMap(low+"\0", high);</pre>
1106 <     *
1107 <     * @param fromKey low endpoint (inclusive) of the subMap.
1108 <     * @param toKey high endpoint (exclusive) of the subMap.
1109 <     *
1110 <     * @return a view of the portion of this map whose keys range from
1111 <     *                <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
1112 <     *
1113 <     * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
1114 <     *         cannot be compared to one another using this map's comparator
1115 <     *         (or, if the map has no comparator, using natural ordering).
1116 <     * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
1117 <     *         <tt>toKey</tt>.
1118 <     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
1119 <     *               <tt>null</tt> and this map uses natural order, or its
1120 <     *               comparator does not tolerate <tt>null</tt> keys.
1168 >     * Compares two keys using the correct comparison method for this TreeMap.
1169       */
1170 <    public NavigableMap<K,V> subMap(K fromKey, K toKey) {
1171 <        return new SubMap(fromKey, toKey);
1170 >    final int compare(Object k1, Object k2) {
1171 >        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1172 >            : comparator.compare((K)k1, (K)k2);
1173      }
1174  
1175      /**
1176 <     * Returns a view of the portion of this map whose keys are strictly less
1177 <     * than <tt>toKey</tt>.  The returned sorted map is backed by this map, so
1178 <     * changes in the returned sorted map are reflected in this map, and
1179 <     * vice-versa.  The returned sorted map supports all optional map
1180 <     * operations.<p>
1181 <     *
1133 <     * The sorted map returned by this method will throw an
1134 <     * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1135 <     * greater than or equal to <tt>toKey</tt>.<p>
1136 <     *
1137 <     * Note: this method always returns a view that does not contain its
1138 <     * (high) endpoint.  If you need a view that does contain this endpoint,
1139 <     * and the key type allows for calculation of the successor a given key,
1140 <     * merely request a headMap bounded by <tt>successor(highEndpoint)</tt>.
1141 <     * For example, suppose that suppose that <tt>m</tt> is a sorted map whose
1142 <     * keys are strings.  The following idiom obtains a view containing all of
1143 <     * the key-value mappings in <tt>m</tt> whose keys are less than or equal
1144 <     * to <tt>high</tt>:
1145 <     * <pre>
1146 <     *     NavigableMap head = m.headMap(high+"\0");
1147 <     * </pre>
1148 <     *
1149 <     * @param toKey high endpoint (exclusive) of the headMap.
1150 <     * @return a view of the portion of this map whose keys are strictly
1151 <     *                less than <tt>toKey</tt>.
1152 <     *
1153 <     * @throws ClassCastException if <tt>toKey</tt> is not compatible
1154 <     *         with this map's comparator (or, if the map has no comparator,
1155 <     *         if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
1156 <     * @throws IllegalArgumentException if this map is itself a subMap,
1157 <     *         headMap, or tailMap, and <tt>toKey</tt> is not within the
1158 <     *         specified range of the subMap, headMap, or tailMap.
1159 <     * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt> and
1160 <     *               this map uses natural order, or its comparator does not
1161 <     *               tolerate <tt>null</tt> keys.
1162 <     */
1163 <    public NavigableMap<K,V> headMap(K toKey) {
1164 <        return new SubMap(toKey, true);
1165 <    }
1166 <
1167 <    /**
1168 <     * Returns a view of the portion of this map whose keys are greater than
1169 <     * or equal to <tt>fromKey</tt>.  The returned sorted map is backed by
1170 <     * this map, so changes in the returned sorted map are reflected in this
1171 <     * map, and vice-versa.  The returned sorted map supports all optional map
1172 <     * operations.<p>
1173 <     *
1174 <     * The sorted map returned by this method will throw an
1175 <     * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1176 <     * less than <tt>fromKey</tt>.<p>
1177 <     *
1178 <     * Note: this method always returns a view that contains its (low)
1179 <     * endpoint.  If you need a view that does not contain this endpoint, and
1180 <     * the element type allows for calculation of the successor a given value,
1181 <     * merely request a tailMap bounded by <tt>successor(lowEndpoint)</tt>.
1182 <     * For example, suppose that <tt>m</tt> is a sorted map whose keys
1183 <     * are strings.  The following idiom obtains a view containing
1184 <     * all of the key-value mappings in <tt>m</tt> whose keys are strictly
1185 <     * greater than <tt>low</tt>: <pre>
1186 <     *     NavigableMap tail = m.tailMap(low+"\0");
1187 <     * </pre>
1188 <     *
1189 <     * @param fromKey low endpoint (inclusive) of the tailMap.
1190 <     * @return a view of the portion of this map whose keys are greater
1191 <     *                than or equal to <tt>fromKey</tt>.
1192 <     * @throws ClassCastException if <tt>fromKey</tt> is not compatible
1193 <     *         with this map's comparator (or, if the map has no comparator,
1194 <     *         if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
1195 <     * @throws IllegalArgumentException if this map is itself a subMap,
1196 <     *         headMap, or tailMap, and <tt>fromKey</tt> is not within the
1197 <     *         specified range of the subMap, headMap, or tailMap.
1198 <     * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt> and
1199 <     *               this map uses natural order, or its comparator does not
1200 <     *               tolerate <tt>null</tt> keys.
1201 <     */
1202 <    public NavigableMap<K,V> tailMap(K fromKey) {
1203 <        return new SubMap(fromKey, false);
1204 <    }
1205 <
1206 <    private class SubMap
1207 <        extends AbstractMap<K,V>
1208 <        implements NavigableMap<K,V>, java.io.Serializable {
1209 <        private static final long serialVersionUID = -6520786458950516097L;
1176 >     * Test two values for equality.  Differs from o1.equals(o2) only in
1177 >     * that it copes with <tt>null</tt> o1 properly.
1178 >     */
1179 >    final static boolean valEquals(Object o1, Object o2) {
1180 >        return (o1==null ? o2==null : o1.equals(o2));
1181 >    }
1182  
1183 +    /**
1184 +     * Return SimpleImmutableEntry for entry, or null if null
1185 +     */
1186 +    static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
1187 +        return e == null? null :
1188 +            new AbstractMap.SimpleImmutableEntry<K,V>(e);
1189 +    }
1190 +
1191 +    /**
1192 +     * Return key for entry, or null if null
1193 +     */
1194 +    static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
1195 +        return e == null? null : e.key;
1196 +    }
1197 +
1198 +    /**
1199 +     * Returns the key corresponding to the specified Entry.
1200 +     * @throws NoSuchElementException if the Entry is null
1201 +     */
1202 +    static <K> K key(Entry<K,?> e) {
1203 +        if (e==null)
1204 +            throw new NoSuchElementException();
1205 +        return e.key;
1206 +    }
1207 +
1208 +
1209 +    // SubMaps
1210 +
1211 +    /**
1212 +     * @serial include
1213 +     */
1214 +    static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>
1215 +        implements NavigableMap<K,V>, java.io.Serializable {
1216          /**
1217 <         * fromKey is significant only if fromStart is false.  Similarly,
1213 <         * toKey is significant only if toStart is false.
1217 >         * The backing map.
1218           */
1219 <        private boolean fromStart = false, toEnd = false;
1216 <        private K fromKey, toKey;
1217 <
1218 <        SubMap(K fromKey, K toKey) {
1219 <            if (compare(fromKey, toKey) > 0)
1220 <                throw new IllegalArgumentException("fromKey > toKey");
1221 <            this.fromKey = fromKey;
1222 <            this.toKey = toKey;
1223 <        }
1219 >        final TreeMap<K,V> m;
1220  
1221 <        SubMap(K key, boolean headMap) {
1222 <            compare(key, key); // Type-check key
1223 <
1224 <            if (headMap) {
1225 <                fromStart = true;
1226 <                toKey = key;
1221 >        /**
1222 >         * Endpoints are represented as triples (fromStart, lo,
1223 >         * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1224 >         * true, then the low (absolute) bound is the start of the
1225 >         * backing map, and the other values are ignored. Otherwise,
1226 >         * if loInclusive is true, lo is the inclusive bound, else lo
1227 >         * is the exclusive bound. Similarly for the upper bound.
1228 >         */
1229 >        final K lo, hi;
1230 >        final boolean fromStart, toEnd;
1231 >        final boolean loInclusive, hiInclusive;
1232 >
1233 >        NavigableSubMap(TreeMap<K,V> m,
1234 >                        boolean fromStart, K lo, boolean loInclusive,
1235 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1236 >            if (!fromStart && !toEnd) {
1237 >                if (m.compare(lo, hi) > 0)
1238 >                    throw new IllegalArgumentException("fromKey > toKey");
1239              } else {
1240 <                toEnd = true;
1241 <                fromKey = key;
1240 >                if (!fromStart) // type check
1241 >                    m.compare(lo, lo);
1242 >                if (!toEnd)
1243 >                    m.compare(hi, hi);
1244              }
1235        }
1245  
1246 <        SubMap(boolean fromStart, K fromKey, boolean toEnd, K toKey) {
1246 >            this.m = m;
1247              this.fromStart = fromStart;
1248 <            this.fromKey= fromKey;
1248 >            this.lo = lo;
1249 >            this.loInclusive = loInclusive;
1250              this.toEnd = toEnd;
1251 <            this.toKey = toKey;
1251 >            this.hi = hi;
1252 >            this.hiInclusive = hiInclusive;
1253 >        }
1254 >
1255 >        // internal utilities
1256 >
1257 >        final boolean tooLow(Object key) {
1258 >            if (!fromStart) {
1259 >                int c = m.compare(key, lo);
1260 >                if (c < 0 || (c == 0 && !loInclusive))
1261 >                    return true;
1262 >            }
1263 >            return false;
1264 >        }
1265 >
1266 >        final boolean tooHigh(Object key) {
1267 >            if (!toEnd) {
1268 >                int c = m.compare(key, hi);
1269 >                if (c > 0 || (c == 0 && !hiInclusive))
1270 >                    return true;
1271 >            }
1272 >            return false;
1273 >        }
1274 >
1275 >        final boolean inRange(Object key) {
1276 >            return !tooLow(key) && !tooHigh(key);
1277 >        }
1278 >
1279 >        final boolean inClosedRange(Object key) {
1280 >            return (fromStart || m.compare(key, lo) >= 0)
1281 >                && (toEnd || m.compare(hi, key) >= 0);
1282 >        }
1283 >
1284 >        final boolean inRange(Object key, boolean inclusive) {
1285 >            return inclusive ? inRange(key) : inClosedRange(key);
1286 >        }
1287 >
1288 >        /*
1289 >         * Absolute versions of relation operations.
1290 >         * Subclasses map to these using like-named "sub"
1291 >         * versions that invert senses for descending maps
1292 >         */
1293 >
1294 >        final TreeMap.Entry<K,V> absLowest() {
1295 >            TreeMap.Entry<K,V> e =
1296 >                (fromStart ?  m.getFirstEntry() :
1297 >                 (loInclusive ? m.getCeilingEntry(lo) :
1298 >                                m.getHigherEntry(lo)));
1299 >            return (e == null || tooHigh(e.key)) ? null : e;
1300 >        }
1301 >
1302 >        final TreeMap.Entry<K,V> absHighest() {
1303 >            TreeMap.Entry<K,V> e =
1304 >                (toEnd ?  m.getLastEntry() :
1305 >                 (hiInclusive ?  m.getFloorEntry(hi) :
1306 >                                 m.getLowerEntry(hi)));
1307 >            return (e == null || tooLow(e.key)) ? null : e;
1308 >        }
1309 >
1310 >        final TreeMap.Entry<K,V> absCeiling(K key) {
1311 >            if (tooLow(key))
1312 >                return absLowest();
1313 >            TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1314 >            return (e == null || tooHigh(e.key)) ? null : e;
1315 >        }
1316 >
1317 >        final TreeMap.Entry<K,V> absHigher(K key) {
1318 >            if (tooLow(key))
1319 >                return absLowest();
1320 >            TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1321 >            return (e == null || tooHigh(e.key)) ? null : e;
1322 >        }
1323 >
1324 >        final TreeMap.Entry<K,V> absFloor(K key) {
1325 >            if (tooHigh(key))
1326 >                return absHighest();
1327 >            TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1328 >            return (e == null || tooLow(e.key)) ? null : e;
1329 >        }
1330 >
1331 >        final TreeMap.Entry<K,V> absLower(K key) {
1332 >            if (tooHigh(key))
1333 >                return absHighest();
1334 >            TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1335 >            return (e == null || tooLow(e.key)) ? null : e;
1336 >        }
1337 >
1338 >        /** Returns the absolute high fence for ascending traversal */
1339 >        final TreeMap.Entry<K,V> absHighFence() {
1340 >            return (toEnd ? null : (hiInclusive ?
1341 >                                    m.getHigherEntry(hi) :
1342 >                                    m.getCeilingEntry(hi)));
1343          }
1344  
1345 +        /** Return the absolute low fence for descending traversal  */
1346 +        final TreeMap.Entry<K,V> absLowFence() {
1347 +            return (fromStart ? null : (loInclusive ?
1348 +                                        m.getLowerEntry(lo) :
1349 +                                        m.getFloorEntry(lo)));
1350 +        }
1351 +
1352 +        // Abstract methods defined in ascending vs descending classes
1353 +        // These relay to the appropriate absolute versions
1354 +
1355 +        abstract TreeMap.Entry<K,V> subLowest();
1356 +        abstract TreeMap.Entry<K,V> subHighest();
1357 +        abstract TreeMap.Entry<K,V> subCeiling(K key);
1358 +        abstract TreeMap.Entry<K,V> subHigher(K key);
1359 +        abstract TreeMap.Entry<K,V> subFloor(K key);
1360 +        abstract TreeMap.Entry<K,V> subLower(K key);
1361 +
1362 +        /** Returns ascending iterator from the perspective of this submap */
1363 +        abstract Iterator<K> keyIterator();
1364 +
1365 +        /** Returns descending iterator from the perspective of this submap */
1366 +        abstract Iterator<K> descendingKeyIterator();
1367 +
1368 +        // public methods
1369 +
1370          public boolean isEmpty() {
1371 <            return entrySet.isEmpty();
1371 >            return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1372          }
1373  
1374 <        public boolean containsKey(Object key) {
1375 <            return inRange((K) key) && TreeMap.this.containsKey(key);
1374 >        public int size() {
1375 >            return (fromStart && toEnd) ? m.size() : entrySet().size();
1376          }
1377  
1378 <        public V get(Object key) {
1379 <            if (!inRange((K) key))
1254 <                return null;
1255 <            return TreeMap.this.get(key);
1378 >        public final boolean containsKey(Object key) {
1379 >            return inRange(key) && m.containsKey(key);
1380          }
1381  
1382 <        public V put(K key, V value) {
1382 >        public final V put(K key, V value) {
1383              if (!inRange(key))
1384                  throw new IllegalArgumentException("key out of range");
1385 <            return TreeMap.this.put(key, value);
1385 >            return m.put(key, value);
1386          }
1387  
1388 <        public V remove(Object key) {
1389 <            if (!inRange((K) key))
1266 <                return null;
1267 <            return TreeMap.this.remove(key);
1388 >        public final V get(Object key) {
1389 >            return !inRange(key)? null :  m.get(key);
1390          }
1391  
1392 <        public Comparator<? super K> comparator() {
1393 <            return comparator;
1392 >        public final V remove(Object key) {
1393 >            return !inRange(key)? null  : m.remove(key);
1394          }
1395  
1396 <        public K firstKey() {
1397 <            TreeMap.Entry<K,V> e = fromStart ? getFirstEntry() : getCeilingEntry(fromKey);
1276 <            K first = key(e);
1277 <            if (!toEnd && compare(first, toKey) >= 0)
1278 <                throw(new NoSuchElementException());
1279 <            return first;
1280 <        }
1281 <
1282 <        public K lastKey() {
1283 <            TreeMap.Entry<K,V> e = toEnd ? getLastEntry() : getLowerEntry(toKey);
1284 <            K last = key(e);
1285 <            if (!fromStart && compare(last, fromKey) < 0)
1286 <                throw(new NoSuchElementException());
1287 <            return last;
1288 <        }
1289 <
1290 <        public Map.Entry<K,V> firstEntry() {
1291 <            TreeMap.Entry<K,V> e = fromStart ?
1292 <                getFirstEntry() : getCeilingEntry(fromKey);
1293 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1294 <                return null;
1295 <            return e;
1396 >        public final Map.Entry<K,V> ceilingEntry(K key) {
1397 >            return exportEntry(subCeiling(key));
1398          }
1399  
1400 <        public Map.Entry<K,V> lastEntry() {
1401 <            TreeMap.Entry<K,V> e = toEnd ?
1300 <                getLastEntry() : getLowerEntry(toKey);
1301 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1302 <                return null;
1303 <            return e;
1400 >        public final K ceilingKey(K key) {
1401 >            return keyOrNull(subCeiling(key));
1402          }
1403  
1404 <        public Map.Entry<K,V> pollFirstEntry() {
1405 <            TreeMap.Entry<K,V> e = fromStart ?
1308 <                getFirstEntry() : getCeilingEntry(fromKey);
1309 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1310 <                return null;
1311 <            Map.Entry result = new SnapshotEntry(e);
1312 <            deleteEntry(e);
1313 <            return result;
1404 >        public final Map.Entry<K,V> higherEntry(K key) {
1405 >            return exportEntry(subHigher(key));
1406          }
1407  
1408 <        public Map.Entry<K,V> pollLastEntry() {
1409 <            TreeMap.Entry<K,V> e = toEnd ?
1318 <                getLastEntry() : getLowerEntry(toKey);
1319 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1320 <                return null;
1321 <            Map.Entry result = new SnapshotEntry(e);
1322 <            deleteEntry(e);
1323 <            return result;
1408 >        public final K higherKey(K key) {
1409 >            return keyOrNull(subHigher(key));
1410          }
1411  
1412 <        private TreeMap.Entry<K,V> subceiling(K key) {
1413 <            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1328 <                getCeilingEntry(fromKey) : getCeilingEntry(key);
1329 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1330 <                return null;
1331 <            return e;
1412 >        public final Map.Entry<K,V> floorEntry(K key) {
1413 >            return exportEntry(subFloor(key));
1414          }
1415  
1416 <        public Map.Entry<K,V> ceilingEntry(K key) {
1417 <            TreeMap.Entry<K,V> e = subceiling(key);
1336 <            return e == null? null : new SnapshotEntry(e);
1416 >        public final K floorKey(K key) {
1417 >            return keyOrNull(subFloor(key));
1418          }
1419  
1420 <        public K ceilingKey(K key) {
1421 <            TreeMap.Entry<K,V> e = subceiling(key);
1341 <            return e == null? null : e.key;
1420 >        public final Map.Entry<K,V> lowerEntry(K key) {
1421 >            return exportEntry(subLower(key));
1422          }
1423  
1424 +        public final K lowerKey(K key) {
1425 +            return keyOrNull(subLower(key));
1426 +        }
1427  
1428 <        private TreeMap.Entry<K,V> subhigher(K key) {
1429 <            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1347 <                getCeilingEntry(fromKey) : getHigherEntry(key);
1348 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1349 <                return null;
1350 <            return e;
1428 >        public final K firstKey() {
1429 >            return key(subLowest());
1430          }
1431  
1432 <        public Map.Entry<K,V> higherEntry(K key) {
1433 <            TreeMap.Entry<K,V> e = subhigher(key);
1355 <            return e == null? null : new SnapshotEntry(e);
1432 >        public final K lastKey() {
1433 >            return key(subHighest());
1434          }
1435  
1436 <        public K higherKey(K key) {
1437 <            TreeMap.Entry<K,V> e = subhigher(key);
1360 <            return e == null? null : e.key;
1436 >        public final Map.Entry<K,V> firstEntry() {
1437 >            return exportEntry(subLowest());
1438          }
1439  
1440 <        private TreeMap.Entry<K,V> subfloor(K key) {
1441 <            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1365 <                getLowerEntry(toKey) : getFloorEntry(key);
1366 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1367 <                return null;
1368 <            return e;
1440 >        public final Map.Entry<K,V> lastEntry() {
1441 >            return exportEntry(subHighest());
1442          }
1443  
1444 <        public Map.Entry<K,V> floorEntry(K key) {
1445 <            TreeMap.Entry<K,V> e = subfloor(key);
1446 <            return e == null? null : new SnapshotEntry(e);
1444 >        public final Map.Entry<K,V> pollFirstEntry() {
1445 >            TreeMap.Entry<K,V> e = subLowest();
1446 >            Map.Entry<K,V> result = exportEntry(e);
1447 >            if (e != null)
1448 >                m.deleteEntry(e);
1449 >            return result;
1450          }
1451  
1452 <        public K floorKey(K key) {
1453 <            TreeMap.Entry<K,V> e = subfloor(key);
1454 <            return e == null? null : e.key;
1452 >        public final Map.Entry<K,V> pollLastEntry() {
1453 >            TreeMap.Entry<K,V> e = subHighest();
1454 >            Map.Entry<K,V> result = exportEntry(e);
1455 >            if (e != null)
1456 >                m.deleteEntry(e);
1457 >            return result;
1458          }
1459  
1460 <        private TreeMap.Entry<K,V> sublower(K key) {
1461 <            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1462 <                getLowerEntry(toKey) :  getLowerEntry(key);
1463 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1464 <                return null;
1465 <            return e;
1460 >        // Views
1461 >        transient NavigableMap<K,V> descendingMapView = null;
1462 >        transient EntrySetView entrySetView = null;
1463 >        transient KeySet<K> navigableKeySetView = null;
1464 >
1465 >        public final NavigableSet<K> navigableKeySet() {
1466 >            KeySet<K> nksv = navigableKeySetView;
1467 >            return (nksv != null) ? nksv :
1468 >                (navigableKeySetView = new TreeMap.KeySet(this));
1469          }
1470  
1471 <        public Map.Entry<K,V> lowerEntry(K key) {
1472 <            TreeMap.Entry<K,V> e = sublower(key);
1391 <            return e == null? null : new SnapshotEntry(e);
1471 >        public final Set<K> keySet() {
1472 >            return navigableKeySet();
1473          }
1474  
1475 <        public K lowerKey(K key) {
1476 <            TreeMap.Entry<K,V> e = sublower(key);
1396 <            return e == null? null : e.key;
1475 >        public NavigableSet<K> descendingKeySet() {
1476 >            return descendingMap().navigableKeySet();
1477          }
1478  
1479 <        private transient Set<Map.Entry<K,V>> entrySet = new EntrySetView();
1479 >        public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1480 >            return subMap(fromKey, true, toKey, false);
1481 >        }
1482  
1483 <        public Set<Map.Entry<K,V>> entrySet() {
1484 <            return entrySet;
1483 >        public final SortedMap<K,V> headMap(K toKey) {
1484 >            return headMap(toKey, false);
1485          }
1486  
1487 <        private class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1487 >        public final SortedMap<K,V> tailMap(K fromKey) {
1488 >            return tailMap(fromKey, true);
1489 >        }
1490 >
1491 >        // View classes
1492 >
1493 >        abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1494              private transient int size = -1, sizeModCount;
1495  
1496              public int size() {
1497 <                if (size == -1 || sizeModCount != TreeMap.this.modCount) {
1498 <                    size = 0;  sizeModCount = TreeMap.this.modCount;
1497 >                if (fromStart && toEnd)
1498 >                    return m.size();
1499 >                if (size == -1 || sizeModCount != m.modCount) {
1500 >                    sizeModCount = m.modCount;
1501 >                    size = 0;
1502                      Iterator i = iterator();
1503                      while (i.hasNext()) {
1504                          size++;
# Line 1418 | Line 1509 | public class TreeMap<K,V>
1509              }
1510  
1511              public boolean isEmpty() {
1512 <                return !iterator().hasNext();
1512 >                TreeMap.Entry<K,V> n = absLowest();
1513 >                return n == null || tooHigh(n.key);
1514              }
1515  
1516              public boolean contains(Object o) {
# Line 1428 | Line 1520 | public class TreeMap<K,V>
1520                  K key = entry.getKey();
1521                  if (!inRange(key))
1522                      return false;
1523 <                TreeMap.Entry node = getEntry(key);
1523 >                TreeMap.Entry node = m.getEntry(key);
1524                  return node != null &&
1525 <                       valEquals(node.getValue(), entry.getValue());
1525 >                    valEquals(node.getValue(), entry.getValue());
1526              }
1527  
1528              public boolean remove(Object o) {
# Line 1440 | Line 1532 | public class TreeMap<K,V>
1532                  K key = entry.getKey();
1533                  if (!inRange(key))
1534                      return false;
1535 <                TreeMap.Entry<K,V> node = getEntry(key);
1535 >                TreeMap.Entry<K,V> node = m.getEntry(key);
1536                  if (node!=null && valEquals(node.getValue(),entry.getValue())){
1537 <                    deleteEntry(node);
1537 >                    m.deleteEntry(node);
1538                      return true;
1539                  }
1540                  return false;
1541              }
1450
1451            public Iterator<Map.Entry<K,V>> iterator() {
1452                return new SubMapEntryIterator(
1453                    (fromStart ? getFirstEntry() : getCeilingEntry(fromKey)),
1454                    (toEnd     ? null            : getCeilingEntry(toKey)));
1455            }
1542          }
1543  
1544 <        private transient Set<Map.Entry<K,V>> descendingEntrySetView = null;
1545 <        private transient Set<K> descendingKeySetView = null;
1546 <
1547 <        public Set<Map.Entry<K,V>> descendingEntrySet() {
1548 <            Set<Map.Entry<K,V>> es = descendingEntrySetView;
1549 <            return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
1550 <        }
1544 >        /**
1545 >         * Iterators for SubMaps
1546 >         */
1547 >        abstract class SubMapIterator<T> implements Iterator<T> {
1548 >            TreeMap.Entry<K,V> lastReturned;
1549 >            TreeMap.Entry<K,V> next;
1550 >            final K fenceKey;
1551 >            int expectedModCount;
1552  
1553 <        public Set<K> descendingKeySet() {
1554 <            Set<K> ks = descendingKeySetView;
1555 <            return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
1556 <        }
1553 >            SubMapIterator(TreeMap.Entry<K,V> first,
1554 >                           TreeMap.Entry<K,V> fence) {
1555 >                expectedModCount = m.modCount;
1556 >                lastReturned = null;
1557 >                next = first;
1558 >                fenceKey = fence == null ? null : fence.key;
1559 >            }
1560  
1561 <        private class DescendingEntrySetView extends EntrySetView {
1562 <            public Iterator<Map.Entry<K,V>> iterator() {
1473 <                return new DescendingSubMapEntryIterator
1474 <                    ((toEnd     ? getLastEntry()  : getLowerEntry(toKey)),
1475 <                     (fromStart ? null            : getLowerEntry(fromKey)));
1561 >            public final boolean hasNext() {
1562 >                return next != null && next.key != fenceKey;
1563              }
1477        }
1564  
1565 <        private class DescendingKeySetView extends AbstractSet<K> {
1566 <            public Iterator<K> iterator() {
1567 <                return new Iterator<K>() {
1568 <                    private Iterator<Entry<K,V>> i = descendingEntrySet().iterator();
1569 <                    
1570 <                    public boolean hasNext() { return i.hasNext(); }
1571 <                    public K next() { return i.next().getKey(); }
1572 <                    public void remove() { i.remove(); }
1487 <                };
1565 >            final TreeMap.Entry<K,V> nextEntry() {
1566 >                TreeMap.Entry<K,V> e = lastReturned = next;
1567 >                if (e == null || e.key == fenceKey)
1568 >                    throw new NoSuchElementException();
1569 >                if (m.modCount != expectedModCount)
1570 >                    throw new ConcurrentModificationException();
1571 >                next = successor(e);
1572 >                return e;
1573              }
1574 <            
1575 <            public int size() {
1576 <                return SubMap.this.size();
1574 >
1575 >            final TreeMap.Entry<K,V> prevEntry() {
1576 >                TreeMap.Entry<K,V> e = lastReturned = next;
1577 >                if (e == null || e.key == fenceKey)
1578 >                    throw new NoSuchElementException();
1579 >                if (m.modCount != expectedModCount)
1580 >                    throw new ConcurrentModificationException();
1581 >                next = predecessor(e);
1582 >                return e;
1583              }
1584 <            
1585 <            public boolean contains(Object k) {
1586 <                return SubMap.this.containsKey(k);
1584 >
1585 >            final void removeAscending() {
1586 >                if (lastReturned == null)
1587 >                    throw new IllegalStateException();
1588 >                if (m.modCount != expectedModCount)
1589 >                    throw new ConcurrentModificationException();
1590 >                // deleted entries are replaced by their successors
1591 >                if (lastReturned.left != null && lastReturned.right != null)
1592 >                    next = lastReturned;
1593 >                m.deleteEntry(lastReturned);
1594 >                lastReturned = null;
1595 >                expectedModCount = m.modCount;
1596              }
1497        }
1597  
1598 +            final void removeDescending() {
1599 +                if (lastReturned == null)
1600 +                    throw new IllegalStateException();
1601 +                if (m.modCount != expectedModCount)
1602 +                    throw new ConcurrentModificationException();
1603 +                m.deleteEntry(lastReturned);
1604 +                lastReturned = null;
1605 +                expectedModCount = m.modCount;
1606 +            }
1607  
1500        public NavigableMap<K,V> subMap(K fromKey, K toKey) {
1501            if (!inRange2(fromKey))
1502                throw new IllegalArgumentException("fromKey out of range");
1503            if (!inRange2(toKey))
1504                throw new IllegalArgumentException("toKey out of range");
1505            return new SubMap(fromKey, toKey);
1608          }
1609  
1610 <        public NavigableMap<K,V> headMap(K toKey) {
1611 <            if (!inRange2(toKey))
1612 <                throw new IllegalArgumentException("toKey out of range");
1613 <            return new SubMap(fromStart, fromKey, false, toKey);
1610 >        final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1611 >            SubMapEntryIterator(TreeMap.Entry<K,V> first,
1612 >                                TreeMap.Entry<K,V> fence) {
1613 >                super(first, fence);
1614 >            }
1615 >            public Map.Entry<K,V> next() {
1616 >                return nextEntry();
1617 >            }
1618 >            public void remove() {
1619 >                removeAscending();
1620 >            }
1621          }
1622  
1623 <        public NavigableMap<K,V> tailMap(K fromKey) {
1624 <            if (!inRange2(fromKey))
1625 <                throw new IllegalArgumentException("fromKey out of range");
1626 <            return new SubMap(false, fromKey, toEnd, toKey);
1623 >        final class SubMapKeyIterator extends SubMapIterator<K> {
1624 >            SubMapKeyIterator(TreeMap.Entry<K,V> first,
1625 >                              TreeMap.Entry<K,V> fence) {
1626 >                super(first, fence);
1627 >            }
1628 >            public K next() {
1629 >                return nextEntry().key;
1630 >            }
1631 >            public void remove() {
1632 >                removeAscending();
1633 >            }
1634          }
1635  
1636 <        private boolean inRange(K key) {
1637 <            return (fromStart || compare(key, fromKey) >= 0) &&
1638 <                   (toEnd     || compare(key, toKey)   <  0);
1636 >        final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1637 >            DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1638 >                                          TreeMap.Entry<K,V> fence) {
1639 >                super(last, fence);
1640 >            }
1641 >
1642 >            public Map.Entry<K,V> next() {
1643 >                return prevEntry();
1644 >            }
1645 >            public void remove() {
1646 >                removeDescending();
1647 >            }
1648          }
1649  
1650 <        // This form allows the high endpoint (as well as all legit keys)
1651 <        private boolean inRange2(K key) {
1652 <            return (fromStart || compare(key, fromKey) >= 0) &&
1653 <                   (toEnd     || compare(key, toKey)   <= 0);
1650 >        final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
1651 >            DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1652 >                                        TreeMap.Entry<K,V> fence) {
1653 >                super(last, fence);
1654 >            }
1655 >            public K next() {
1656 >                return prevEntry().key;
1657 >            }
1658 >            public void remove() {
1659 >                removeDescending();
1660 >            }
1661          }
1662      }
1663  
1664      /**
1665 <     * TreeMap Iterator.
1665 >     * @serial include
1666       */
1667 <    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1668 <        int expectedModCount = TreeMap.this.modCount;
1537 <        Entry<K,V> lastReturned = null;
1538 <        Entry<K,V> next;
1667 >    static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1668 >        private static final long serialVersionUID = 912986545866124060L;
1669  
1670 <        PrivateEntryIterator(Entry<K,V> first) {
1671 <            next = first;
1670 >        AscendingSubMap(TreeMap<K,V> m,
1671 >                        boolean fromStart, K lo, boolean loInclusive,
1672 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1673 >            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1674          }
1675  
1676 <        public boolean hasNext() {
1677 <            return next != null;
1676 >        public Comparator<? super K> comparator() {
1677 >            return m.comparator();
1678          }
1679  
1680 <        Entry<K,V> nextEntry() {
1681 <            if (next == null)
1682 <                throw new NoSuchElementException();
1683 <            if (modCount != expectedModCount)
1684 <                throw new ConcurrentModificationException();
1685 <            lastReturned = next;
1686 <            next = successor(next);
1687 <            return lastReturned;
1680 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1681 >                                        K toKey,   boolean toInclusive) {
1682 >            if (!inRange(fromKey, fromInclusive))
1683 >                throw new IllegalArgumentException("fromKey out of range");
1684 >            if (!inRange(toKey, toInclusive))
1685 >                throw new IllegalArgumentException("toKey out of range");
1686 >            return new AscendingSubMap(m,
1687 >                                       false, fromKey, fromInclusive,
1688 >                                       false, toKey,   toInclusive);
1689          }
1690  
1691 <        public void remove() {
1692 <            if (lastReturned == null)
1693 <                throw new IllegalStateException();
1694 <            if (modCount != expectedModCount)
1695 <                throw new ConcurrentModificationException();
1696 <            if (lastReturned.left != null && lastReturned.right != null)
1564 <                next = lastReturned;
1565 <            deleteEntry(lastReturned);
1566 <            expectedModCount++;
1567 <            lastReturned = null;
1691 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1692 >            if (!inRange(toKey, inclusive))
1693 >                throw new IllegalArgumentException("toKey out of range");
1694 >            return new AscendingSubMap(m,
1695 >                                       fromStart, lo,    loInclusive,
1696 >                                       false,     toKey, inclusive);
1697          }
1569    }
1698  
1699 <    class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1700 <        EntryIterator(Entry<K,V> first) {
1701 <            super(first);
1699 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1700 >            if (!inRange(fromKey, inclusive))
1701 >                throw new IllegalArgumentException("fromKey out of range");
1702 >            return new AscendingSubMap(m,
1703 >                                       false, fromKey, inclusive,
1704 >                                       toEnd, hi,      hiInclusive);
1705          }
1706  
1707 <        public Map.Entry<K,V> next() {
1708 <            return nextEntry();
1707 >        public NavigableMap<K,V> descendingMap() {
1708 >            NavigableMap<K,V> mv = descendingMapView;
1709 >            return (mv != null) ? mv :
1710 >                (descendingMapView =
1711 >                 new DescendingSubMap(m,
1712 >                                      fromStart, lo, loInclusive,
1713 >                                      toEnd,     hi, hiInclusive));
1714          }
1579    }
1715  
1716 <    class KeyIterator extends PrivateEntryIterator<K> {
1717 <        KeyIterator(Entry<K,V> first) {
1583 <            super(first);
1716 >        Iterator<K> keyIterator() {
1717 >            return new SubMapKeyIterator(absLowest(), absHighFence());
1718          }
1585        public K next() {
1586            return nextEntry().key;
1587        }
1588    }
1719  
1720 <    class ValueIterator extends PrivateEntryIterator<V> {
1721 <        ValueIterator(Entry<K,V> first) {
1592 <            super(first);
1593 <        }
1594 <        public V next() {
1595 <            return nextEntry().value;
1720 >        Iterator<K> descendingKeyIterator() {
1721 >            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1722          }
1597    }
1723  
1724 <    class SubMapEntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1725 <        private final K firstExcludedKey;
1726 <
1727 <        SubMapEntryIterator(Entry<K,V> first, Entry<K,V> firstExcluded) {
1603 <            super(first);
1604 <            firstExcludedKey = (firstExcluded == null
1605 <                                ? null
1606 <                                : firstExcluded.key);
1724 >        final class AscendingEntrySetView extends EntrySetView {
1725 >            public Iterator<Map.Entry<K,V>> iterator() {
1726 >                return new SubMapEntryIterator(absLowest(), absHighFence());
1727 >            }
1728          }
1729  
1730 <        public boolean hasNext() {
1731 <            return next != null && next.key != firstExcludedKey;
1730 >        public Set<Map.Entry<K,V>> entrySet() {
1731 >            EntrySetView es = entrySetView;
1732 >            return (es != null) ? es : new AscendingEntrySetView();
1733          }
1734  
1735 <        public Map.Entry<K,V> next() {
1736 <            if (next == null || next.key == firstExcludedKey)
1737 <                throw new NoSuchElementException();
1738 <            return nextEntry();
1739 <        }
1735 >        TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
1736 >        TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
1737 >        TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
1738 >        TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
1739 >        TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
1740 >        TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
1741      }
1742  
1620
1743      /**
1744 <     * Base for Descending Iterators.
1744 >     * @serial include
1745       */
1746 <    abstract class DescendingPrivateEntryIterator<T> extends PrivateEntryIterator<T> {
1747 <        DescendingPrivateEntryIterator(Entry<K,V> first) {
1748 <            super(first);
1746 >    static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
1747 >        private static final long serialVersionUID = 912986545866120460L;
1748 >        DescendingSubMap(TreeMap<K,V> m,
1749 >                        boolean fromStart, K lo, boolean loInclusive,
1750 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1751 >            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1752          }
1753  
1754 <        Entry<K,V> nextEntry() {
1755 <            if (next == null)
1631 <                throw new NoSuchElementException();
1632 <            if (modCount != expectedModCount)
1633 <                throw new ConcurrentModificationException();
1634 <            lastReturned = next;
1635 <            next = predecessor(next);
1636 <            return lastReturned;
1637 <        }
1638 <    }
1754 >        private final Comparator<? super K> reverseComparator =
1755 >            Collections.reverseOrder(m.comparator);
1756  
1757 <    class DescendingEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1758 <        DescendingEntryIterator(Entry<K,V> first) {
1642 <            super(first);
1757 >        public Comparator<? super K> comparator() {
1758 >            return reverseComparator;
1759          }
1760 <        public Map.Entry<K,V> next() {
1761 <            return nextEntry();
1760 >
1761 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1762 >                                        K toKey,   boolean toInclusive) {
1763 >            if (!inRange(fromKey, fromInclusive))
1764 >                throw new IllegalArgumentException("fromKey out of range");
1765 >            if (!inRange(toKey, toInclusive))
1766 >                throw new IllegalArgumentException("toKey out of range");
1767 >            return new DescendingSubMap(m,
1768 >                                        false, toKey,   toInclusive,
1769 >                                        false, fromKey, fromInclusive);
1770          }
1647    }
1771  
1772 <    class DescendingKeyIterator extends DescendingPrivateEntryIterator<K> {
1773 <        DescendingKeyIterator(Entry<K,V> first) {
1774 <            super(first);
1772 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1773 >            if (!inRange(toKey, inclusive))
1774 >                throw new IllegalArgumentException("toKey out of range");
1775 >            return new DescendingSubMap(m,
1776 >                                        false, toKey, inclusive,
1777 >                                        toEnd, hi,    hiInclusive);
1778          }
1779 <        public K next() {
1780 <            return nextEntry().key;
1779 >
1780 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1781 >            if (!inRange(fromKey, inclusive))
1782 >                throw new IllegalArgumentException("fromKey out of range");
1783 >            return new DescendingSubMap(m,
1784 >                                        fromStart, lo, loInclusive,
1785 >                                        false, fromKey, inclusive);
1786          }
1656    }
1787  
1788 +        public NavigableMap<K,V> descendingMap() {
1789 +            NavigableMap<K,V> mv = descendingMapView;
1790 +            return (mv != null) ? mv :
1791 +                (descendingMapView =
1792 +                 new AscendingSubMap(m,
1793 +                                     fromStart, lo, loInclusive,
1794 +                                     toEnd,     hi, hiInclusive));
1795 +        }
1796  
1797 <    class DescendingSubMapEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1798 <        private final K lastExcludedKey;
1797 >        Iterator<K> keyIterator() {
1798 >            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1799 >        }
1800  
1801 <        DescendingSubMapEntryIterator(Entry<K,V> last, Entry<K,V> lastExcluded) {
1802 <            super(last);
1664 <            lastExcludedKey = (lastExcluded == null
1665 <                                ? null
1666 <                                : lastExcluded.key);
1801 >        Iterator<K> descendingKeyIterator() {
1802 >            return new SubMapKeyIterator(absLowest(), absHighFence());
1803          }
1804  
1805 <        public boolean hasNext() {
1806 <            return next != null && next.key != lastExcludedKey;
1805 >        final class DescendingEntrySetView extends EntrySetView {
1806 >            public Iterator<Map.Entry<K,V>> iterator() {
1807 >                return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
1808 >            }
1809          }
1810  
1811 <        public Map.Entry<K,V> next() {
1812 <            if (next == null || next.key == lastExcludedKey)
1813 <                throw new NoSuchElementException();
1676 <            return nextEntry();
1811 >        public Set<Map.Entry<K,V>> entrySet() {
1812 >            EntrySetView es = entrySetView;
1813 >            return (es != null) ? es : new DescendingEntrySetView();
1814          }
1815  
1816 +        TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
1817 +        TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
1818 +        TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
1819 +        TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
1820 +        TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
1821 +        TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
1822      }
1823  
1681
1824      /**
1825 <     * Compares two keys using the correct comparison method for this TreeMap.
1825 >     * This class exists solely for the sake of serialization
1826 >     * compatibility with previous releases of TreeMap that did not
1827 >     * support NavigableMap.  It translates an old-version SubMap into
1828 >     * a new-version AscendingSubMap. This class is never otherwise
1829 >     * used.
1830 >     *
1831 >     * @serial include
1832       */
1833 <    private int compare(K k1, K k2) {
1834 <        return (comparator==null ? ((Comparable</*-*/K>)k1).compareTo(k2)
1835 <                                 : comparator.compare((K)k1, (K)k2));
1833 >    private class SubMap extends AbstractMap<K,V>
1834 >        implements SortedMap<K,V>, java.io.Serializable {
1835 >        private static final long serialVersionUID = -6520786458950516097L;
1836 >        private boolean fromStart = false, toEnd = false;
1837 >        private K fromKey, toKey;
1838 >        private Object readResolve() {
1839 >            return new AscendingSubMap(TreeMap.this,
1840 >                                       fromStart, fromKey, true,
1841 >                                       toEnd, toKey, false);
1842 >        }
1843 >        public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1844 >        public K lastKey() { throw new InternalError(); }
1845 >        public K firstKey() { throw new InternalError(); }
1846 >        public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1847 >        public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1848 >        public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1849 >        public Comparator<? super K> comparator() { throw new InternalError(); }
1850      }
1851  
1852 <    /**
1853 <     * Test two values  for equality.  Differs from o1.equals(o2) only in
1692 <     * that it copes with <tt>null</tt> o1 properly.
1693 <     */
1694 <    private static boolean valEquals(Object o1, Object o2) {
1695 <        return (o1==null ? o2==null : o1.equals(o2));
1696 <    }
1852 >
1853 >    // Red-black mechanics
1854  
1855      private static final boolean RED   = false;
1856      private static final boolean BLACK = true;
# Line 1703 | Line 1860 | public class TreeMap<K,V>
1860       * user (see Map.Entry).
1861       */
1862  
1863 <    static class Entry<K,V> implements Map.Entry<K,V> {
1863 >    static final class Entry<K,V> implements Map.Entry<K,V> {
1864          K key;
1865          V value;
1866          Entry<K,V> left = null;
# Line 1724 | Line 1881 | public class TreeMap<K,V>
1881          /**
1882           * Returns the key.
1883           *
1884 <         * @return the key.
1884 >         * @return the key
1885           */
1886          public K getKey() {
1887              return key;
# Line 1733 | Line 1890 | public class TreeMap<K,V>
1890          /**
1891           * Returns the value associated with the key.
1892           *
1893 <         * @return the value associated with the key.
1893 >         * @return the value associated with the key
1894           */
1895          public V getValue() {
1896              return value;
# Line 1744 | Line 1901 | public class TreeMap<K,V>
1901           * value.
1902           *
1903           * @return the value associated with the key before this method was
1904 <         *           called.
1904 >         *         called
1905           */
1906          public V setValue(V value) {
1907              V oldValue = this.value;
# Line 1755 | Line 1912 | public class TreeMap<K,V>
1912          public boolean equals(Object o) {
1913              if (!(o instanceof Map.Entry))
1914                  return false;
1915 <            Map.Entry e = (Map.Entry)o;
1915 >            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1916  
1917              return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1918          }
# Line 1775 | Line 1932 | public class TreeMap<K,V>
1932       * Returns the first Entry in the TreeMap (according to the TreeMap's
1933       * key-sort function).  Returns null if the TreeMap is empty.
1934       */
1935 <    private Entry<K,V> getFirstEntry() {
1935 >    final Entry<K,V> getFirstEntry() {
1936          Entry<K,V> p = root;
1937          if (p != null)
1938              while (p.left != null)
# Line 1787 | Line 1944 | public class TreeMap<K,V>
1944       * Returns the last Entry in the TreeMap (according to the TreeMap's
1945       * key-sort function).  Returns null if the TreeMap is empty.
1946       */
1947 <    private Entry<K,V> getLastEntry() {
1947 >    final Entry<K,V> getLastEntry() {
1948          Entry<K,V> p = root;
1949          if (p != null)
1950              while (p.right != null)
# Line 1798 | Line 1955 | public class TreeMap<K,V>
1955      /**
1956       * Returns the successor of the specified Entry, or null if no such.
1957       */
1958 <    private Entry<K,V> successor(Entry<K,V> t) {
1958 >    static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
1959          if (t == null)
1960              return null;
1961          else if (t.right != null) {
# Line 1820 | Line 1977 | public class TreeMap<K,V>
1977      /**
1978       * Returns the predecessor of the specified Entry, or null if no such.
1979       */
1980 <    private Entry<K,V> predecessor(Entry<K,V> t) {
1980 >    static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
1981          if (t == null)
1982              return null;
1983          else if (t.left != null) {
# Line 1870 | Line 2027 | public class TreeMap<K,V>
2027          return (p == null) ? null: p.right;
2028      }
2029  
2030 <    /** From CLR **/
2030 >    /** From CLR */
2031      private void rotateLeft(Entry<K,V> p) {
2032 <        Entry<K,V> r = p.right;
2033 <        p.right = r.left;
2034 <        if (r.left != null)
2035 <            r.left.parent = p;
2036 <        r.parent = p.parent;
2037 <        if (p.parent == null)
2038 <            root = r;
2039 <        else if (p.parent.left == p)
2040 <            p.parent.left = r;
2041 <        else
2042 <            p.parent.right = r;
2043 <        r.left = p;
2044 <        p.parent = r;
2032 >        if (p != null) {
2033 >            Entry<K,V> r = p.right;
2034 >            p.right = r.left;
2035 >            if (r.left != null)
2036 >                r.left.parent = p;
2037 >            r.parent = p.parent;
2038 >            if (p.parent == null)
2039 >                root = r;
2040 >            else if (p.parent.left == p)
2041 >                p.parent.left = r;
2042 >            else
2043 >                p.parent.right = r;
2044 >            r.left = p;
2045 >            p.parent = r;
2046 >        }
2047      }
2048  
2049 <    /** From CLR **/
2049 >    /** From CLR */
2050      private void rotateRight(Entry<K,V> p) {
2051 <        Entry<K,V> l = p.left;
2052 <        p.left = l.right;
2053 <        if (l.right != null) l.right.parent = p;
2054 <        l.parent = p.parent;
2055 <        if (p.parent == null)
2056 <            root = l;
2057 <        else if (p.parent.right == p)
2058 <            p.parent.right = l;
2059 <        else p.parent.left = l;
2060 <        l.right = p;
2061 <        p.parent = l;
2051 >        if (p != null) {
2052 >            Entry<K,V> l = p.left;
2053 >            p.left = l.right;
2054 >            if (l.right != null) l.right.parent = p;
2055 >            l.parent = p.parent;
2056 >            if (p.parent == null)
2057 >                root = l;
2058 >            else if (p.parent.right == p)
2059 >                p.parent.right = l;
2060 >            else p.parent.left = l;
2061 >            l.right = p;
2062 >            p.parent = l;
2063 >        }
2064      }
2065  
2066 <
1906 <    /** From CLR **/
2066 >    /** From CLR */
2067      private void fixAfterInsertion(Entry<K,V> x) {
2068          x.color = RED;
2069  
# Line 1922 | Line 2082 | public class TreeMap<K,V>
2082                      }
2083                      setColor(parentOf(x), BLACK);
2084                      setColor(parentOf(parentOf(x)), RED);
2085 <                    if (parentOf(parentOf(x)) != null)
1926 <                        rotateRight(parentOf(parentOf(x)));
2085 >                    rotateRight(parentOf(parentOf(x)));
2086                  }
2087              } else {
2088                  Entry<K,V> y = leftOf(parentOf(parentOf(x)));
# Line 1937 | Line 2096 | public class TreeMap<K,V>
2096                          x = parentOf(x);
2097                          rotateRight(x);
2098                      }
2099 <                    setColor(parentOf(x),  BLACK);
2099 >                    setColor(parentOf(x), BLACK);
2100                      setColor(parentOf(parentOf(x)), RED);
2101 <                    if (parentOf(parentOf(x)) != null)
1943 <                        rotateLeft(parentOf(parentOf(x)));
2101 >                    rotateLeft(parentOf(parentOf(x)));
2102                  }
2103              }
2104          }
# Line 1950 | Line 2108 | public class TreeMap<K,V>
2108      /**
2109       * Delete node p, and then rebalance the tree.
2110       */
1953
2111      private void deleteEntry(Entry<K,V> p) {
2112 <        decrementSize();
2112 >        modCount++;
2113 >        size--;
2114  
2115          // If strictly internal, copy successor's element to p and then make p
2116          // point to successor.
# Line 1998 | Line 2156 | public class TreeMap<K,V>
2156          }
2157      }
2158  
2159 <    /** From CLR **/
2159 >    /** From CLR */
2160      private void fixAfterDeletion(Entry<K,V> x) {
2161          while (x != root && colorOf(x) == BLACK) {
2162              if (x == leftOf(parentOf(x))) {
# Line 2013 | Line 2171 | public class TreeMap<K,V>
2171  
2172                  if (colorOf(leftOf(sib))  == BLACK &&
2173                      colorOf(rightOf(sib)) == BLACK) {
2174 <                    setColor(sib,  RED);
2174 >                    setColor(sib, RED);
2175                      x = parentOf(x);
2176                  } else {
2177                      if (colorOf(rightOf(sib)) == BLACK) {
# Line 2040 | Line 2198 | public class TreeMap<K,V>
2198  
2199                  if (colorOf(rightOf(sib)) == BLACK &&
2200                      colorOf(leftOf(sib)) == BLACK) {
2201 <                    setColor(sib,  RED);
2201 >                    setColor(sib, RED);
2202                      x = parentOf(x);
2203                  } else {
2204                      if (colorOf(leftOf(sib)) == BLACK) {
# Line 2091 | Line 2249 | public class TreeMap<K,V>
2249          }
2250      }
2251  
2094
2095
2252      /**
2253       * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2254       * deserialize it).
# Line 2108 | Line 2264 | public class TreeMap<K,V>
2264          buildFromSorted(size, null, s, null);
2265      }
2266  
2267 <    /** Intended to be called only from TreeSet.readObject **/
2267 >    /** Intended to be called only from TreeSet.readObject */
2268      void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2269          throws java.io.IOException, ClassNotFoundException {
2270          buildFromSorted(size, null, s, defaultVal);
2271      }
2272  
2273 <    /** Intended to be called only from TreeSet.addAll **/
2274 <    void addAllForTreeSet(SortedSet<Map.Entry<K,V>> set, V defaultVal) {
2273 >    /** Intended to be called only from TreeSet.addAll */
2274 >    void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2275          try {
2276              buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2277          } catch (java.io.IOException cannotHappen) {
# Line 2140 | Line 2296 | public class TreeMap<K,V>
2296       * to calling this method.
2297       *
2298       * @param size the number of keys (or key-value pairs) to be read from
2299 <     *        the iterator or stream.
2299 >     *        the iterator or stream
2300       * @param it If non-null, new entries are created from entries
2301       *        or keys read from this iterator.
2302       * @param str If non-null, new entries are created from keys and
# Line 2154 | Line 2310 | public class TreeMap<K,V>
2310       * @throws ClassNotFoundException propagated from readObject.
2311       *         This cannot occur if str is null.
2312       */
2313 <    private
2314 <    void buildFromSorted(int size, Iterator it,
2315 <                         java.io.ObjectInputStream str,
2160 <                         V defaultVal)
2313 >    private void buildFromSorted(int size, Iterator it,
2314 >                                 java.io.ObjectInputStream str,
2315 >                                 V defaultVal)
2316          throws  java.io.IOException, ClassNotFoundException {
2317          this.size = size;
2318 <        root =
2319 <            buildFromSorted(0, 0, size-1, computeRedLevel(size),
2165 <                            it, str, defaultVal);
2318 >        root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2319 >                               it, str, defaultVal);
2320      }
2321  
2322      /**
2323       * Recursive "helper method" that does the real work of the
2324 <     * of the previous method.  Identically named parameters have
2324 >     * previous method.  Identically named parameters have
2325       * identical definitions.  Additional parameters are documented below.
2326       * It is assumed that the comparator and size fields of the TreeMap are
2327       * already set prior to calling this method.  (It ignores both fields.)
# Line 2175 | Line 2329 | public class TreeMap<K,V>
2329       * @param level the current level of tree. Initial call should be 0.
2330       * @param lo the first element index of this subtree. Initial should be 0.
2331       * @param hi the last element index of this subtree.  Initial should be
2332 <     *              size-1.
2332 >     *        size-1.
2333       * @param redLevel the level at which nodes should be red.
2334       *        Must be equal to computeRedLevel for tree of this size.
2335       */
# Line 2259 | Line 2413 | public class TreeMap<K,V>
2413              level++;
2414          return level;
2415      }
2262
2263
2264    /**
2265     * Entry holding a snapshot of a key-value pair
2266     */
2267    static class SnapshotEntry<K,V> implements Map.Entry<K,V> {
2268        final K key;
2269        final V value;
2270
2271        public SnapshotEntry(Entry<K,V> e) {
2272            this.key   = e.getKey();
2273            this.value = e.getValue();
2274        }
2275
2276        public K getKey() {
2277            return key;
2278        }
2279
2280        public V getValue() {
2281            return value;
2282        }
2283
2284        /**
2285         * Always fails, throwing <tt>UnsupportedOperationException</tt>.
2286         * @throws UnsupportedOperationException always.
2287         */
2288        public V setValue(V value) {
2289            throw new UnsupportedOperationException();
2290        }
2291
2292        public boolean equals(Object o) {
2293            if (!(o instanceof Map.Entry))
2294                return false;
2295            Map.Entry e = (Map.Entry)o;
2296            return eq(key, e.getKey()) && eq(value, e.getValue());
2297        }
2298
2299        public int hashCode() {
2300            return ((key   == null)   ? 0 :   key.hashCode()) ^
2301                   ((value == null)   ? 0 : value.hashCode());
2302        }
2303
2304        public String toString() {
2305            return key + "=" + value;
2306        }
2307
2308        private static boolean eq(Object o1, Object o2) {
2309            return (o1 == null ? o2 == null : o1.equals(o2));
2310        }
2311    }
2312
2416   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines