ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/TreeMap.java (file contents):
Revision 1.1 by dl, Tue Dec 28 12:14:07 2004 UTC vs.
Revision 1.44 by jsr166, Mon May 21 20:23:38 2007 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24   */
25  
26 < package java.util;  
9 <
26 > package java.util;
27  
28   /**
29 < * Red-Black tree based implementation of the <tt>NavigableMap</tt> interface.
30 < * This class guarantees that the map will be in ascending key order, sorted
31 < * according to the <i>natural order</i> for the key's class (see
32 < * <tt>Comparable</tt>), or by the comparator provided at creation time,
16 < * depending on which constructor is used.<p>
29 > * A Red-Black tree based {@link NavigableMap} implementation.
30 > * The map is sorted according to the {@linkplain Comparable natural
31 > * ordering} of its keys, or by a {@link Comparator} provided at map
32 > * creation time, depending on which constructor is used.
33   *
34 < * This implementation provides guaranteed log(n) time cost for the
34 > * <p>This implementation provides guaranteed log(n) time cost for the
35   * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
36   * operations.  Algorithms are adaptations of those in Cormen, Leiserson, and
37 < * Rivest's <I>Introduction to Algorithms</I>.<p>
37 > * Rivest's <I>Introduction to Algorithms</I>.
38   *
39 < * Note that the ordering maintained by a sorted map (whether or not an
39 > * <p>Note that the ordering maintained by a sorted map (whether or not an
40   * explicit comparator is provided) must be <i>consistent with equals</i> if
41   * this sorted map is to correctly implement the <tt>Map</tt> interface.  (See
42   * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
# Line 30 | Line 46 | package java.util;
46   * method, so two keys that are deemed equal by this method are, from the
47   * standpoint of the sorted map, equal.  The behavior of a sorted map
48   * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
49 < * just fails to obey the general contract of the <tt>Map</tt> interface.<p>
49 > * just fails to obey the general contract of the <tt>Map</tt> interface.
50   *
51 < * <b>Note that this implementation is not synchronized.</b> If multiple
52 < * threads access a map concurrently, and at least one of the threads modifies
53 < * the map structurally, it <i>must</i> be synchronized externally.  (A
54 < * structural modification is any operation that adds or deletes one or more
55 < * mappings; merely changing the value associated with an existing key is not
56 < * a structural modification.)  This is typically accomplished by
57 < * synchronizing on some object that naturally encapsulates the map.  If no
58 < * such object exists, the map should be "wrapped" using the
59 < * <tt>Collections.synchronizedMap</tt> method.  This is best done at creation
60 < * time, to prevent accidental unsynchronized access to the map:
61 < * <pre>
62 < *     Map m = Collections.synchronizedMap(new TreeMap(...));
63 < * </pre><p>
51 > * <p><strong>Note that this implementation is not synchronized.</strong>
52 > * If multiple threads access a map concurrently, and at least one of the
53 > * threads modifies the map structurally, it <i>must</i> be synchronized
54 > * externally.  (A structural modification is any operation that adds or
55 > * deletes one or more mappings; merely changing the value associated
56 > * with an existing key is not a structural modification.)  This is
57 > * typically accomplished by synchronizing on some object that naturally
58 > * encapsulates the map.
59 > * If no such object exists, the map should be "wrapped" using the
60 > * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
61 > * method.  This is best done at creation time, to prevent accidental
62 > * unsynchronized access to the map: <pre>
63 > *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
64   *
65 < * The iterators returned by all of this class's "collection view methods" are
65 > * <p>The iterators returned by the <tt>iterator</tt> method of the collections
66 > * returned by all of this class's "collection view methods" are
67   * <i>fail-fast</i>: if the map is structurally modified at any time after the
68   * iterator is created, in any way except through the iterator's own
69 < * <tt>remove</tt> or <tt>add</tt> methods, the iterator throws a
70 < * <tt>ConcurrentModificationException</tt>.  Thus, in the face of concurrent
69 > * <tt>remove</tt> method, the iterator will throw a {@link
70 > * ConcurrentModificationException}.  Thus, in the face of concurrent
71   * modification, the iterator fails quickly and cleanly, rather than risking
72 < * arbitrary, non-deterministic behavior at an undetermined time in the
56 < * future.
72 > * arbitrary, non-deterministic behavior at an undetermined time in the future.
73   *
74   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
75   * as it is, generally speaking, impossible to make any hard guarantees in the
# Line 61 | Line 77 | package java.util;
77   * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
78   * Therefore, it would be wrong to write a program that depended on this
79   * exception for its correctness:   <i>the fail-fast behavior of iterators
80 < * should be used only to detect bugs.</i><p>
80 > * should be used only to detect bugs.</i>
81   *
82   * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
83   * and its views represent snapshots of mappings at the time they were
# Line 70 | Line 86 | package java.util;
86   * associated map using <tt>put</tt>.)
87   *
88   * <p>This class is a member of the
89 < * <a href="{@docRoot}/../guide/collections/index.html">
89 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
90   * Java Collections Framework</a>.
91   *
92 + * @param <K> the type of keys maintained by this map
93 + * @param <V> the type of mapped values
94 + *
95   * @author  Josh Bloch and Doug Lea
96   * @version %I%, %G%
97   * @see Map
# Line 81 | Line 100 | package java.util;
100   * @see Comparable
101   * @see Comparator
102   * @see Collection
84 * @see Collections#synchronizedMap(Map)
103   * @since 1.2
104   */
105  
# Line 90 | Line 108 | public class TreeMap<K,V>
108      implements NavigableMap<K,V>, Cloneable, java.io.Serializable
109   {
110      /**
111 <     * The Comparator used to maintain order in this TreeMap, or
112 <     * null if this TreeMap uses its elements natural ordering.
111 >     * The comparator used to maintain order in this tree map, or
112 >     * null if it uses the natural ordering of its keys.
113       *
114       * @serial
115       */
116 <    private Comparator<? super K> comparator = null;
116 >    private final Comparator<? super K> comparator;
117  
118      private transient Entry<K,V> root = null;
119  
# Line 109 | Line 127 | public class TreeMap<K,V>
127       */
128      private transient int modCount = 0;
129  
112    private void incrementSize()   { modCount++; size++; }
113    private void decrementSize()   { modCount++; size--; }
114
130      /**
131 <     * Constructs a new, empty map, sorted according to the keys' natural
132 <     * order.  All keys inserted into the map must implement the
133 <     * <tt>Comparable</tt> interface.  Furthermore, all such keys must be
134 <     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw a
135 <     * ClassCastException for any elements <tt>k1</tt> and <tt>k2</tt> in the
136 <     * map.  If the user attempts to put a key into the map that violates this
137 <     * constraint (for example, the user attempts to put a string key into a
138 <     * map whose keys are integers), the <tt>put(Object key, Object
139 <     * value)</tt> call will throw a <tt>ClassCastException</tt>.
140 <     *
126 <     * @see Comparable
131 >     * Constructs a new, empty tree map, using the natural ordering of its
132 >     * keys.  All keys inserted into the map must implement the {@link
133 >     * Comparable} interface.  Furthermore, all such keys must be
134 >     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
135 >     * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
136 >     * <tt>k2</tt> in the map.  If the user attempts to put a key into the
137 >     * map that violates this constraint (for example, the user attempts to
138 >     * put a string key into a map whose keys are integers), the
139 >     * <tt>put(Object key, Object value)</tt> call will throw a
140 >     * <tt>ClassCastException</tt>.
141       */
142      public TreeMap() {
143 +        comparator = null;
144      }
145  
146      /**
147 <     * Constructs a new, empty map, sorted according to the given comparator.
148 <     * All keys inserted into the map must be <i>mutually comparable</i> by
149 <     * the given comparator: <tt>comparator.compare(k1, k2)</tt> must not
150 <     * throw a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
151 <     * <tt>k2</tt> in the map.  If the user attempts to put a key into the
152 <     * map that violates this constraint, the <tt>put(Object key, Object
153 <     * value)</tt> call will throw a <tt>ClassCastException</tt>.
147 >     * Constructs a new, empty tree map, ordered according to the given
148 >     * comparator.  All keys inserted into the map must be <i>mutually
149 >     * comparable</i> by the given comparator: <tt>comparator.compare(k1,
150 >     * k2)</tt> must not throw a <tt>ClassCastException</tt> for any keys
151 >     * <tt>k1</tt> and <tt>k2</tt> in the map.  If the user attempts to put
152 >     * a key into the map that violates this constraint, the <tt>put(Object
153 >     * key, Object value)</tt> call will throw a
154 >     * <tt>ClassCastException</tt>.
155       *
156 <     * @param c the comparator that will be used to sort this map.  A
157 <     *        <tt>null</tt> value indicates that the keys' <i>natural
158 <     *        ordering</i> should be used.
159 <     */
160 <    public TreeMap(Comparator<? super K> c) {
161 <        this.comparator = c;
156 >     * @param comparator the comparator that will be used to order this map.
157 >     *        If <tt>null</tt>, the {@linkplain Comparable natural
158 >     *        ordering} of the keys will be used.
159 >     */
160 >    public TreeMap(Comparator<? super K> comparator) {
161 >        this.comparator = comparator;
162      }
163  
164      /**
165 <     * Constructs a new map containing the same mappings as the given map,
166 <     * sorted according to the keys' <i>natural order</i>.  All keys inserted
167 <     * into the new map must implement the <tt>Comparable</tt> interface.
168 <     * Furthermore, all such keys must be <i>mutually comparable</i>:
169 <     * <tt>k1.compareTo(k2)</tt> must not throw a <tt>ClassCastException</tt>
170 <     * for any elements <tt>k1</tt> and <tt>k2</tt> in the map.  This method
171 <     * runs in n*log(n) time.
172 <     *
173 <     * @param  m the map whose mappings are to be placed in this map.
174 <     * @throws ClassCastException the keys in t are not Comparable, or
175 <     *         are not mutually comparable.
176 <     * @throws NullPointerException if the specified map is null.
165 >     * Constructs a new tree map containing the same mappings as the given
166 >     * map, ordered according to the <i>natural ordering</i> of its keys.
167 >     * All keys inserted into the new map must implement the {@link
168 >     * Comparable} interface.  Furthermore, all such keys must be
169 >     * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
170 >     * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
171 >     * <tt>k2</tt> in the map.  This method runs in n*log(n) time.
172 >     *
173 >     * @param  m the map whose mappings are to be placed in this map
174 >     * @throws ClassCastException if the keys in m are not {@link Comparable},
175 >     *         or are not mutually comparable
176 >     * @throws NullPointerException if the specified map is null
177       */
178      public TreeMap(Map<? extends K, ? extends V> m) {
179 +        comparator = null;
180          putAll(m);
181      }
182  
183      /**
184 <     * Constructs a new map containing the same mappings as the given
185 <     * <tt>SortedMap</tt>, sorted according to the same ordering.  This method
186 <     * runs in linear time.
184 >     * Constructs a new tree map containing the same mappings and
185 >     * using the same ordering as the specified sorted map.  This
186 >     * method runs in linear time.
187       *
188       * @param  m the sorted map whose mappings are to be placed in this map,
189 <     *         and whose comparator is to be used to sort this map.
190 <     * @throws NullPointerException if the specified sorted map is null.
189 >     *         and whose comparator is to be used to sort this map
190 >     * @throws NullPointerException if the specified map is null
191       */
192      public TreeMap(SortedMap<K, ? extends V> m) {
193          comparator = m.comparator();
# Line 187 | Line 204 | public class TreeMap<K,V>
204      /**
205       * Returns the number of key-value mappings in this map.
206       *
207 <     * @return the number of key-value mappings in this map.
207 >     * @return the number of key-value mappings in this map
208       */
209      public int size() {
210          return size;
# Line 197 | Line 214 | public class TreeMap<K,V>
214       * Returns <tt>true</tt> if this map contains a mapping for the specified
215       * key.
216       *
217 <     * @param key key whose presence in this map is to be tested.
201 <     *
217 >     * @param key key whose presence in this map is to be tested
218       * @return <tt>true</tt> if this map contains a mapping for the
219 <     *            specified key.
220 <     * @throws ClassCastException if the key cannot be compared with the keys
221 <     *                  currently in the map.
222 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
223 <     *                  natural ordering, or its comparator does not tolerate
224 <     *            <tt>null</tt> keys.
219 >     *         specified key
220 >     * @throws ClassCastException if the specified key cannot be compared
221 >     *         with the keys currently in the map
222 >     * @throws NullPointerException if the specified key is null
223 >     *         and this map uses natural ordering, or its comparator
224 >     *         does not permit null keys
225       */
226      public boolean containsKey(Object key) {
227          return getEntry(key) != null;
# Line 216 | Line 232 | public class TreeMap<K,V>
232       * specified value.  More formally, returns <tt>true</tt> if and only if
233       * this map contains at least one mapping to a value <tt>v</tt> such
234       * that <tt>(value==null ? v==null : value.equals(v))</tt>.  This
235 <     * operation will probably require time linear in the Map size for most
236 <     * implementations of Map.
235 >     * operation will probably require time linear in the map size for
236 >     * most implementations.
237       *
238 <     * @param value value whose presence in this Map is to be tested.
239 <     * @return  <tt>true</tt> if a mapping to <tt>value</tt> exists;
240 <     *          <tt>false</tt> otherwise.
238 >     * @param value value whose presence in this map is to be tested
239 >     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
240 >     *         <tt>false</tt> otherwise
241       * @since 1.2
242       */
243      public boolean containsValue(Object value) {
244 <        return (root==null ? false :
245 <                (value==null ? valueSearchNull(root)
246 <                             : valueSearchNonNull(root, value)));
247 <    }
232 <
233 <    private boolean valueSearchNull(Entry n) {
234 <        if (n.value == null)
235 <            return true;
236 <
237 <        // Check left and right subtrees for value
238 <        return (n.left  != null && valueSearchNull(n.left)) ||
239 <               (n.right != null && valueSearchNull(n.right));
240 <    }
241 <
242 <    private boolean valueSearchNonNull(Entry n, Object value) {
243 <        // Check this node for the value
244 <        if (value.equals(n.value))
245 <            return true;
246 <
247 <        // Check left and right subtrees for value
248 <        return (n.left  != null && valueSearchNonNull(n.left, value)) ||
249 <               (n.right != null && valueSearchNonNull(n.right, value));
244 >        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
245 >            if (valEquals(value, e.value))
246 >                return true;
247 >        return false;
248      }
249  
250      /**
251 <     * Returns the value to which this map maps the specified key.  Returns
252 <     * <tt>null</tt> if the map contains no mapping for this key.  A return
255 <     * value of <tt>null</tt> does not <i>necessarily</i> indicate that the
256 <     * map contains no mapping for the key; it's also possible that the map
257 <     * explicitly maps the key to <tt>null</tt>.  The <tt>containsKey</tt>
258 <     * operation may be used to distinguish these two cases.
251 >     * Returns the value to which the specified key is mapped,
252 >     * or {@code null} if this map contains no mapping for the key.
253       *
254 <     * @param key key whose associated value is to be returned.
255 <     * @return the value to which this map maps the specified key, or
256 <     *               <tt>null</tt> if the map contains no mapping for the key.
257 <     * @throws    ClassCastException key cannot be compared with the keys
258 <     *                  currently in the map.
259 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
260 <     *                  natural ordering, or its comparator does not tolerate
261 <     *                  <tt>null</tt> keys.
262 <     *
263 <     * @see #containsKey(Object)
254 >     * <p>More formally, if this map contains a mapping from a key
255 >     * {@code k} to a value {@code v} such that {@code key} compares
256 >     * equal to {@code k} according to the map's ordering, then this
257 >     * method returns {@code v}; otherwise it returns {@code null}.
258 >     * (There can be at most one such mapping.)
259 >     *
260 >     * <p>A return value of {@code null} does not <i>necessarily</i>
261 >     * indicate that the map contains no mapping for the key; it's also
262 >     * possible that the map explicitly maps the key to {@code null}.
263 >     * The {@link #containsKey containsKey} operation may be used to
264 >     * distinguish these two cases.
265 >     *
266 >     * @throws ClassCastException if the specified key cannot be compared
267 >     *         with the keys currently in the map
268 >     * @throws NullPointerException if the specified key is null
269 >     *         and this map uses natural ordering, or its comparator
270 >     *         does not permit null keys
271       */
272      public V get(Object key) {
273          Entry<K,V> p = getEntry(key);
274          return (p==null ? null : p.value);
275      }
276  
276    /**
277     * Returns the comparator used to order this map, or <tt>null</tt> if this
278     * map uses its keys' natural order.
279     *
280     * @return the comparator associated with this sorted map, or
281     *                <tt>null</tt> if it uses its keys' natural sort method.
282     */
277      public Comparator<? super K> comparator() {
278          return comparator;
279      }
280  
281      /**
282 <     * Returns the first (lowest) key currently in this sorted map.
289 <     *
290 <     * @return the first (lowest) key currently in this sorted map.
291 <     * @throws    NoSuchElementException Map is empty.
282 >     * @throws NoSuchElementException {@inheritDoc}
283       */
284      public K firstKey() {
285          return key(getFirstEntry());
286      }
287  
288      /**
289 <     * Returns the last (highest) key currently in this sorted map.
299 <     *
300 <     * @return the last (highest) key currently in this sorted map.
301 <     * @throws    NoSuchElementException Map is empty.
289 >     * @throws NoSuchElementException {@inheritDoc}
290       */
291      public K lastKey() {
292          return key(getLastEntry());
293      }
294  
295      /**
296 <     * Copies all of the mappings from the specified map to this map.  These
297 <     * mappings replace any mappings that this map had for any of the keys
298 <     * currently in the specified map.
299 <     *
300 <     * @param     map mappings to be stored in this map.
301 <     * @throws    ClassCastException class of a key or value in the specified
302 <     *                   map prevents it from being stored in this map.
303 <     *
304 <     * @throws NullPointerException if the given map is <tt>null</tt> or
305 <     *         this map does not permit <tt>null</tt> keys and a
318 <     *         key in the specified map is <tt>null</tt>.
296 >     * Copies all of the mappings from the specified map to this map.
297 >     * These mappings replace any mappings that this map had for any
298 >     * of the keys currently in the specified map.
299 >     *
300 >     * @param  map mappings to be stored in this map
301 >     * @throws ClassCastException if the class of a key or value in
302 >     *         the specified map prevents it from being stored in this map
303 >     * @throws NullPointerException if the specified map is null or
304 >     *         the specified map contains a null key and this map does not
305 >     *         permit null keys
306       */
307      public void putAll(Map<? extends K, ? extends V> map) {
308          int mapSize = map.size();
# Line 340 | Line 327 | public class TreeMap<K,V>
327       * does not contain an entry for the key.
328       *
329       * @return this map's entry for the given key, or <tt>null</tt> if the map
330 <     *                does not contain an entry for the key.
331 <     * @throws ClassCastException if the key cannot be compared with the keys
332 <     *                  currently in the map.
333 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
334 <     *                  natural order, or its comparator does not tolerate *
335 <     *                  <tt>null</tt> keys.
330 >     *         does not contain an entry for the key
331 >     * @throws ClassCastException if the specified key cannot be compared
332 >     *         with the keys currently in the map
333 >     * @throws NullPointerException if the specified key is null
334 >     *         and this map uses natural ordering, or its comparator
335 >     *         does not permit null keys
336       */
337 <    private Entry<K,V> getEntry(Object key) {
337 >    final Entry<K,V> getEntry(Object key) {
338          // Offload comparator-based version for sake of performance
339          if (comparator != null)
340              return getEntryUsingComparator(key);
341 <        Comparable<K> k = (Comparable<K>) key;
341 >        if (key == null)
342 >            throw new NullPointerException();
343 >        Comparable<? super K> k = (Comparable<? super K>) key;
344          Entry<K,V> p = root;
345          while (p != null) {
346              int cmp = k.compareTo(p.key);
# Line 371 | Line 360 | public class TreeMap<K,V>
360       * that are less dependent on comparator performance, but is
361       * worthwhile here.)
362       */
363 <    private Entry<K,V> getEntryUsingComparator(Object key) {
363 >    final Entry<K,V> getEntryUsingComparator(Object key) {
364          K k = (K) key;
365          Comparator<? super K> cpr = comparator;
366 <        Entry<K,V> p = root;
367 <        while (p != null) {
368 <            int cmp = cpr.compare(k, p.key);
369 <            if (cmp < 0)
370 <                p = p.left;
371 <            else if (cmp > 0)
372 <                p = p.right;
373 <            else
374 <                return p;
366 >        if (cpr != null) {
367 >            Entry<K,V> p = root;
368 >            while (p != null) {
369 >                int cmp = cpr.compare(k, p.key);
370 >                if (cmp < 0)
371 >                    p = p.left;
372 >                else if (cmp > 0)
373 >                    p = p.right;
374 >                else
375 >                    return p;
376 >            }
377          }
378          return null;
379      }
# Line 393 | Line 384 | public class TreeMap<K,V>
384       * key; if no such entry exists (i.e., the greatest key in the Tree is less
385       * than the specified key), returns <tt>null</tt>.
386       */
387 <    private Entry<K,V> getCeilingEntry(K key) {
387 >    final Entry<K,V> getCeilingEntry(K key) {
388          Entry<K,V> p = root;
389 <        if (p==null)
399 <            return null;
400 <
401 <        while (true) {
389 >        while (p != null) {
390              int cmp = compare(key, p.key);
391              if (cmp < 0) {
392                  if (p.left != null)
# Line 420 | Line 408 | public class TreeMap<K,V>
408              } else
409                  return p;
410          }
411 +        return null;
412      }
413  
414      /**
# Line 427 | Line 416 | public class TreeMap<K,V>
416       * exists, returns the entry for the greatest key less than the specified
417       * key; if no such entry exists, returns <tt>null</tt>.
418       */
419 <    private Entry<K,V> getFloorEntry(K key) {
419 >    final Entry<K,V> getFloorEntry(K key) {
420          Entry<K,V> p = root;
421 <        if (p==null)
433 <            return null;
434 <
435 <        while (true) {
421 >        while (p != null) {
422              int cmp = compare(key, p.key);
423              if (cmp > 0) {
424                  if (p.right != null)
# Line 455 | Line 441 | public class TreeMap<K,V>
441                  return p;
442  
443          }
444 +        return null;
445      }
446  
447      /**
# Line 463 | Line 450 | public class TreeMap<K,V>
450       * key greater than the specified key; if no such entry exists
451       * returns <tt>null</tt>.
452       */
453 <    private Entry<K,V> getHigherEntry(K key) {
453 >    final Entry<K,V> getHigherEntry(K key) {
454          Entry<K,V> p = root;
455 <        if (p==null)
469 <            return null;
470 <
471 <        while (true) {
455 >        while (p != null) {
456              int cmp = compare(key, p.key);
457              if (cmp < 0) {
458                  if (p.left != null)
# Line 489 | Line 473 | public class TreeMap<K,V>
473                  }
474              }
475          }
476 +        return null;
477      }
478  
479      /**
# Line 496 | Line 481 | public class TreeMap<K,V>
481       * no such entry exists (i.e., the least key in the Tree is greater than
482       * the specified key), returns <tt>null</tt>.
483       */
484 <    private Entry<K,V> getLowerEntry(K key) {
484 >    final Entry<K,V> getLowerEntry(K key) {
485          Entry<K,V> p = root;
486 <        if (p==null)
502 <            return null;
503 <
504 <        while (true) {
486 >        while (p != null) {
487              int cmp = compare(key, p.key);
488              if (cmp > 0) {
489                  if (p.right != null)
# Line 522 | Line 504 | public class TreeMap<K,V>
504                  }
505              }
506          }
507 <    }
526 <
527 <    /**
528 <     * Returns the key corresponding to the specified Entry.  Throw
529 <     * NoSuchElementException if the Entry is <tt>null</tt>.
530 <     */
531 <    private static <K> K key(Entry<K,?> e) {
532 <        if (e==null)
533 <            throw new NoSuchElementException();
534 <        return e.key;
507 >        return null;
508      }
509  
510      /**
511       * Associates the specified value with the specified key in this map.
512 <     * If the map previously contained a mapping for this key, the old
512 >     * If the map previously contained a mapping for the key, the old
513       * value is replaced.
514       *
515 <     * @param key key with which the specified value is to be associated.
516 <     * @param value value to be associated with the specified key.
515 >     * @param key key with which the specified value is to be associated
516 >     * @param value value to be associated with the specified key
517       *
518 <     * @return previous value associated with specified key, or <tt>null</tt>
519 <     *         if there was no mapping for key.  A <tt>null</tt> return can
520 <     *         also indicate that the map previously associated <tt>null</tt>
521 <     *         with the specified key.
522 <     * @throws    ClassCastException key cannot be compared with the keys
523 <     *            currently in the map.
524 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
525 <     *         natural order, or its comparator does not tolerate
526 <     *         <tt>null</tt> keys.
518 >     * @return the previous value associated with <tt>key</tt>, or
519 >     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
520 >     *         (A <tt>null</tt> return can also indicate that the map
521 >     *         previously associated <tt>null</tt> with <tt>key</tt>.)
522 >     * @throws ClassCastException if the specified key cannot be compared
523 >     *         with the keys currently in the map
524 >     * @throws NullPointerException if the specified key is null
525 >     *         and this map uses natural ordering, or its comparator
526 >     *         does not permit null keys
527       */
528      public V put(K key, V value) {
529          Entry<K,V> t = root;
557
530          if (t == null) {
531 <            incrementSize();
531 >            // TBD:
532 >            // 5045147: (coll) Adding null to an empty TreeSet should
533 >            // throw NullPointerException
534 >            //
535 >            // compare(key, key); // type check
536              root = new Entry<K,V>(key, value, null);
537 +            size = 1;
538 +            modCount++;
539              return null;
540 <       }
541 <
542 <        while (true) {
543 <            int cmp = compare(key, t.key);
544 <            if (cmp == 0) {
545 <                return t.setValue(value);
546 <            } else if (cmp < 0) {
547 <                if (t.left != null) {
540 >        }
541 >        int cmp;
542 >        Entry<K,V> parent;
543 >        // split comparator and comparable paths
544 >        Comparator<? super K> cpr = comparator;
545 >        if (cpr != null) {
546 >            do {
547 >                parent = t;
548 >                cmp = cpr.compare(key, t.key);
549 >                if (cmp < 0)
550                      t = t.left;
551 <                } else {
572 <                    incrementSize();
573 <                    t.left = new Entry<K,V>(key, value, t);
574 <                    fixAfterInsertion(t.left);
575 <                    return null;
576 <                }
577 <            } else { // cmp > 0
578 <                if (t.right != null) {
551 >                else if (cmp > 0)
552                      t = t.right;
553 <                } else {
554 <                    incrementSize();
555 <                    t.right = new Entry<K,V>(key, value, t);
583 <                    fixAfterInsertion(t.right);
584 <                    return null;
585 <                }
586 <            }
553 >                else
554 >                    return t.setValue(value);
555 >            } while (t != null);
556          }
557 +        else {
558 +            if (key == null)
559 +                throw new NullPointerException();
560 +            Comparable<? super K> k = (Comparable<? super K>) key;
561 +            do {
562 +                parent = t;
563 +                cmp = k.compareTo(t.key);
564 +                if (cmp < 0)
565 +                    t = t.left;
566 +                else if (cmp > 0)
567 +                    t = t.right;
568 +                else
569 +                    return t.setValue(value);
570 +            } while (t != null);
571 +        }
572 +        Entry<K,V> e = new Entry<K,V>(key, value, parent);
573 +        if (cmp < 0)
574 +            parent.left = e;
575 +        else
576 +            parent.right = e;
577 +        fixAfterInsertion(e);
578 +        size++;
579 +        modCount++;
580 +        return null;
581      }
582  
583      /**
584       * Removes the mapping for this key from this TreeMap if present.
585       *
586       * @param  key key for which mapping should be removed
587 <     * @return previous value associated with specified key, or <tt>null</tt>
588 <     *         if there was no mapping for key.  A <tt>null</tt> return can
589 <     *         also indicate that the map previously associated
590 <     *         <tt>null</tt> with the specified key.
591 <     *
592 <     * @throws    ClassCastException key cannot be compared with the keys
593 <     *            currently in the map.
594 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
595 <     *         natural order, or its comparator does not tolerate
603 <     *         <tt>null</tt> keys.
587 >     * @return the previous value associated with <tt>key</tt>, or
588 >     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
589 >     *         (A <tt>null</tt> return can also indicate that the map
590 >     *         previously associated <tt>null</tt> with <tt>key</tt>.)
591 >     * @throws ClassCastException if the specified key cannot be compared
592 >     *         with the keys currently in the map
593 >     * @throws NullPointerException if the specified key is null
594 >     *         and this map uses natural ordering, or its comparator
595 >     *         does not permit null keys
596       */
597      public V remove(Object key) {
598          Entry<K,V> p = getEntry(key);
# Line 613 | Line 605 | public class TreeMap<K,V>
605      }
606  
607      /**
608 <     * Removes all mappings from this TreeMap.
608 >     * Removes all of the mappings from this map.
609 >     * The map will be empty after this call returns.
610       */
611      public void clear() {
612          modCount++;
# Line 625 | Line 618 | public class TreeMap<K,V>
618       * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
619       * values themselves are not cloned.)
620       *
621 <     * @return a shallow copy of this Map.
621 >     * @return a shallow copy of this map
622       */
623      public Object clone() {
624          TreeMap<K,V> clone = null;
# Line 640 | Line 633 | public class TreeMap<K,V>
633          clone.size = 0;
634          clone.modCount = 0;
635          clone.entrySet = null;
636 <        clone.descendingEntrySet = null;
637 <        clone.descendingKeySet = null;
636 >        clone.navigableKeySet = null;
637 >        clone.descendingMap = null;
638  
639          // Initialize clone with our mappings
640          try {
# Line 656 | Line 649 | public class TreeMap<K,V>
649      // NavigableMap API methods
650  
651      /**
652 <     * Returns a key-value mapping associated with the least
660 <     * key in this map, or <tt>null</tt> if the map is empty.
661 <     *
662 <     * @return an Entry with least key, or <tt>null</tt>
663 <     * if the map is empty.
652 >     * @since 1.6
653       */
654      public Map.Entry<K,V> firstEntry() {
655 <        Entry<K,V> e = getFirstEntry();
667 <        return (e == null)? null : new SnapshotEntry(e);
655 >        return exportEntry(getFirstEntry());
656      }
657  
658      /**
659 <     * Returns a key-value mapping associated with the greatest
672 <     * key in this map, or <tt>null</tt> if the map is empty.
673 <     * The returned entry does <em>not</em> support
674 <     * the <tt>Entry.setValue</tt> method.
675 <     *
676 <     * @return an Entry with greatest key, or <tt>null</tt>
677 <     * if the map is empty.
659 >     * @since 1.6
660       */
661      public Map.Entry<K,V> lastEntry() {
662 <        Entry<K,V> e = getLastEntry();
681 <        return (e == null)? null : new SnapshotEntry(e);
662 >        return exportEntry(getLastEntry());
663      }
664  
665      /**
666 <     * Removes and returns a key-value mapping associated with
686 <     * the least key in this map, or <tt>null</tt> if the map is empty.
687 <     *
688 <     * @return the removed first entry of this map, or <tt>null</tt>
689 <     * if the map is empty.
666 >     * @since 1.6
667       */
668      public Map.Entry<K,V> pollFirstEntry() {
669          Entry<K,V> p = getFirstEntry();
670 <        if (p == null)
671 <            return null;
672 <        Map.Entry result = new SnapshotEntry(p);
696 <        deleteEntry(p);
670 >        Map.Entry<K,V> result = exportEntry(p);
671 >        if (p != null)
672 >            deleteEntry(p);
673          return result;
674      }
675  
676      /**
677 <     * Removes and returns a key-value mapping associated with
702 <     * the greatest key in this map, or <tt>null</tt> if the map is empty.
703 <     *
704 <     * @return the removed last entry of this map, or <tt>null</tt>
705 <     * if the map is empty.
677 >     * @since 1.6
678       */
679      public Map.Entry<K,V> pollLastEntry() {
680          Entry<K,V> p = getLastEntry();
681 <        if (p == null)
682 <            return null;
683 <        Map.Entry result = new SnapshotEntry(p);
712 <        deleteEntry(p);
681 >        Map.Entry<K,V> result = exportEntry(p);
682 >        if (p != null)
683 >            deleteEntry(p);
684          return result;
685      }
686  
687      /**
688 <     * Returns a key-value mapping associated with the least key
689 <     * greater than or equal to the given key, or <tt>null</tt> if
690 <     * there is no such entry.
691 <     *
692 <     * @param key the key.
722 <     * @return an Entry associated with ceiling of given key, or
723 <     * <tt>null</tt> if there is no such Entry.
724 <     * @throws ClassCastException if key cannot be compared with the
725 <     * keys currently in the map.
726 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
727 <     *         natural order, or its comparator does not tolerate
728 <     *         <tt>null</tt> keys.
688 >     * @throws ClassCastException {@inheritDoc}
689 >     * @throws NullPointerException if the specified key is null
690 >     *         and this map uses natural ordering, or its comparator
691 >     *         does not permit null keys
692 >     * @since 1.6
693       */
694 <    public Map.Entry<K,V> ceilingEntry(K key) {
695 <        Entry<K,V> e = getCeilingEntry(key);
732 <        return (e == null)? null : new SnapshotEntry(e);
694 >    public Map.Entry<K,V> lowerEntry(K key) {
695 >        return exportEntry(getLowerEntry(key));
696      }
697  
735
698      /**
699 <     * Returns least key greater than or equal to the given key, or
700 <     * <tt>null</tt> if there is no such key.
701 <     *
702 <     * @param key the key.
703 <     * @return the ceiling key, or <tt>null</tt>
742 <     * if there is no such key.
743 <     * @throws ClassCastException if key cannot be compared with the keys
744 <     *            currently in the map.
745 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
746 <     *         natural order, or its comparator does not tolerate
747 <     *         <tt>null</tt> keys.
699 >     * @throws ClassCastException {@inheritDoc}
700 >     * @throws NullPointerException if the specified key is null
701 >     *         and this map uses natural ordering, or its comparator
702 >     *         does not permit null keys
703 >     * @since 1.6
704       */
705 <    public K ceilingKey(K key) {
706 <        Entry<K,V> e = getCeilingEntry(key);
751 <        return (e == null)? null : e.key;
705 >    public K lowerKey(K key) {
706 >        return keyOrNull(getLowerEntry(key));
707      }
708  
754
755
709      /**
710 <     * Returns a key-value mapping associated with the greatest key
711 <     * less than or equal to the given key, or <tt>null</tt> if there
712 <     * is no such entry.
713 <     *
714 <     * @param key the key.
762 <     * @return an Entry associated with floor of given key, or <tt>null</tt>
763 <     * if there is no such Entry.
764 <     * @throws ClassCastException if key cannot be compared with the keys
765 <     *            currently in the map.
766 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
767 <     *         natural order, or its comparator does not tolerate
768 <     *         <tt>null</tt> keys.
710 >     * @throws ClassCastException {@inheritDoc}
711 >     * @throws NullPointerException if the specified key is null
712 >     *         and this map uses natural ordering, or its comparator
713 >     *         does not permit null keys
714 >     * @since 1.6
715       */
716      public Map.Entry<K,V> floorEntry(K key) {
717 <        Entry<K,V> e = getFloorEntry(key);
772 <        return (e == null)? null : new SnapshotEntry(e);
717 >        return exportEntry(getFloorEntry(key));
718      }
719  
720      /**
721 <     * Returns the greatest key
722 <     * less than or equal to the given key, or <tt>null</tt> if there
723 <     * is no such key.
724 <     *
725 <     * @param key the key.
781 <     * @return the floor of given key, or <tt>null</tt> if there is no
782 <     * such key.
783 <     * @throws ClassCastException if key cannot be compared with the keys
784 <     *            currently in the map.
785 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
786 <     *         natural order, or its comparator does not tolerate
787 <     *         <tt>null</tt> keys.
721 >     * @throws ClassCastException {@inheritDoc}
722 >     * @throws NullPointerException if the specified key is null
723 >     *         and this map uses natural ordering, or its comparator
724 >     *         does not permit null keys
725 >     * @since 1.6
726       */
727      public K floorKey(K key) {
728 <        Entry<K,V> e = getFloorEntry(key);
791 <        return (e == null)? null : e.key;
728 >        return keyOrNull(getFloorEntry(key));
729      }
730  
731      /**
732 <     * Returns a key-value mapping associated with the least key
733 <     * strictly greater than the given key, or <tt>null</tt> if there
734 <     * is no such entry.
735 <     *
736 <     * @param key the key.
800 <     * @return an Entry with least key greater than the given key, or
801 <     * <tt>null</tt> if there is no such Entry.
802 <     * @throws ClassCastException if key cannot be compared with the keys
803 <     *            currently in the map.
804 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
805 <     *         natural order, or its comparator does not tolerate
806 <     *         <tt>null</tt> keys.
732 >     * @throws ClassCastException {@inheritDoc}
733 >     * @throws NullPointerException if the specified key is null
734 >     *         and this map uses natural ordering, or its comparator
735 >     *         does not permit null keys
736 >     * @since 1.6
737       */
738 <    public Map.Entry<K,V> higherEntry(K key) {
739 <        Entry<K,V> e = getHigherEntry(key);
810 <        return (e == null)? null : new SnapshotEntry(e);
738 >    public Map.Entry<K,V> ceilingEntry(K key) {
739 >        return exportEntry(getCeilingEntry(key));
740      }
741  
742      /**
743 <     * Returns the least key strictly greater than the given key, or
744 <     * <tt>null</tt> if there is no such key.
745 <     *
746 <     * @param key the key.
747 <     * @return the least key greater than the given key, or
819 <     * <tt>null</tt> if there is no such key.
820 <     * @throws ClassCastException if key cannot be compared with the keys
821 <     *            currently in the map.
822 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
823 <     *         natural order, or its comparator does not tolerate
824 <     *         <tt>null</tt> keys.
743 >     * @throws ClassCastException {@inheritDoc}
744 >     * @throws NullPointerException if the specified key is null
745 >     *         and this map uses natural ordering, or its comparator
746 >     *         does not permit null keys
747 >     * @since 1.6
748       */
749 <    public K higherKey(K key) {
750 <        Entry<K,V> e = getHigherEntry(key);
828 <        return (e == null)? null : e.key;
749 >    public K ceilingKey(K key) {
750 >        return keyOrNull(getCeilingEntry(key));
751      }
752  
753      /**
754 <     * Returns a key-value mapping associated with the greatest
755 <     * key strictly less than the given key, or <tt>null</tt> if there is no
756 <     * such entry.
757 <     *
758 <     * @param key the key.
837 <     * @return an Entry with greatest key less than the given
838 <     * key, or <tt>null</tt> if there is no such Entry.
839 <     * @throws ClassCastException if key cannot be compared with the keys
840 <     *            currently in the map.
841 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
842 <     *         natural order, or its comparator does not tolerate
843 <     *         <tt>null</tt> keys.
754 >     * @throws ClassCastException {@inheritDoc}
755 >     * @throws NullPointerException if the specified key is null
756 >     *         and this map uses natural ordering, or its comparator
757 >     *         does not permit null keys
758 >     * @since 1.6
759       */
760 <    public Map.Entry<K,V> lowerEntry(K key) {
761 <        Entry<K,V> e =  getLowerEntry(key);
847 <        return (e == null)? null : new SnapshotEntry(e);
760 >    public Map.Entry<K,V> higherEntry(K key) {
761 >        return exportEntry(getHigherEntry(key));
762      }
763  
764      /**
765 <     * Returns the greatest key strictly less than the given key, or
766 <     * <tt>null</tt> if there is no such key.
767 <     *
768 <     * @param key the key.
769 <     * @return the greatest key less than the given
856 <     * key, or <tt>null</tt> if there is no such key.
857 <     * @throws ClassCastException if key cannot be compared with the keys
858 <     *            currently in the map.
859 <     * @throws NullPointerException key is <tt>null</tt> and this map uses
860 <     *         natural order, or its comparator does not tolerate
861 <     *         <tt>null</tt> keys.
765 >     * @throws ClassCastException {@inheritDoc}
766 >     * @throws NullPointerException if the specified key is null
767 >     *         and this map uses natural ordering, or its comparator
768 >     *         does not permit null keys
769 >     * @since 1.6
770       */
771 <    public K lowerKey(K key) {
772 <        Entry<K,V> e =  getLowerEntry(key);
865 <        return (e == null)? null : e.key;
771 >    public K higherKey(K key) {
772 >        return keyOrNull(getHigherEntry(key));
773      }
774  
775      // Views
# Line 872 | Line 779 | public class TreeMap<K,V>
779       * the first time this view is requested.  Views are stateless, so
780       * there's no reason to create more than one.
781       */
782 <    private transient Set<Map.Entry<K,V>> entrySet = null;
783 <    private transient Set<Map.Entry<K,V>> descendingEntrySet = null;
784 <    private transient Set<K> descendingKeySet = null;
785 <
786 <    transient Set<K> keySet = null;        // XXX remove when integrated
787 <    transient Collection<V> values = null; // XXX remove when integrated
788 <
789 <    /**
790 <     * Returns a Set view of the keys contained in this map.  The set's
791 <     * iterator will return the keys in ascending order.  The set is backed by
792 <     * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
793 <     * the Set, and vice-versa.  The Set supports element removal, which
794 <     * removes the corresponding mapping from the map, via the
795 <     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>,
796 <     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not support
797 <     * the <tt>add</tt> or <tt>addAll</tt> operations.
798 <     *
892 <     * @return a set view of the keys contained in this TreeMap.
782 >    private transient EntrySet entrySet = null;
783 >    private transient KeySet<K> navigableKeySet = null;
784 >    private transient NavigableMap<K,V> descendingMap = null;
785 >
786 >    /**
787 >     * Returns a {@link Set} view of the keys contained in this map.
788 >     * The set's iterator returns the keys in ascending order.
789 >     * The set is backed by the map, so changes to the map are
790 >     * reflected in the set, and vice-versa.  If the map is modified
791 >     * while an iteration over the set is in progress (except through
792 >     * the iterator's own <tt>remove</tt> operation), the results of
793 >     * the iteration are undefined.  The set supports element removal,
794 >     * which removes the corresponding mapping from the map, via the
795 >     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
796 >     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
797 >     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
798 >     * operations.
799       */
800      public Set<K> keySet() {
801 <        Set<K> ks = keySet;
896 <        return (ks != null) ? ks : (keySet = new KeySet());
801 >        return navigableKeySet();
802      }
803  
804 <    class KeySet extends AbstractSet<K> {
805 <        public Iterator<K> iterator() {
806 <            return new KeyIterator(getFirstEntry());
807 <        }
808 <        
809 <        public int size() {
905 <            return TreeMap.this.size();
906 <        }
907 <        
908 <        public boolean contains(Object o) {
909 <            return containsKey(o);
910 <        }
911 <        
912 <        public boolean remove(Object o) {
913 <            int oldSize = size;
914 <            TreeMap.this.remove(o);
915 <            return size != oldSize;
916 <        }
917 <        
918 <        public void clear() {
919 <            TreeMap.this.clear();
920 <        }
804 >    /**
805 >     * @since 1.6
806 >     */
807 >    public NavigableSet<K> navigableKeySet() {
808 >        KeySet<K> nks = navigableKeySet;
809 >        return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
810      }
811  
812      /**
813 <     * Returns a collection view of the values contained in this map.  The
814 <     * collection's iterator will return the values in the order that their
815 <     * corresponding keys appear in the tree.  The collection is backed by
816 <     * this <tt>TreeMap</tt> instance, so changes to this map are reflected in
817 <     * the collection, and vice-versa.  The collection supports element
818 <     * removal, which removes the corresponding mapping from the map through
819 <     * the <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
820 <     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
821 <     * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
822 <     *
823 <     * @return a collection view of the values contained in this map.
813 >     * @since 1.6
814 >     */
815 >    public NavigableSet<K> descendingKeySet() {
816 >        return descendingMap().navigableKeySet();
817 >    }
818 >
819 >    /**
820 >     * Returns a {@link Collection} view of the values contained in this map.
821 >     * The collection's iterator returns the values in ascending order
822 >     * of the corresponding keys.
823 >     * The collection is backed by the map, so changes to the map are
824 >     * reflected in the collection, and vice-versa.  If the map is
825 >     * modified while an iteration over the collection is in progress
826 >     * (except through the iterator's own <tt>remove</tt> operation),
827 >     * the results of the iteration are undefined.  The collection
828 >     * supports element removal, which removes the corresponding
829 >     * mapping from the map, via the <tt>Iterator.remove</tt>,
830 >     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
831 >     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
832 >     * support the <tt>add</tt> or <tt>addAll</tt> operations.
833       */
834      public Collection<V> values() {
835          Collection<V> vs = values;
836          return (vs != null) ? vs : (values = new Values());
837      }
838  
839 +    /**
840 +     * Returns a {@link Set} view of the mappings contained in this map.
841 +     * The set's iterator returns the entries in ascending key order.
842 +     * The set is backed by the map, so changes to the map are
843 +     * reflected in the set, and vice-versa.  If the map is modified
844 +     * while an iteration over the set is in progress (except through
845 +     * the iterator's own <tt>remove</tt> operation, or through the
846 +     * <tt>setValue</tt> operation on a map entry returned by the
847 +     * iterator) the results of the iteration are undefined.  The set
848 +     * supports element removal, which removes the corresponding
849 +     * mapping from the map, via the <tt>Iterator.remove</tt>,
850 +     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
851 +     * <tt>clear</tt> operations.  It does not support the
852 +     * <tt>add</tt> or <tt>addAll</tt> operations.
853 +     */
854 +    public Set<Map.Entry<K,V>> entrySet() {
855 +        EntrySet es = entrySet;
856 +        return (es != null) ? es : (entrySet = new EntrySet());
857 +    }
858 +
859 +    /**
860 +     * @since 1.6
861 +     */
862 +    public NavigableMap<K, V> descendingMap() {
863 +        NavigableMap<K, V> km = descendingMap;
864 +        return (km != null) ? km :
865 +            (descendingMap = new DescendingSubMap(this,
866 +                                                  true, null, true,
867 +                                                  true, null, true));
868 +    }
869 +
870 +    /**
871 +     * @throws ClassCastException       {@inheritDoc}
872 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
873 +     *         null and this map uses natural ordering, or its comparator
874 +     *         does not permit null keys
875 +     * @throws IllegalArgumentException {@inheritDoc}
876 +     * @since 1.6
877 +     */
878 +    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
879 +                                    K toKey,   boolean toInclusive) {
880 +        return new AscendingSubMap(this,
881 +                                   false, fromKey, fromInclusive,
882 +                                   false, toKey,   toInclusive);
883 +    }
884 +
885 +    /**
886 +     * @throws ClassCastException       {@inheritDoc}
887 +     * @throws NullPointerException if <tt>toKey</tt> is null
888 +     *         and this map uses natural ordering, or its comparator
889 +     *         does not permit null keys
890 +     * @throws IllegalArgumentException {@inheritDoc}
891 +     * @since 1.6
892 +     */
893 +    public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
894 +        return new AscendingSubMap(this,
895 +                                   true,  null,  true,
896 +                                   false, toKey, inclusive);
897 +    }
898 +
899 +    /**
900 +     * @throws ClassCastException       {@inheritDoc}
901 +     * @throws NullPointerException if <tt>fromKey</tt> is null
902 +     *         and this map uses natural ordering, or its comparator
903 +     *         does not permit null keys
904 +     * @throws IllegalArgumentException {@inheritDoc}
905 +     * @since 1.6
906 +     */
907 +    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
908 +        return new AscendingSubMap(this,
909 +                                   false, fromKey, inclusive,
910 +                                   true,  null,    true);
911 +    }
912 +
913 +    /**
914 +     * @throws ClassCastException       {@inheritDoc}
915 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
916 +     *         null and this map uses natural ordering, or its comparator
917 +     *         does not permit null keys
918 +     * @throws IllegalArgumentException {@inheritDoc}
919 +     */
920 +    public SortedMap<K,V> subMap(K fromKey, K toKey) {
921 +        return subMap(fromKey, true, toKey, false);
922 +    }
923 +
924 +    /**
925 +     * @throws ClassCastException       {@inheritDoc}
926 +     * @throws NullPointerException if <tt>toKey</tt> is null
927 +     *         and this map uses natural ordering, or its comparator
928 +     *         does not permit null keys
929 +     * @throws IllegalArgumentException {@inheritDoc}
930 +     */
931 +    public SortedMap<K,V> headMap(K toKey) {
932 +        return headMap(toKey, false);
933 +    }
934 +
935 +    /**
936 +     * @throws ClassCastException       {@inheritDoc}
937 +     * @throws NullPointerException if <tt>fromKey</tt> is null
938 +     *         and this map uses natural ordering, or its comparator
939 +     *         does not permit null keys
940 +     * @throws IllegalArgumentException {@inheritDoc}
941 +     */
942 +    public SortedMap<K,V> tailMap(K fromKey) {
943 +        return tailMap(fromKey, true);
944 +    }
945 +
946 +    // View class support
947 +
948      class Values extends AbstractCollection<V> {
949          public Iterator<V> iterator() {
950              return new ValueIterator(getFirstEntry());
951          }
952 <        
952 >
953          public int size() {
954              return TreeMap.this.size();
955          }
956 <        
956 >
957          public boolean contains(Object o) {
958 <            for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
952 <                if (valEquals(e.getValue(), o))
953 <                    return true;
954 <            return false;
958 >            return TreeMap.this.containsValue(o);
959          }
960 <        
960 >
961          public boolean remove(Object o) {
962              for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
963                  if (valEquals(e.getValue(), o)) {
# Line 963 | Line 967 | public class TreeMap<K,V>
967              }
968              return false;
969          }
970 <        
970 >
971          public void clear() {
972              TreeMap.this.clear();
973          }
974      }
975  
972    /**
973     * Returns a set view of the mappings contained in this map.  The set's
974     * iterator returns the mappings in ascending key order.  Each element in
975     * the returned set is a <tt>Map.Entry</tt>.  The set is backed by this
976     * map, so changes to this map are reflected in the set, and vice-versa.
977     * The set supports element removal, which removes the corresponding
978     * mapping from the TreeMap, through the <tt>Iterator.remove</tt>,
979     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
980     * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
981     * <tt>addAll</tt> operations.
982     *
983     * @return a set view of the mappings contained in this map.
984     * @see Map.Entry
985     */
986    public Set<Map.Entry<K,V>> entrySet() {
987        Set<Map.Entry<K,V>> es = entrySet;
988        return (es != null) ? es : (entrySet = new EntrySet());
989    }
990
976      class EntrySet extends AbstractSet<Map.Entry<K,V>> {
977          public Iterator<Map.Entry<K,V>> iterator() {
978              return new EntryIterator(getFirstEntry());
979          }
980 <        
980 >
981          public boolean contains(Object o) {
982              if (!(o instanceof Map.Entry))
983                  return false;
# Line 1001 | Line 986 | public class TreeMap<K,V>
986              Entry<K,V> p = getEntry(entry.getKey());
987              return p != null && valEquals(p.getValue(), value);
988          }
989 <        
989 >
990          public boolean remove(Object o) {
991              if (!(o instanceof Map.Entry))
992                  return false;
# Line 1014 | Line 999 | public class TreeMap<K,V>
999              }
1000              return false;
1001          }
1002 <        
1002 >
1003          public int size() {
1004              return TreeMap.this.size();
1005          }
1006 <        
1006 >
1007          public void clear() {
1008              TreeMap.this.clear();
1009          }
1010      }
1011  
1012 <    /**
1013 <     * Returns a set view of the mappings contained in this map.  The
1014 <     * set's iterator returns the mappings in descrending key order.
1015 <     * Each element in the returned set is a <tt>Map.Entry</tt>.  The
1016 <     * set is backed by this map, so changes to this map are reflected
1017 <     * in the set, and vice-versa.  The set supports element removal,
1018 <     * which removes the corresponding mapping from the TreeMap,
1019 <     * through the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1020 <     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1021 <     * operations.  It does not support the <tt>add</tt> or
1037 <     * <tt>addAll</tt> operations.
1038 <     *
1039 <     * @return a set view of the mappings contained in this map, in
1040 <     * descending key order
1041 <     * @see Map.Entry
1042 <     */
1043 <    public Set<Map.Entry<K,V>> descendingEntrySet() {
1044 <        Set<Map.Entry<K,V>> es = descendingEntrySet;
1045 <        return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
1012 >    /*
1013 >     * Unlike Values and EntrySet, the KeySet class is static,
1014 >     * delegating to a NavigableMap to allow use by SubMaps, which
1015 >     * outweighs the ugliness of needing type-tests for the following
1016 >     * Iterator methods that are defined appropriately in main versus
1017 >     * submap classes.
1018 >     */
1019 >
1020 >    Iterator<K> keyIterator() {
1021 >        return new KeyIterator(getFirstEntry());
1022      }
1023  
1024 <    class DescendingEntrySet extends EntrySet {
1025 <        public Iterator<Map.Entry<K,V>> iterator() {
1026 <            return new DescendingEntryIterator(getLastEntry());
1024 >    Iterator<K> descendingKeyIterator() {
1025 >        return new DescendingKeyIterator(getFirstEntry());
1026 >    }
1027 >
1028 >    static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1029 >        private final NavigableMap<E, Object> m;
1030 >        KeySet(NavigableMap<E,Object> map) { m = map; }
1031 >
1032 >        public Iterator<E> iterator() {
1033 >            if (m instanceof TreeMap)
1034 >                return ((TreeMap<E,Object>)m).keyIterator();
1035 >            else
1036 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
1037 >        }
1038 >
1039 >        public Iterator<E> descendingIterator() {
1040 >            if (m instanceof TreeMap)
1041 >                return ((TreeMap<E,Object>)m).descendingKeyIterator();
1042 >            else
1043 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
1044 >        }
1045 >
1046 >        public int size() { return m.size(); }
1047 >        public boolean isEmpty() { return m.isEmpty(); }
1048 >        public boolean contains(Object o) { return m.containsKey(o); }
1049 >        public void clear() { m.clear(); }
1050 >        public E lower(E e) { return m.lowerKey(e); }
1051 >        public E floor(E e) { return m.floorKey(e); }
1052 >        public E ceiling(E e) { return m.ceilingKey(e); }
1053 >        public E higher(E e) { return m.higherKey(e); }
1054 >        public E first() { return m.firstKey(); }
1055 >        public E last() { return m.lastKey(); }
1056 >        public Comparator<? super E> comparator() { return m.comparator(); }
1057 >        public E pollFirst() {
1058 >            Map.Entry<E,Object> e = m.pollFirstEntry();
1059 >            return e == null? null : e.getKey();
1060 >        }
1061 >        public E pollLast() {
1062 >            Map.Entry<E,Object> e = m.pollLastEntry();
1063 >            return e == null? null : e.getKey();
1064 >        }
1065 >        public boolean remove(Object o) {
1066 >            int oldSize = size();
1067 >            m.remove(o);
1068 >            return size() != oldSize;
1069 >        }
1070 >        public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1071 >                                      E toElement,   boolean toInclusive) {
1072 >            return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
1073 >                                           toElement,   toInclusive));
1074 >        }
1075 >        public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1076 >            return new TreeSet<E>(m.headMap(toElement, inclusive));
1077 >        }
1078 >        public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1079 >            return new TreeSet<E>(m.tailMap(fromElement, inclusive));
1080 >        }
1081 >        public SortedSet<E> subSet(E fromElement, E toElement) {
1082 >            return subSet(fromElement, true, toElement, false);
1083 >        }
1084 >        public SortedSet<E> headSet(E toElement) {
1085 >            return headSet(toElement, false);
1086 >        }
1087 >        public SortedSet<E> tailSet(E fromElement) {
1088 >            return tailSet(fromElement, true);
1089 >        }
1090 >        public NavigableSet<E> descendingSet() {
1091 >            return new TreeSet(m.descendingMap());
1092          }
1093      }
1094  
1095      /**
1096 <     * Returns a Set view of the keys contained in this map.  The
1056 <     * set's iterator will return the keys in descending order.  The
1057 <     * map is backed by this <tt>TreeMap</tt> instance, so changes to
1058 <     * this map are reflected in the Set, and vice-versa.  The Set
1059 <     * supports element removal, which removes the corresponding
1060 <     * mapping from the map, via the <tt>Iterator.remove</tt>,
1061 <     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>,
1062 <     * and <tt>clear</tt> operations.  It does not support the
1063 <     * <tt>add</tt> or <tt>addAll</tt> operations.
1064 <     *
1065 <     * @return a set view of the keys contained in this TreeMap.
1096 >     * Base class for TreeMap Iterators
1097       */
1098 <    public Set<K> descendingKeySet() {
1099 <        Set<K> ks = descendingKeySet;
1100 <        return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1101 <    }
1102 <
1103 <    class DescendingKeySet extends KeySet {
1104 <        public Iterator<K> iterator() {
1105 <            return new DescendingKeyIterator(getLastEntry());
1098 >    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1099 >        Entry<K,V> next;
1100 >        Entry<K,V> lastReturned;
1101 >        int expectedModCount;
1102 >
1103 >        PrivateEntryIterator(Entry<K,V> first) {
1104 >            expectedModCount = modCount;
1105 >            lastReturned = null;
1106 >            next = first;
1107 >        }
1108 >
1109 >        public final boolean hasNext() {
1110 >            return next != null;
1111 >        }
1112 >
1113 >        final Entry<K,V> nextEntry() {
1114 >            Entry<K,V> e = next;
1115 >            if (e == null)
1116 >                throw new NoSuchElementException();
1117 >            if (modCount != expectedModCount)
1118 >                throw new ConcurrentModificationException();
1119 >            next = successor(e);
1120 >            lastReturned = e;
1121 >            return e;
1122 >        }
1123 >
1124 >        final Entry<K,V> prevEntry() {
1125 >            Entry<K,V> e = next;
1126 >            if (e == null)
1127 >                throw new NoSuchElementException();
1128 >            if (modCount != expectedModCount)
1129 >                throw new ConcurrentModificationException();
1130 >            next = predecessor(e);
1131 >            lastReturned = e;
1132 >            return e;
1133 >        }
1134 >
1135 >        public void remove() {
1136 >            if (lastReturned == null)
1137 >                throw new IllegalStateException();
1138 >            if (modCount != expectedModCount)
1139 >                throw new ConcurrentModificationException();
1140 >            // deleted entries are replaced by their successors
1141 >            if (lastReturned.left != null && lastReturned.right != null)
1142 >                next = lastReturned;
1143 >            deleteEntry(lastReturned);
1144 >            expectedModCount = modCount;
1145 >            lastReturned = null;
1146          }
1147      }
1148  
1149 +    final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1150 +        EntryIterator(Entry<K,V> first) {
1151 +            super(first);
1152 +        }
1153 +        public Map.Entry<K,V> next() {
1154 +            return nextEntry();
1155 +        }
1156 +    }
1157 +
1158 +    final class ValueIterator extends PrivateEntryIterator<V> {
1159 +        ValueIterator(Entry<K,V> first) {
1160 +            super(first);
1161 +        }
1162 +        public V next() {
1163 +            return nextEntry().value;
1164 +        }
1165 +    }
1166 +
1167 +    final class KeyIterator extends PrivateEntryIterator<K> {
1168 +        KeyIterator(Entry<K,V> first) {
1169 +            super(first);
1170 +        }
1171 +        public K next() {
1172 +            return nextEntry().key;
1173 +        }
1174 +    }
1175 +
1176 +    final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1177 +        DescendingKeyIterator(Entry<K,V> first) {
1178 +            super(first);
1179 +        }
1180 +        public K next() {
1181 +            return prevEntry().key;
1182 +        }
1183 +    }
1184 +
1185 +    // Little utilities
1186 +
1187      /**
1188 <     * Returns a view of the portion of this map whose keys range from
1080 <     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.  (If
1081 <     * <tt>fromKey</tt> and <tt>toKey</tt> are equal, the returned sorted map
1082 <     * is empty.)  The returned sorted map is backed by this map, so changes
1083 <     * in the returned sorted map are reflected in this map, and vice-versa.
1084 <     * The returned sorted map supports all optional map operations.<p>
1085 <     *
1086 <     * The sorted map returned by this method will throw an
1087 <     * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1088 <     * less than <tt>fromKey</tt> or greater than or equal to
1089 <     * <tt>toKey</tt>.<p>
1090 <     *
1091 <     * Note: this method always returns a <i>half-open range</i> (which
1092 <     * includes its low endpoint but not its high endpoint).  If you need a
1093 <     * <i>closed range</i> (which includes both endpoints), and the key type
1094 <     * allows for calculation of the successor a given key, merely request the
1095 <     * subrange from <tt>lowEndpoint</tt> to <tt>successor(highEndpoint)</tt>.
1096 <     * For example, suppose that <tt>m</tt> is a sorted map whose keys are
1097 <     * strings.  The following idiom obtains a view containing all of the
1098 <     * key-value mappings in <tt>m</tt> whose keys are between <tt>low</tt>
1099 <     * and <tt>high</tt>, inclusive:
1100 <     *             <pre>    NavigableMap sub = m.submap(low, high+"\0");</pre>
1101 <     * A similar technique can be used to generate an <i>open range</i> (which
1102 <     * contains neither endpoint).  The following idiom obtains a view
1103 <     * containing all of the key-value mappings in <tt>m</tt> whose keys are
1104 <     * between <tt>low</tt> and <tt>high</tt>, exclusive:
1105 <     *             <pre>    NavigableMap sub = m.subMap(low+"\0", high);</pre>
1106 <     *
1107 <     * @param fromKey low endpoint (inclusive) of the subMap.
1108 <     * @param toKey high endpoint (exclusive) of the subMap.
1109 <     *
1110 <     * @return a view of the portion of this map whose keys range from
1111 <     *                <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
1112 <     *
1113 <     * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
1114 <     *         cannot be compared to one another using this map's comparator
1115 <     *         (or, if the map has no comparator, using natural ordering).
1116 <     * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
1117 <     *         <tt>toKey</tt>.
1118 <     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
1119 <     *               <tt>null</tt> and this map uses natural order, or its
1120 <     *               comparator does not tolerate <tt>null</tt> keys.
1188 >     * Compares two keys using the correct comparison method for this TreeMap.
1189       */
1190 <    public NavigableMap<K,V> subMap(K fromKey, K toKey) {
1191 <        return new SubMap(fromKey, toKey);
1190 >    final int compare(Object k1, Object k2) {
1191 >        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1192 >            : comparator.compare((K)k1, (K)k2);
1193      }
1194  
1195      /**
1196 <     * Returns a view of the portion of this map whose keys are strictly less
1197 <     * than <tt>toKey</tt>.  The returned sorted map is backed by this map, so
1198 <     * changes in the returned sorted map are reflected in this map, and
1199 <     * vice-versa.  The returned sorted map supports all optional map
1200 <     * operations.<p>
1201 <     *
1202 <     * The sorted map returned by this method will throw an
1203 <     * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1204 <     * greater than or equal to <tt>toKey</tt>.<p>
1205 <     *
1206 <     * Note: this method always returns a view that does not contain its
1207 <     * (high) endpoint.  If you need a view that does contain this endpoint,
1208 <     * and the key type allows for calculation of the successor a given key,
1209 <     * merely request a headMap bounded by <tt>successor(highEndpoint)</tt>.
1210 <     * For example, suppose that suppose that <tt>m</tt> is a sorted map whose
1211 <     * keys are strings.  The following idiom obtains a view containing all of
1212 <     * the key-value mappings in <tt>m</tt> whose keys are less than or equal
1213 <     * to <tt>high</tt>:
1214 <     * <pre>
1215 <     *     NavigableMap head = m.headMap(high+"\0");
1216 <     * </pre>
1217 <     *
1218 <     * @param toKey high endpoint (exclusive) of the headMap.
1219 <     * @return a view of the portion of this map whose keys are strictly
1220 <     *                less than <tt>toKey</tt>.
1221 <     *
1222 <     * @throws ClassCastException if <tt>toKey</tt> is not compatible
1223 <     *         with this map's comparator (or, if the map has no comparator,
1224 <     *         if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
1225 <     * @throws IllegalArgumentException if this map is itself a subMap,
1226 <     *         headMap, or tailMap, and <tt>toKey</tt> is not within the
1227 <     *         specified range of the subMap, headMap, or tailMap.
1228 <     * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt> and
1229 <     *               this map uses natural order, or its comparator does not
1230 <     *               tolerate <tt>null</tt> keys.
1231 <     */
1232 <    public NavigableMap<K,V> headMap(K toKey) {
1233 <        return new SubMap(toKey, true);
1234 <    }
1235 <
1167 <    /**
1168 <     * Returns a view of the portion of this map whose keys are greater than
1169 <     * or equal to <tt>fromKey</tt>.  The returned sorted map is backed by
1170 <     * this map, so changes in the returned sorted map are reflected in this
1171 <     * map, and vice-versa.  The returned sorted map supports all optional map
1172 <     * operations.<p>
1173 <     *
1174 <     * The sorted map returned by this method will throw an
1175 <     * <tt>IllegalArgumentException</tt> if the user attempts to insert a key
1176 <     * less than <tt>fromKey</tt>.<p>
1177 <     *
1178 <     * Note: this method always returns a view that contains its (low)
1179 <     * endpoint.  If you need a view that does not contain this endpoint, and
1180 <     * the element type allows for calculation of the successor a given value,
1181 <     * merely request a tailMap bounded by <tt>successor(lowEndpoint)</tt>.
1182 <     * For example, suppose that <tt>m</tt> is a sorted map whose keys
1183 <     * are strings.  The following idiom obtains a view containing
1184 <     * all of the key-value mappings in <tt>m</tt> whose keys are strictly
1185 <     * greater than <tt>low</tt>: <pre>
1186 <     *     NavigableMap tail = m.tailMap(low+"\0");
1187 <     * </pre>
1188 <     *
1189 <     * @param fromKey low endpoint (inclusive) of the tailMap.
1190 <     * @return a view of the portion of this map whose keys are greater
1191 <     *                than or equal to <tt>fromKey</tt>.
1192 <     * @throws ClassCastException if <tt>fromKey</tt> is not compatible
1193 <     *         with this map's comparator (or, if the map has no comparator,
1194 <     *         if <tt>fromKey</tt> does not implement <tt>Comparable</tt>).
1195 <     * @throws IllegalArgumentException if this map is itself a subMap,
1196 <     *         headMap, or tailMap, and <tt>fromKey</tt> is not within the
1197 <     *         specified range of the subMap, headMap, or tailMap.
1198 <     * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt> and
1199 <     *               this map uses natural order, or its comparator does not
1200 <     *               tolerate <tt>null</tt> keys.
1201 <     */
1202 <    public NavigableMap<K,V> tailMap(K fromKey) {
1203 <        return new SubMap(fromKey, false);
1204 <    }
1205 <
1206 <    private class SubMap
1207 <        extends AbstractMap<K,V>
1208 <        implements NavigableMap<K,V>, java.io.Serializable {
1209 <        private static final long serialVersionUID = -6520786458950516097L;
1196 >     * Test two values for equality.  Differs from o1.equals(o2) only in
1197 >     * that it copes with <tt>null</tt> o1 properly.
1198 >     */
1199 >    final static boolean valEquals(Object o1, Object o2) {
1200 >        return (o1==null ? o2==null : o1.equals(o2));
1201 >    }
1202 >
1203 >    /**
1204 >     * Return SimpleImmutableEntry for entry, or null if null
1205 >     */
1206 >    static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
1207 >        return e == null? null :
1208 >            new AbstractMap.SimpleImmutableEntry<K,V>(e);
1209 >    }
1210 >
1211 >    /**
1212 >     * Return key for entry, or null if null
1213 >     */
1214 >    static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
1215 >        return e == null? null : e.key;
1216 >    }
1217 >
1218 >    /**
1219 >     * Returns the key corresponding to the specified Entry.
1220 >     * @throws NoSuchElementException if the Entry is null
1221 >     */
1222 >    static <K> K key(Entry<K,?> e) {
1223 >        if (e==null)
1224 >            throw new NoSuchElementException();
1225 >        return e.key;
1226 >    }
1227 >
1228 >
1229 >    // SubMaps
1230 >
1231 >    /**
1232 >     * Dummy value serving as unmatchable fence key for unbounded
1233 >     * SubMapIterators
1234 >     */
1235 >    private static final Object UNBOUNDED = new Object();
1236  
1237 +    /**
1238 +     * @serial include
1239 +     */
1240 +    static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>
1241 +        implements NavigableMap<K,V>, java.io.Serializable {
1242          /**
1243 <         * fromKey is significant only if fromStart is false.  Similarly,
1213 <         * toKey is significant only if toStart is false.
1243 >         * The backing map.
1244           */
1245 <        private boolean fromStart = false, toEnd = false;
1216 <        private K fromKey, toKey;
1245 >        final TreeMap<K,V> m;
1246  
1247 <        SubMap(K fromKey, K toKey) {
1248 <            if (compare(fromKey, toKey) > 0)
1249 <                throw new IllegalArgumentException("fromKey > toKey");
1250 <            this.fromKey = fromKey;
1251 <            this.toKey = toKey;
1252 <        }
1253 <
1254 <        SubMap(K key, boolean headMap) {
1255 <            compare(key, key); // Type-check key
1256 <
1257 <            if (headMap) {
1258 <                fromStart = true;
1259 <                toKey = key;
1247 >        /**
1248 >         * Endpoints are represented as triples (fromStart, lo,
1249 >         * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1250 >         * true, then the low (absolute) bound is the start of the
1251 >         * backing map, and the other values are ignored. Otherwise,
1252 >         * if loInclusive is true, lo is the inclusive bound, else lo
1253 >         * is the exclusive bound. Similarly for the upper bound.
1254 >         */
1255 >        final K lo, hi;
1256 >        final boolean fromStart, toEnd;
1257 >        final boolean loInclusive, hiInclusive;
1258 >
1259 >        NavigableSubMap(TreeMap<K,V> m,
1260 >                        boolean fromStart, K lo, boolean loInclusive,
1261 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1262 >            if (!fromStart && !toEnd) {
1263 >                if (m.compare(lo, hi) > 0)
1264 >                    throw new IllegalArgumentException("fromKey > toKey");
1265              } else {
1266 <                toEnd = true;
1267 <                fromKey = key;
1266 >                if (!fromStart) // type check
1267 >                    m.compare(lo, lo);
1268 >                if (!toEnd)
1269 >                    m.compare(hi, hi);
1270              }
1235        }
1271  
1272 <        SubMap(boolean fromStart, K fromKey, boolean toEnd, K toKey) {
1272 >            this.m = m;
1273              this.fromStart = fromStart;
1274 <            this.fromKey= fromKey;
1274 >            this.lo = lo;
1275 >            this.loInclusive = loInclusive;
1276              this.toEnd = toEnd;
1277 <            this.toKey = toKey;
1277 >            this.hi = hi;
1278 >            this.hiInclusive = hiInclusive;
1279 >        }
1280 >
1281 >        // internal utilities
1282 >
1283 >        final boolean tooLow(Object key) {
1284 >            if (!fromStart) {
1285 >                int c = m.compare(key, lo);
1286 >                if (c < 0 || (c == 0 && !loInclusive))
1287 >                    return true;
1288 >            }
1289 >            return false;
1290 >        }
1291 >
1292 >        final boolean tooHigh(Object key) {
1293 >            if (!toEnd) {
1294 >                int c = m.compare(key, hi);
1295 >                if (c > 0 || (c == 0 && !hiInclusive))
1296 >                    return true;
1297 >            }
1298 >            return false;
1299 >        }
1300 >
1301 >        final boolean inRange(Object key) {
1302 >            return !tooLow(key) && !tooHigh(key);
1303 >        }
1304 >
1305 >        final boolean inClosedRange(Object key) {
1306 >            return (fromStart || m.compare(key, lo) >= 0)
1307 >                && (toEnd || m.compare(hi, key) >= 0);
1308 >        }
1309 >
1310 >        final boolean inRange(Object key, boolean inclusive) {
1311 >            return inclusive ? inRange(key) : inClosedRange(key);
1312 >        }
1313 >
1314 >        /*
1315 >         * Absolute versions of relation operations.
1316 >         * Subclasses map to these using like-named "sub"
1317 >         * versions that invert senses for descending maps
1318 >         */
1319 >
1320 >        final TreeMap.Entry<K,V> absLowest() {
1321 >            TreeMap.Entry<K,V> e =
1322 >                (fromStart ?  m.getFirstEntry() :
1323 >                 (loInclusive ? m.getCeilingEntry(lo) :
1324 >                                m.getHigherEntry(lo)));
1325 >            return (e == null || tooHigh(e.key)) ? null : e;
1326 >        }
1327 >
1328 >        final TreeMap.Entry<K,V> absHighest() {
1329 >            TreeMap.Entry<K,V> e =
1330 >                (toEnd ?  m.getLastEntry() :
1331 >                 (hiInclusive ?  m.getFloorEntry(hi) :
1332 >                                 m.getLowerEntry(hi)));
1333 >            return (e == null || tooLow(e.key)) ? null : e;
1334 >        }
1335 >
1336 >        final TreeMap.Entry<K,V> absCeiling(K key) {
1337 >            if (tooLow(key))
1338 >                return absLowest();
1339 >            TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1340 >            return (e == null || tooHigh(e.key)) ? null : e;
1341 >        }
1342 >
1343 >        final TreeMap.Entry<K,V> absHigher(K key) {
1344 >            if (tooLow(key))
1345 >                return absLowest();
1346 >            TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1347 >            return (e == null || tooHigh(e.key)) ? null : e;
1348 >        }
1349 >
1350 >        final TreeMap.Entry<K,V> absFloor(K key) {
1351 >            if (tooHigh(key))
1352 >                return absHighest();
1353 >            TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1354 >            return (e == null || tooLow(e.key)) ? null : e;
1355 >        }
1356 >
1357 >        final TreeMap.Entry<K,V> absLower(K key) {
1358 >            if (tooHigh(key))
1359 >                return absHighest();
1360 >            TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1361 >            return (e == null || tooLow(e.key)) ? null : e;
1362          }
1363  
1364 +        /** Returns the absolute high fence for ascending traversal */
1365 +        final TreeMap.Entry<K,V> absHighFence() {
1366 +            return (toEnd ? null : (hiInclusive ?
1367 +                                    m.getHigherEntry(hi) :
1368 +                                    m.getCeilingEntry(hi)));
1369 +        }
1370 +
1371 +        /** Return the absolute low fence for descending traversal  */
1372 +        final TreeMap.Entry<K,V> absLowFence() {
1373 +            return (fromStart ? null : (loInclusive ?
1374 +                                        m.getLowerEntry(lo) :
1375 +                                        m.getFloorEntry(lo)));
1376 +        }
1377 +
1378 +        // Abstract methods defined in ascending vs descending classes
1379 +        // These relay to the appropriate absolute versions
1380 +
1381 +        abstract TreeMap.Entry<K,V> subLowest();
1382 +        abstract TreeMap.Entry<K,V> subHighest();
1383 +        abstract TreeMap.Entry<K,V> subCeiling(K key);
1384 +        abstract TreeMap.Entry<K,V> subHigher(K key);
1385 +        abstract TreeMap.Entry<K,V> subFloor(K key);
1386 +        abstract TreeMap.Entry<K,V> subLower(K key);
1387 +
1388 +        /** Returns ascending iterator from the perspective of this submap */
1389 +        abstract Iterator<K> keyIterator();
1390 +
1391 +        /** Returns descending iterator from the perspective of this submap */
1392 +        abstract Iterator<K> descendingKeyIterator();
1393 +
1394 +        // public methods
1395 +
1396          public boolean isEmpty() {
1397 <            return entrySet.isEmpty();
1397 >            return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1398          }
1399  
1400 <        public boolean containsKey(Object key) {
1401 <            return inRange((K) key) && TreeMap.this.containsKey(key);
1400 >        public int size() {
1401 >            return (fromStart && toEnd) ? m.size() : entrySet().size();
1402          }
1403  
1404 <        public V get(Object key) {
1405 <            if (!inRange((K) key))
1254 <                return null;
1255 <            return TreeMap.this.get(key);
1404 >        public final boolean containsKey(Object key) {
1405 >            return inRange(key) && m.containsKey(key);
1406          }
1407  
1408 <        public V put(K key, V value) {
1408 >        public final V put(K key, V value) {
1409              if (!inRange(key))
1410                  throw new IllegalArgumentException("key out of range");
1411 <            return TreeMap.this.put(key, value);
1411 >            return m.put(key, value);
1412          }
1413  
1414 <        public V remove(Object key) {
1415 <            if (!inRange((K) key))
1266 <                return null;
1267 <            return TreeMap.this.remove(key);
1414 >        public final V get(Object key) {
1415 >            return !inRange(key)? null :  m.get(key);
1416          }
1417  
1418 <        public Comparator<? super K> comparator() {
1419 <            return comparator;
1418 >        public final V remove(Object key) {
1419 >            return !inRange(key)? null  : m.remove(key);
1420          }
1421  
1422 <        public K firstKey() {
1423 <            TreeMap.Entry<K,V> e = fromStart ? getFirstEntry() : getCeilingEntry(fromKey);
1276 <            K first = key(e);
1277 <            if (!toEnd && compare(first, toKey) >= 0)
1278 <                throw(new NoSuchElementException());
1279 <            return first;
1280 <        }
1281 <
1282 <        public K lastKey() {
1283 <            TreeMap.Entry<K,V> e = toEnd ? getLastEntry() : getLowerEntry(toKey);
1284 <            K last = key(e);
1285 <            if (!fromStart && compare(last, fromKey) < 0)
1286 <                throw(new NoSuchElementException());
1287 <            return last;
1288 <        }
1289 <
1290 <        public Map.Entry<K,V> firstEntry() {
1291 <            TreeMap.Entry<K,V> e = fromStart ?
1292 <                getFirstEntry() : getCeilingEntry(fromKey);
1293 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1294 <                return null;
1295 <            return e;
1422 >        public final Map.Entry<K,V> ceilingEntry(K key) {
1423 >            return exportEntry(subCeiling(key));
1424          }
1425  
1426 <        public Map.Entry<K,V> lastEntry() {
1427 <            TreeMap.Entry<K,V> e = toEnd ?
1300 <                getLastEntry() : getLowerEntry(toKey);
1301 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1302 <                return null;
1303 <            return e;
1426 >        public final K ceilingKey(K key) {
1427 >            return keyOrNull(subCeiling(key));
1428          }
1429  
1430 <        public Map.Entry<K,V> pollFirstEntry() {
1431 <            TreeMap.Entry<K,V> e = fromStart ?
1308 <                getFirstEntry() : getCeilingEntry(fromKey);
1309 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1310 <                return null;
1311 <            Map.Entry result = new SnapshotEntry(e);
1312 <            deleteEntry(e);
1313 <            return result;
1430 >        public final Map.Entry<K,V> higherEntry(K key) {
1431 >            return exportEntry(subHigher(key));
1432          }
1433  
1434 <        public Map.Entry<K,V> pollLastEntry() {
1435 <            TreeMap.Entry<K,V> e = toEnd ?
1318 <                getLastEntry() : getLowerEntry(toKey);
1319 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1320 <                return null;
1321 <            Map.Entry result = new SnapshotEntry(e);
1322 <            deleteEntry(e);
1323 <            return result;
1434 >        public final K higherKey(K key) {
1435 >            return keyOrNull(subHigher(key));
1436          }
1437  
1438 <        private TreeMap.Entry<K,V> subceiling(K key) {
1439 <            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1328 <                getCeilingEntry(fromKey) : getCeilingEntry(key);
1329 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1330 <                return null;
1331 <            return e;
1438 >        public final Map.Entry<K,V> floorEntry(K key) {
1439 >            return exportEntry(subFloor(key));
1440          }
1441  
1442 <        public Map.Entry<K,V> ceilingEntry(K key) {
1443 <            TreeMap.Entry<K,V> e = subceiling(key);
1336 <            return e == null? null : new SnapshotEntry(e);
1442 >        public final K floorKey(K key) {
1443 >            return keyOrNull(subFloor(key));
1444          }
1445  
1446 <        public K ceilingKey(K key) {
1447 <            TreeMap.Entry<K,V> e = subceiling(key);
1341 <            return e == null? null : e.key;
1446 >        public final Map.Entry<K,V> lowerEntry(K key) {
1447 >            return exportEntry(subLower(key));
1448          }
1449  
1450 +        public final K lowerKey(K key) {
1451 +            return keyOrNull(subLower(key));
1452 +        }
1453  
1454 <        private TreeMap.Entry<K,V> subhigher(K key) {
1455 <            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1347 <                getCeilingEntry(fromKey) : getHigherEntry(key);
1348 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1349 <                return null;
1350 <            return e;
1454 >        public final K firstKey() {
1455 >            return key(subLowest());
1456          }
1457  
1458 <        public Map.Entry<K,V> higherEntry(K key) {
1459 <            TreeMap.Entry<K,V> e = subhigher(key);
1355 <            return e == null? null : new SnapshotEntry(e);
1458 >        public final K lastKey() {
1459 >            return key(subHighest());
1460          }
1461  
1462 <        public K higherKey(K key) {
1463 <            TreeMap.Entry<K,V> e = subhigher(key);
1360 <            return e == null? null : e.key;
1462 >        public final Map.Entry<K,V> firstEntry() {
1463 >            return exportEntry(subLowest());
1464          }
1465  
1466 <        private TreeMap.Entry<K,V> subfloor(K key) {
1467 <            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1365 <                getLowerEntry(toKey) : getFloorEntry(key);
1366 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1367 <                return null;
1368 <            return e;
1466 >        public final Map.Entry<K,V> lastEntry() {
1467 >            return exportEntry(subHighest());
1468          }
1469  
1470 <        public Map.Entry<K,V> floorEntry(K key) {
1471 <            TreeMap.Entry<K,V> e = subfloor(key);
1472 <            return e == null? null : new SnapshotEntry(e);
1470 >        public final Map.Entry<K,V> pollFirstEntry() {
1471 >            TreeMap.Entry<K,V> e = subLowest();
1472 >            Map.Entry<K,V> result = exportEntry(e);
1473 >            if (e != null)
1474 >                m.deleteEntry(e);
1475 >            return result;
1476          }
1477  
1478 <        public K floorKey(K key) {
1479 <            TreeMap.Entry<K,V> e = subfloor(key);
1480 <            return e == null? null : e.key;
1478 >        public final Map.Entry<K,V> pollLastEntry() {
1479 >            TreeMap.Entry<K,V> e = subHighest();
1480 >            Map.Entry<K,V> result = exportEntry(e);
1481 >            if (e != null)
1482 >                m.deleteEntry(e);
1483 >            return result;
1484          }
1485  
1486 <        private TreeMap.Entry<K,V> sublower(K key) {
1487 <            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1488 <                getLowerEntry(toKey) :  getLowerEntry(key);
1489 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1490 <                return null;
1491 <            return e;
1486 >        // Views
1487 >        transient NavigableMap<K,V> descendingMapView = null;
1488 >        transient EntrySetView entrySetView = null;
1489 >        transient KeySet<K> navigableKeySetView = null;
1490 >
1491 >        public final NavigableSet<K> navigableKeySet() {
1492 >            KeySet<K> nksv = navigableKeySetView;
1493 >            return (nksv != null) ? nksv :
1494 >                (navigableKeySetView = new TreeMap.KeySet(this));
1495 >        }
1496 >
1497 >        public final Set<K> keySet() {
1498 >            return navigableKeySet();
1499          }
1500  
1501 <        public Map.Entry<K,V> lowerEntry(K key) {
1502 <            TreeMap.Entry<K,V> e = sublower(key);
1391 <            return e == null? null : new SnapshotEntry(e);
1501 >        public NavigableSet<K> descendingKeySet() {
1502 >            return descendingMap().navigableKeySet();
1503          }
1504  
1505 <        public K lowerKey(K key) {
1506 <            TreeMap.Entry<K,V> e = sublower(key);
1396 <            return e == null? null : e.key;
1505 >        public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1506 >            return subMap(fromKey, true, toKey, false);
1507          }
1508  
1509 <        private transient Set<Map.Entry<K,V>> entrySet = new EntrySetView();
1509 >        public final SortedMap<K,V> headMap(K toKey) {
1510 >            return headMap(toKey, false);
1511 >        }
1512  
1513 <        public Set<Map.Entry<K,V>> entrySet() {
1514 <            return entrySet;
1513 >        public final SortedMap<K,V> tailMap(K fromKey) {
1514 >            return tailMap(fromKey, true);
1515          }
1516  
1517 <        private class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1517 >        // View classes
1518 >
1519 >        abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1520              private transient int size = -1, sizeModCount;
1521  
1522              public int size() {
1523 <                if (size == -1 || sizeModCount != TreeMap.this.modCount) {
1524 <                    size = 0;  sizeModCount = TreeMap.this.modCount;
1523 >                if (fromStart && toEnd)
1524 >                    return m.size();
1525 >                if (size == -1 || sizeModCount != m.modCount) {
1526 >                    sizeModCount = m.modCount;
1527 >                    size = 0;
1528                      Iterator i = iterator();
1529                      while (i.hasNext()) {
1530                          size++;
# Line 1418 | Line 1535 | public class TreeMap<K,V>
1535              }
1536  
1537              public boolean isEmpty() {
1538 <                return !iterator().hasNext();
1538 >                TreeMap.Entry<K,V> n = absLowest();
1539 >                return n == null || tooHigh(n.key);
1540              }
1541  
1542              public boolean contains(Object o) {
# Line 1428 | Line 1546 | public class TreeMap<K,V>
1546                  K key = entry.getKey();
1547                  if (!inRange(key))
1548                      return false;
1549 <                TreeMap.Entry node = getEntry(key);
1549 >                TreeMap.Entry node = m.getEntry(key);
1550                  return node != null &&
1551 <                       valEquals(node.getValue(), entry.getValue());
1551 >                    valEquals(node.getValue(), entry.getValue());
1552              }
1553  
1554              public boolean remove(Object o) {
# Line 1440 | Line 1558 | public class TreeMap<K,V>
1558                  K key = entry.getKey();
1559                  if (!inRange(key))
1560                      return false;
1561 <                TreeMap.Entry<K,V> node = getEntry(key);
1561 >                TreeMap.Entry<K,V> node = m.getEntry(key);
1562                  if (node!=null && valEquals(node.getValue(),entry.getValue())){
1563 <                    deleteEntry(node);
1563 >                    m.deleteEntry(node);
1564                      return true;
1565                  }
1566                  return false;
1567              }
1450
1451            public Iterator<Map.Entry<K,V>> iterator() {
1452                return new SubMapEntryIterator(
1453                    (fromStart ? getFirstEntry() : getCeilingEntry(fromKey)),
1454                    (toEnd     ? null            : getCeilingEntry(toKey)));
1455            }
1568          }
1569  
1570 <        private transient Set<Map.Entry<K,V>> descendingEntrySetView = null;
1571 <        private transient Set<K> descendingKeySetView = null;
1572 <
1573 <        public Set<Map.Entry<K,V>> descendingEntrySet() {
1574 <            Set<Map.Entry<K,V>> es = descendingEntrySetView;
1575 <            return (es != null) ? es : (descendingEntrySetView = new DescendingEntrySetView());
1576 <        }
1570 >        /**
1571 >         * Iterators for SubMaps
1572 >         */
1573 >        abstract class SubMapIterator<T> implements Iterator<T> {
1574 >            TreeMap.Entry<K,V> lastReturned;
1575 >            TreeMap.Entry<K,V> next;
1576 >            final Object fenceKey;
1577 >            int expectedModCount;
1578  
1579 <        public Set<K> descendingKeySet() {
1580 <            Set<K> ks = descendingKeySetView;
1581 <            return (ks != null) ? ks : (descendingKeySetView = new DescendingKeySetView());
1582 <        }
1579 >            SubMapIterator(TreeMap.Entry<K,V> first,
1580 >                           TreeMap.Entry<K,V> fence) {
1581 >                expectedModCount = m.modCount;
1582 >                lastReturned = null;
1583 >                next = first;
1584 >                fenceKey = fence == null ? UNBOUNDED : fence.key;
1585 >            }
1586  
1587 <        private class DescendingEntrySetView extends EntrySetView {
1588 <            public Iterator<Map.Entry<K,V>> iterator() {
1473 <                return new DescendingSubMapEntryIterator
1474 <                    ((toEnd     ? getLastEntry()  : getLowerEntry(toKey)),
1475 <                     (fromStart ? null            : getLowerEntry(fromKey)));
1587 >            public final boolean hasNext() {
1588 >                return next != null && next.key != fenceKey;
1589              }
1477        }
1590  
1591 <        private class DescendingKeySetView extends AbstractSet<K> {
1592 <            public Iterator<K> iterator() {
1593 <                return new Iterator<K>() {
1594 <                    private Iterator<Entry<K,V>> i = descendingEntrySet().iterator();
1595 <                    
1596 <                    public boolean hasNext() { return i.hasNext(); }
1597 <                    public K next() { return i.next().getKey(); }
1598 <                    public void remove() { i.remove(); }
1599 <                };
1591 >            final TreeMap.Entry<K,V> nextEntry() {
1592 >                TreeMap.Entry<K,V> e = next;
1593 >                if (e == null || e.key == fenceKey)
1594 >                    throw new NoSuchElementException();
1595 >                if (m.modCount != expectedModCount)
1596 >                    throw new ConcurrentModificationException();
1597 >                next = successor(e);
1598 >                lastReturned = e;
1599 >                return e;
1600              }
1601 <            
1602 <            public int size() {
1603 <                return SubMap.this.size();
1601 >
1602 >            final TreeMap.Entry<K,V> prevEntry() {
1603 >                TreeMap.Entry<K,V> e = next;
1604 >                if (e == null || e.key == fenceKey)
1605 >                    throw new NoSuchElementException();
1606 >                if (m.modCount != expectedModCount)
1607 >                    throw new ConcurrentModificationException();
1608 >                next = predecessor(e);
1609 >                lastReturned = e;
1610 >                return e;
1611              }
1612 <            
1613 <            public boolean contains(Object k) {
1614 <                return SubMap.this.containsKey(k);
1612 >
1613 >            final void removeAscending() {
1614 >                if (lastReturned == null)
1615 >                    throw new IllegalStateException();
1616 >                if (m.modCount != expectedModCount)
1617 >                    throw new ConcurrentModificationException();
1618 >                // deleted entries are replaced by their successors
1619 >                if (lastReturned.left != null && lastReturned.right != null)
1620 >                    next = lastReturned;
1621 >                m.deleteEntry(lastReturned);
1622 >                lastReturned = null;
1623 >                expectedModCount = m.modCount;
1624              }
1497        }
1625  
1626 +            final void removeDescending() {
1627 +                if (lastReturned == null)
1628 +                    throw new IllegalStateException();
1629 +                if (m.modCount != expectedModCount)
1630 +                    throw new ConcurrentModificationException();
1631 +                m.deleteEntry(lastReturned);
1632 +                lastReturned = null;
1633 +                expectedModCount = m.modCount;
1634 +            }
1635  
1500        public NavigableMap<K,V> subMap(K fromKey, K toKey) {
1501            if (!inRange2(fromKey))
1502                throw new IllegalArgumentException("fromKey out of range");
1503            if (!inRange2(toKey))
1504                throw new IllegalArgumentException("toKey out of range");
1505            return new SubMap(fromKey, toKey);
1636          }
1637  
1638 <        public NavigableMap<K,V> headMap(K toKey) {
1639 <            if (!inRange2(toKey))
1640 <                throw new IllegalArgumentException("toKey out of range");
1641 <            return new SubMap(fromStart, fromKey, false, toKey);
1638 >        final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1639 >            SubMapEntryIterator(TreeMap.Entry<K,V> first,
1640 >                                TreeMap.Entry<K,V> fence) {
1641 >                super(first, fence);
1642 >            }
1643 >            public Map.Entry<K,V> next() {
1644 >                return nextEntry();
1645 >            }
1646 >            public void remove() {
1647 >                removeAscending();
1648 >            }
1649          }
1650  
1651 <        public NavigableMap<K,V> tailMap(K fromKey) {
1652 <            if (!inRange2(fromKey))
1653 <                throw new IllegalArgumentException("fromKey out of range");
1654 <            return new SubMap(false, fromKey, toEnd, toKey);
1651 >        final class SubMapKeyIterator extends SubMapIterator<K> {
1652 >            SubMapKeyIterator(TreeMap.Entry<K,V> first,
1653 >                              TreeMap.Entry<K,V> fence) {
1654 >                super(first, fence);
1655 >            }
1656 >            public K next() {
1657 >                return nextEntry().key;
1658 >            }
1659 >            public void remove() {
1660 >                removeAscending();
1661 >            }
1662          }
1663  
1664 <        private boolean inRange(K key) {
1665 <            return (fromStart || compare(key, fromKey) >= 0) &&
1666 <                   (toEnd     || compare(key, toKey)   <  0);
1664 >        final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1665 >            DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1666 >                                          TreeMap.Entry<K,V> fence) {
1667 >                super(last, fence);
1668 >            }
1669 >
1670 >            public Map.Entry<K,V> next() {
1671 >                return prevEntry();
1672 >            }
1673 >            public void remove() {
1674 >                removeDescending();
1675 >            }
1676          }
1677  
1678 <        // This form allows the high endpoint (as well as all legit keys)
1679 <        private boolean inRange2(K key) {
1680 <            return (fromStart || compare(key, fromKey) >= 0) &&
1681 <                   (toEnd     || compare(key, toKey)   <= 0);
1678 >        final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
1679 >            DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1680 >                                        TreeMap.Entry<K,V> fence) {
1681 >                super(last, fence);
1682 >            }
1683 >            public K next() {
1684 >                return prevEntry().key;
1685 >            }
1686 >            public void remove() {
1687 >                removeDescending();
1688 >            }
1689          }
1690      }
1691  
1692      /**
1693 <     * TreeMap Iterator.
1693 >     * @serial include
1694       */
1695 <    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1696 <        int expectedModCount = TreeMap.this.modCount;
1537 <        Entry<K,V> lastReturned = null;
1538 <        Entry<K,V> next;
1695 >    static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1696 >        private static final long serialVersionUID = 912986545866124060L;
1697  
1698 <        PrivateEntryIterator(Entry<K,V> first) {
1699 <            next = first;
1698 >        AscendingSubMap(TreeMap<K,V> m,
1699 >                        boolean fromStart, K lo, boolean loInclusive,
1700 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1701 >            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1702          }
1703  
1704 <        public boolean hasNext() {
1705 <            return next != null;
1704 >        public Comparator<? super K> comparator() {
1705 >            return m.comparator();
1706          }
1707  
1708 <        Entry<K,V> nextEntry() {
1709 <            if (next == null)
1710 <                throw new NoSuchElementException();
1711 <            if (modCount != expectedModCount)
1712 <                throw new ConcurrentModificationException();
1713 <            lastReturned = next;
1714 <            next = successor(next);
1715 <            return lastReturned;
1708 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1709 >                                        K toKey,   boolean toInclusive) {
1710 >            if (!inRange(fromKey, fromInclusive))
1711 >                throw new IllegalArgumentException("fromKey out of range");
1712 >            if (!inRange(toKey, toInclusive))
1713 >                throw new IllegalArgumentException("toKey out of range");
1714 >            return new AscendingSubMap(m,
1715 >                                       false, fromKey, fromInclusive,
1716 >                                       false, toKey,   toInclusive);
1717          }
1718  
1719 <        public void remove() {
1720 <            if (lastReturned == null)
1721 <                throw new IllegalStateException();
1722 <            if (modCount != expectedModCount)
1723 <                throw new ConcurrentModificationException();
1724 <            if (lastReturned.left != null && lastReturned.right != null)
1564 <                next = lastReturned;
1565 <            deleteEntry(lastReturned);
1566 <            expectedModCount++;
1567 <            lastReturned = null;
1719 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1720 >            if (!inRange(toKey, inclusive))
1721 >                throw new IllegalArgumentException("toKey out of range");
1722 >            return new AscendingSubMap(m,
1723 >                                       fromStart, lo,    loInclusive,
1724 >                                       false,     toKey, inclusive);
1725          }
1569    }
1726  
1727 <    class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1728 <        EntryIterator(Entry<K,V> first) {
1729 <            super(first);
1727 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1728 >            if (!inRange(fromKey, inclusive))
1729 >                throw new IllegalArgumentException("fromKey out of range");
1730 >            return new AscendingSubMap(m,
1731 >                                       false, fromKey, inclusive,
1732 >                                       toEnd, hi,      hiInclusive);
1733          }
1734  
1735 <        public Map.Entry<K,V> next() {
1736 <            return nextEntry();
1735 >        public NavigableMap<K,V> descendingMap() {
1736 >            NavigableMap<K,V> mv = descendingMapView;
1737 >            return (mv != null) ? mv :
1738 >                (descendingMapView =
1739 >                 new DescendingSubMap(m,
1740 >                                      fromStart, lo, loInclusive,
1741 >                                      toEnd,     hi, hiInclusive));
1742          }
1579    }
1743  
1744 <    class KeyIterator extends PrivateEntryIterator<K> {
1745 <        KeyIterator(Entry<K,V> first) {
1583 <            super(first);
1744 >        Iterator<K> keyIterator() {
1745 >            return new SubMapKeyIterator(absLowest(), absHighFence());
1746          }
1585        public K next() {
1586            return nextEntry().key;
1587        }
1588    }
1747  
1748 <    class ValueIterator extends PrivateEntryIterator<V> {
1749 <        ValueIterator(Entry<K,V> first) {
1592 <            super(first);
1748 >        Iterator<K> descendingKeyIterator() {
1749 >            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1750          }
1594        public V next() {
1595            return nextEntry().value;
1596        }
1597    }
1751  
1752 <    class SubMapEntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1753 <        private final K firstExcludedKey;
1754 <
1755 <        SubMapEntryIterator(Entry<K,V> first, Entry<K,V> firstExcluded) {
1603 <            super(first);
1604 <            firstExcludedKey = (firstExcluded == null
1605 <                                ? null
1606 <                                : firstExcluded.key);
1752 >        final class AscendingEntrySetView extends EntrySetView {
1753 >            public Iterator<Map.Entry<K,V>> iterator() {
1754 >                return new SubMapEntryIterator(absLowest(), absHighFence());
1755 >            }
1756          }
1757  
1758 <        public boolean hasNext() {
1759 <            return next != null && next.key != firstExcludedKey;
1758 >        public Set<Map.Entry<K,V>> entrySet() {
1759 >            EntrySetView es = entrySetView;
1760 >            return (es != null) ? es : new AscendingEntrySetView();
1761          }
1762  
1763 <        public Map.Entry<K,V> next() {
1764 <            if (next == null || next.key == firstExcludedKey)
1765 <                throw new NoSuchElementException();
1766 <            return nextEntry();
1767 <        }
1763 >        TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
1764 >        TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
1765 >        TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
1766 >        TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
1767 >        TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
1768 >        TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
1769      }
1770  
1620
1771      /**
1772 <     * Base for Descending Iterators.
1772 >     * @serial include
1773       */
1774 <    abstract class DescendingPrivateEntryIterator<T> extends PrivateEntryIterator<T> {
1775 <        DescendingPrivateEntryIterator(Entry<K,V> first) {
1776 <            super(first);
1774 >    static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
1775 >        private static final long serialVersionUID = 912986545866120460L;
1776 >        DescendingSubMap(TreeMap<K,V> m,
1777 >                        boolean fromStart, K lo, boolean loInclusive,
1778 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1779 >            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1780          }
1781  
1782 <        Entry<K,V> nextEntry() {
1783 <            if (next == null)
1631 <                throw new NoSuchElementException();
1632 <            if (modCount != expectedModCount)
1633 <                throw new ConcurrentModificationException();
1634 <            lastReturned = next;
1635 <            next = predecessor(next);
1636 <            return lastReturned;
1637 <        }
1638 <    }
1782 >        private final Comparator<? super K> reverseComparator =
1783 >            Collections.reverseOrder(m.comparator);
1784  
1785 <    class DescendingEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1786 <        DescendingEntryIterator(Entry<K,V> first) {
1642 <            super(first);
1785 >        public Comparator<? super K> comparator() {
1786 >            return reverseComparator;
1787          }
1788 <        public Map.Entry<K,V> next() {
1789 <            return nextEntry();
1788 >
1789 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1790 >                                        K toKey,   boolean toInclusive) {
1791 >            if (!inRange(fromKey, fromInclusive))
1792 >                throw new IllegalArgumentException("fromKey out of range");
1793 >            if (!inRange(toKey, toInclusive))
1794 >                throw new IllegalArgumentException("toKey out of range");
1795 >            return new DescendingSubMap(m,
1796 >                                        false, toKey,   toInclusive,
1797 >                                        false, fromKey, fromInclusive);
1798          }
1647    }
1799  
1800 <    class DescendingKeyIterator extends DescendingPrivateEntryIterator<K> {
1801 <        DescendingKeyIterator(Entry<K,V> first) {
1802 <            super(first);
1800 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1801 >            if (!inRange(toKey, inclusive))
1802 >                throw new IllegalArgumentException("toKey out of range");
1803 >            return new DescendingSubMap(m,
1804 >                                        false, toKey, inclusive,
1805 >                                        toEnd, hi,    hiInclusive);
1806          }
1807 <        public K next() {
1808 <            return nextEntry().key;
1807 >
1808 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1809 >            if (!inRange(fromKey, inclusive))
1810 >                throw new IllegalArgumentException("fromKey out of range");
1811 >            return new DescendingSubMap(m,
1812 >                                        fromStart, lo, loInclusive,
1813 >                                        false, fromKey, inclusive);
1814          }
1656    }
1815  
1816 +        public NavigableMap<K,V> descendingMap() {
1817 +            NavigableMap<K,V> mv = descendingMapView;
1818 +            return (mv != null) ? mv :
1819 +                (descendingMapView =
1820 +                 new AscendingSubMap(m,
1821 +                                     fromStart, lo, loInclusive,
1822 +                                     toEnd,     hi, hiInclusive));
1823 +        }
1824  
1825 <    class DescendingSubMapEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1826 <        private final K lastExcludedKey;
1825 >        Iterator<K> keyIterator() {
1826 >            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1827 >        }
1828  
1829 <        DescendingSubMapEntryIterator(Entry<K,V> last, Entry<K,V> lastExcluded) {
1830 <            super(last);
1664 <            lastExcludedKey = (lastExcluded == null
1665 <                                ? null
1666 <                                : lastExcluded.key);
1829 >        Iterator<K> descendingKeyIterator() {
1830 >            return new SubMapKeyIterator(absLowest(), absHighFence());
1831          }
1832  
1833 <        public boolean hasNext() {
1834 <            return next != null && next.key != lastExcludedKey;
1833 >        final class DescendingEntrySetView extends EntrySetView {
1834 >            public Iterator<Map.Entry<K,V>> iterator() {
1835 >                return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
1836 >            }
1837          }
1838  
1839 <        public Map.Entry<K,V> next() {
1840 <            if (next == null || next.key == lastExcludedKey)
1841 <                throw new NoSuchElementException();
1676 <            return nextEntry();
1839 >        public Set<Map.Entry<K,V>> entrySet() {
1840 >            EntrySetView es = entrySetView;
1841 >            return (es != null) ? es : new DescendingEntrySetView();
1842          }
1843  
1844 +        TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
1845 +        TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
1846 +        TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
1847 +        TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
1848 +        TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
1849 +        TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
1850      }
1851  
1681
1852      /**
1853 <     * Compares two keys using the correct comparison method for this TreeMap.
1853 >     * This class exists solely for the sake of serialization
1854 >     * compatibility with previous releases of TreeMap that did not
1855 >     * support NavigableMap.  It translates an old-version SubMap into
1856 >     * a new-version AscendingSubMap. This class is never otherwise
1857 >     * used.
1858 >     *
1859 >     * @serial include
1860       */
1861 <    private int compare(K k1, K k2) {
1862 <        return (comparator==null ? ((Comparable</*-*/K>)k1).compareTo(k2)
1863 <                                 : comparator.compare((K)k1, (K)k2));
1861 >    private class SubMap extends AbstractMap<K,V>
1862 >        implements SortedMap<K,V>, java.io.Serializable {
1863 >        private static final long serialVersionUID = -6520786458950516097L;
1864 >        private boolean fromStart = false, toEnd = false;
1865 >        private K fromKey, toKey;
1866 >        private Object readResolve() {
1867 >            return new AscendingSubMap(TreeMap.this,
1868 >                                       fromStart, fromKey, true,
1869 >                                       toEnd, toKey, false);
1870 >        }
1871 >        public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1872 >        public K lastKey() { throw new InternalError(); }
1873 >        public K firstKey() { throw new InternalError(); }
1874 >        public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1875 >        public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1876 >        public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1877 >        public Comparator<? super K> comparator() { throw new InternalError(); }
1878      }
1879  
1880 <    /**
1881 <     * Test two values  for equality.  Differs from o1.equals(o2) only in
1692 <     * that it copes with <tt>null</tt> o1 properly.
1693 <     */
1694 <    private static boolean valEquals(Object o1, Object o2) {
1695 <        return (o1==null ? o2==null : o1.equals(o2));
1696 <    }
1880 >
1881 >    // Red-black mechanics
1882  
1883      private static final boolean RED   = false;
1884      private static final boolean BLACK = true;
# Line 1703 | Line 1888 | public class TreeMap<K,V>
1888       * user (see Map.Entry).
1889       */
1890  
1891 <    static class Entry<K,V> implements Map.Entry<K,V> {
1891 >    static final class Entry<K,V> implements Map.Entry<K,V> {
1892          K key;
1893          V value;
1894          Entry<K,V> left = null;
# Line 1724 | Line 1909 | public class TreeMap<K,V>
1909          /**
1910           * Returns the key.
1911           *
1912 <         * @return the key.
1912 >         * @return the key
1913           */
1914          public K getKey() {
1915              return key;
# Line 1733 | Line 1918 | public class TreeMap<K,V>
1918          /**
1919           * Returns the value associated with the key.
1920           *
1921 <         * @return the value associated with the key.
1921 >         * @return the value associated with the key
1922           */
1923          public V getValue() {
1924              return value;
# Line 1744 | Line 1929 | public class TreeMap<K,V>
1929           * value.
1930           *
1931           * @return the value associated with the key before this method was
1932 <         *           called.
1932 >         *         called
1933           */
1934          public V setValue(V value) {
1935              V oldValue = this.value;
# Line 1755 | Line 1940 | public class TreeMap<K,V>
1940          public boolean equals(Object o) {
1941              if (!(o instanceof Map.Entry))
1942                  return false;
1943 <            Map.Entry e = (Map.Entry)o;
1943 >            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1944  
1945              return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1946          }
# Line 1775 | Line 1960 | public class TreeMap<K,V>
1960       * Returns the first Entry in the TreeMap (according to the TreeMap's
1961       * key-sort function).  Returns null if the TreeMap is empty.
1962       */
1963 <    private Entry<K,V> getFirstEntry() {
1963 >    final Entry<K,V> getFirstEntry() {
1964          Entry<K,V> p = root;
1965          if (p != null)
1966              while (p.left != null)
# Line 1787 | Line 1972 | public class TreeMap<K,V>
1972       * Returns the last Entry in the TreeMap (according to the TreeMap's
1973       * key-sort function).  Returns null if the TreeMap is empty.
1974       */
1975 <    private Entry<K,V> getLastEntry() {
1975 >    final Entry<K,V> getLastEntry() {
1976          Entry<K,V> p = root;
1977          if (p != null)
1978              while (p.right != null)
# Line 1798 | Line 1983 | public class TreeMap<K,V>
1983      /**
1984       * Returns the successor of the specified Entry, or null if no such.
1985       */
1986 <    private Entry<K,V> successor(Entry<K,V> t) {
1986 >    static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
1987          if (t == null)
1988              return null;
1989          else if (t.right != null) {
# Line 1820 | Line 2005 | public class TreeMap<K,V>
2005      /**
2006       * Returns the predecessor of the specified Entry, or null if no such.
2007       */
2008 <    private Entry<K,V> predecessor(Entry<K,V> t) {
2008 >    static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
2009          if (t == null)
2010              return null;
2011          else if (t.left != null) {
# Line 1870 | Line 2055 | public class TreeMap<K,V>
2055          return (p == null) ? null: p.right;
2056      }
2057  
2058 <    /** From CLR **/
2058 >    /** From CLR */
2059      private void rotateLeft(Entry<K,V> p) {
2060 <        Entry<K,V> r = p.right;
2061 <        p.right = r.left;
2062 <        if (r.left != null)
2063 <            r.left.parent = p;
2064 <        r.parent = p.parent;
2065 <        if (p.parent == null)
2066 <            root = r;
2067 <        else if (p.parent.left == p)
2068 <            p.parent.left = r;
2069 <        else
2070 <            p.parent.right = r;
2071 <        r.left = p;
2072 <        p.parent = r;
2060 >        if (p != null) {
2061 >            Entry<K,V> r = p.right;
2062 >            p.right = r.left;
2063 >            if (r.left != null)
2064 >                r.left.parent = p;
2065 >            r.parent = p.parent;
2066 >            if (p.parent == null)
2067 >                root = r;
2068 >            else if (p.parent.left == p)
2069 >                p.parent.left = r;
2070 >            else
2071 >                p.parent.right = r;
2072 >            r.left = p;
2073 >            p.parent = r;
2074 >        }
2075      }
2076  
2077 <    /** From CLR **/
2077 >    /** From CLR */
2078      private void rotateRight(Entry<K,V> p) {
2079 <        Entry<K,V> l = p.left;
2080 <        p.left = l.right;
2081 <        if (l.right != null) l.right.parent = p;
2082 <        l.parent = p.parent;
2083 <        if (p.parent == null)
2084 <            root = l;
2085 <        else if (p.parent.right == p)
2086 <            p.parent.right = l;
2087 <        else p.parent.left = l;
2088 <        l.right = p;
2089 <        p.parent = l;
2079 >        if (p != null) {
2080 >            Entry<K,V> l = p.left;
2081 >            p.left = l.right;
2082 >            if (l.right != null) l.right.parent = p;
2083 >            l.parent = p.parent;
2084 >            if (p.parent == null)
2085 >                root = l;
2086 >            else if (p.parent.right == p)
2087 >                p.parent.right = l;
2088 >            else p.parent.left = l;
2089 >            l.right = p;
2090 >            p.parent = l;
2091 >        }
2092      }
2093  
2094 <
1906 <    /** From CLR **/
2094 >    /** From CLR */
2095      private void fixAfterInsertion(Entry<K,V> x) {
2096          x.color = RED;
2097  
# Line 1922 | Line 2110 | public class TreeMap<K,V>
2110                      }
2111                      setColor(parentOf(x), BLACK);
2112                      setColor(parentOf(parentOf(x)), RED);
2113 <                    if (parentOf(parentOf(x)) != null)
1926 <                        rotateRight(parentOf(parentOf(x)));
2113 >                    rotateRight(parentOf(parentOf(x)));
2114                  }
2115              } else {
2116                  Entry<K,V> y = leftOf(parentOf(parentOf(x)));
# Line 1937 | Line 2124 | public class TreeMap<K,V>
2124                          x = parentOf(x);
2125                          rotateRight(x);
2126                      }
2127 <                    setColor(parentOf(x),  BLACK);
2127 >                    setColor(parentOf(x), BLACK);
2128                      setColor(parentOf(parentOf(x)), RED);
2129 <                    if (parentOf(parentOf(x)) != null)
1943 <                        rotateLeft(parentOf(parentOf(x)));
2129 >                    rotateLeft(parentOf(parentOf(x)));
2130                  }
2131              }
2132          }
# Line 1950 | Line 2136 | public class TreeMap<K,V>
2136      /**
2137       * Delete node p, and then rebalance the tree.
2138       */
1953
2139      private void deleteEntry(Entry<K,V> p) {
2140 <        decrementSize();
2140 >        modCount++;
2141 >        size--;
2142  
2143          // If strictly internal, copy successor's element to p and then make p
2144          // point to successor.
# Line 1998 | Line 2184 | public class TreeMap<K,V>
2184          }
2185      }
2186  
2187 <    /** From CLR **/
2187 >    /** From CLR */
2188      private void fixAfterDeletion(Entry<K,V> x) {
2189          while (x != root && colorOf(x) == BLACK) {
2190              if (x == leftOf(parentOf(x))) {
# Line 2013 | Line 2199 | public class TreeMap<K,V>
2199  
2200                  if (colorOf(leftOf(sib))  == BLACK &&
2201                      colorOf(rightOf(sib)) == BLACK) {
2202 <                    setColor(sib,  RED);
2202 >                    setColor(sib, RED);
2203                      x = parentOf(x);
2204                  } else {
2205                      if (colorOf(rightOf(sib)) == BLACK) {
# Line 2040 | Line 2226 | public class TreeMap<K,V>
2226  
2227                  if (colorOf(rightOf(sib)) == BLACK &&
2228                      colorOf(leftOf(sib)) == BLACK) {
2229 <                    setColor(sib,  RED);
2229 >                    setColor(sib, RED);
2230                      x = parentOf(x);
2231                  } else {
2232                      if (colorOf(leftOf(sib)) == BLACK) {
# Line 2091 | Line 2277 | public class TreeMap<K,V>
2277          }
2278      }
2279  
2094
2095
2280      /**
2281       * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2282       * deserialize it).
# Line 2108 | Line 2292 | public class TreeMap<K,V>
2292          buildFromSorted(size, null, s, null);
2293      }
2294  
2295 <    /** Intended to be called only from TreeSet.readObject **/
2295 >    /** Intended to be called only from TreeSet.readObject */
2296      void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2297          throws java.io.IOException, ClassNotFoundException {
2298          buildFromSorted(size, null, s, defaultVal);
2299      }
2300  
2301 <    /** Intended to be called only from TreeSet.addAll **/
2302 <    void addAllForTreeSet(SortedSet<Map.Entry<K,V>> set, V defaultVal) {
2301 >    /** Intended to be called only from TreeSet.addAll */
2302 >    void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2303          try {
2304              buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2305          } catch (java.io.IOException cannotHappen) {
# Line 2140 | Line 2324 | public class TreeMap<K,V>
2324       * to calling this method.
2325       *
2326       * @param size the number of keys (or key-value pairs) to be read from
2327 <     *        the iterator or stream.
2327 >     *        the iterator or stream
2328       * @param it If non-null, new entries are created from entries
2329       *        or keys read from this iterator.
2330       * @param str If non-null, new entries are created from keys and
# Line 2154 | Line 2338 | public class TreeMap<K,V>
2338       * @throws ClassNotFoundException propagated from readObject.
2339       *         This cannot occur if str is null.
2340       */
2341 <    private
2342 <    void buildFromSorted(int size, Iterator it,
2343 <                         java.io.ObjectInputStream str,
2160 <                         V defaultVal)
2341 >    private void buildFromSorted(int size, Iterator it,
2342 >                                 java.io.ObjectInputStream str,
2343 >                                 V defaultVal)
2344          throws  java.io.IOException, ClassNotFoundException {
2345          this.size = size;
2346 <        root =
2347 <            buildFromSorted(0, 0, size-1, computeRedLevel(size),
2165 <                            it, str, defaultVal);
2346 >        root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2347 >                               it, str, defaultVal);
2348      }
2349  
2350      /**
2351       * Recursive "helper method" that does the real work of the
2352 <     * of the previous method.  Identically named parameters have
2352 >     * previous method.  Identically named parameters have
2353       * identical definitions.  Additional parameters are documented below.
2354       * It is assumed that the comparator and size fields of the TreeMap are
2355       * already set prior to calling this method.  (It ignores both fields.)
# Line 2175 | Line 2357 | public class TreeMap<K,V>
2357       * @param level the current level of tree. Initial call should be 0.
2358       * @param lo the first element index of this subtree. Initial should be 0.
2359       * @param hi the last element index of this subtree.  Initial should be
2360 <     *              size-1.
2360 >     *        size-1.
2361       * @param redLevel the level at which nodes should be red.
2362       *        Must be equal to computeRedLevel for tree of this size.
2363       */
# Line 2199 | Line 2381 | public class TreeMap<K,V>
2381  
2382          if (hi < lo) return null;
2383  
2384 <        int mid = (lo + hi) / 2;
2384 >        int mid = (lo + hi) >>> 1;
2385  
2386          Entry<K,V> left  = null;
2387          if (lo < mid)
# Line 2259 | Line 2441 | public class TreeMap<K,V>
2441              level++;
2442          return level;
2443      }
2262
2263
2264    /**
2265     * Entry holding a snapshot of a key-value pair
2266     */
2267    static class SnapshotEntry<K,V> implements Map.Entry<K,V> {
2268        final K key;
2269        final V value;
2270
2271        public SnapshotEntry(Entry<K,V> e) {
2272            this.key   = e.getKey();
2273            this.value = e.getValue();
2274        }
2275
2276        public K getKey() {
2277            return key;
2278        }
2279
2280        public V getValue() {
2281            return value;
2282        }
2283
2284        /**
2285         * Always fails, throwing <tt>UnsupportedOperationException</tt>.
2286         * @throws UnsupportedOperationException always.
2287         */
2288        public V setValue(V value) {
2289            throw new UnsupportedOperationException();
2290        }
2291
2292        public boolean equals(Object o) {
2293            if (!(o instanceof Map.Entry))
2294                return false;
2295            Map.Entry e = (Map.Entry)o;
2296            return eq(key, e.getKey()) && eq(value, e.getValue());
2297        }
2298
2299        public int hashCode() {
2300            return ((key   == null)   ? 0 :   key.hashCode()) ^
2301                   ((value == null)   ? 0 : value.hashCode());
2302        }
2303
2304        public String toString() {
2305            return key + "=" + value;
2306        }
2307
2308        private static boolean eq(Object o1, Object o2) {
2309            return (o1 == null ? o2 == null : o1.equals(o2));
2310        }
2311    }
2312
2444   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines