ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/TreeMap.java (file contents):
Revision 1.20 by jsr166, Tue Jun 21 07:45:08 2005 UTC vs.
Revision 1.45 by jsr166, Sun May 18 23:47:56 2008 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24   */
25  
26   package java.util;
9 import java.util.*; // for javadoc (till 6280605 is fixed)
27  
28   /**
29   * A Red-Black tree based {@link NavigableMap} implementation.
# Line 31 | Line 48 | import java.util.*; // for javadoc (till
48   * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
49   * just fails to obey the general contract of the <tt>Map</tt> interface.
50   *
51 < * <p><b>Note that this implementation is not synchronized.</b> If multiple
52 < * threads access a map concurrently, and at least one of the threads modifies
53 < * the map structurally, it <i>must</i> be synchronized externally.  (A
54 < * structural modification is any operation that adds or deletes one or more
55 < * mappings; merely changing the value associated with an existing key is not
56 < * a structural modification.)  This is typically accomplished by
57 < * synchronizing on some object that naturally encapsulates the map.  If no
58 < * such object exists, the map should be "wrapped" using the
59 < * <tt>Collections.synchronizedMap</tt> method.  This is best done at creation
60 < * time, to prevent accidental unsynchronized access to the map:
61 < * <pre>
62 < *     Map m = Collections.synchronizedMap(new TreeMap(...));
63 < * </pre>
51 > * <p><strong>Note that this implementation is not synchronized.</strong>
52 > * If multiple threads access a map concurrently, and at least one of the
53 > * threads modifies the map structurally, it <i>must</i> be synchronized
54 > * externally.  (A structural modification is any operation that adds or
55 > * deletes one or more mappings; merely changing the value associated
56 > * with an existing key is not a structural modification.)  This is
57 > * typically accomplished by synchronizing on some object that naturally
58 > * encapsulates the map.
59 > * If no such object exists, the map should be "wrapped" using the
60 > * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
61 > * method.  This is best done at creation time, to prevent accidental
62 > * unsynchronized access to the map: <pre>
63 > *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
64   *
65   * <p>The iterators returned by the <tt>iterator</tt> method of the collections
66   * returned by all of this class's "collection view methods" are
# Line 69 | Line 86 | import java.util.*; // for javadoc (till
86   * associated map using <tt>put</tt>.)
87   *
88   * <p>This class is a member of the
89 < * <a href="{@docRoot}/../guide/collections/index.html">
89 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
90   * Java Collections Framework</a>.
91   *
92   * @param <K> the type of keys maintained by this map
# Line 83 | Line 100 | import java.util.*; // for javadoc (till
100   * @see Comparable
101   * @see Comparator
102   * @see Collection
86 * @see Collections#synchronizedMap(Map)
103   * @since 1.2
104   */
105  
# Line 97 | Line 113 | public class TreeMap<K,V>
113       *
114       * @serial
115       */
116 <    private Comparator<? super K> comparator = null;
116 >    private final Comparator<? super K> comparator;
117  
118      private transient Entry<K,V> root = null;
119  
# Line 111 | Line 127 | public class TreeMap<K,V>
127       */
128      private transient int modCount = 0;
129  
114    private void incrementSize()   { modCount++; size++; }
115    private void decrementSize()   { modCount++; size--; }
116
130      /**
131       * Constructs a new, empty tree map, using the natural ordering of its
132       * keys.  All keys inserted into the map must implement the {@link
# Line 127 | Line 140 | public class TreeMap<K,V>
140       * <tt>ClassCastException</tt>.
141       */
142      public TreeMap() {
143 +        comparator = null;
144      }
145  
146      /**
# Line 162 | Line 176 | public class TreeMap<K,V>
176       * @throws NullPointerException if the specified map is null
177       */
178      public TreeMap(Map<? extends K, ? extends V> m) {
179 +        comparator = null;
180          putAll(m);
181      }
182  
# Line 222 | Line 237 | public class TreeMap<K,V>
237       *
238       * @param value value whose presence in this map is to be tested
239       * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
240 <     *         <tt>false</tt> otherwise
240 >     *         <tt>false</tt> otherwise
241       * @since 1.2
242       */
243      public boolean containsValue(Object value) {
244 <        return (root==null ? false :
245 <                (value==null ? valueSearchNull(root)
246 <                             : valueSearchNonNull(root, value)));
247 <    }
233 <
234 <    private boolean valueSearchNull(Entry n) {
235 <        if (n.value == null)
236 <            return true;
237 <
238 <        // Check left and right subtrees for value
239 <        return (n.left  != null && valueSearchNull(n.left)) ||
240 <               (n.right != null && valueSearchNull(n.right));
241 <    }
242 <
243 <    private boolean valueSearchNonNull(Entry n, Object value) {
244 <        // Check this node for the value
245 <        if (value.equals(n.value))
246 <            return true;
247 <
248 <        // Check left and right subtrees for value
249 <        return (n.left  != null && valueSearchNonNull(n.left, value)) ||
250 <               (n.right != null && valueSearchNonNull(n.right, value));
244 >        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
245 >            if (valEquals(value, e.value))
246 >                return true;
247 >        return false;
248      }
249  
250      /**
251 <     * Returns the value to which this map maps the specified key, or
252 <     * <tt>null</tt> if the map contains no mapping for the key.  A return
253 <     * value of <tt>null</tt> does not <i>necessarily</i> indicate that the
254 <     * map contains no mapping for the key; it's also possible that the map
255 <     * explicitly maps the key to <tt>null</tt>.  The {@link #containsKey}
256 <     * operation may be used to distinguish these two cases.
251 >     * Returns the value to which the specified key is mapped,
252 >     * or {@code null} if this map contains no mapping for the key.
253 >     *
254 >     * <p>More formally, if this map contains a mapping from a key
255 >     * {@code k} to a value {@code v} such that {@code key} compares
256 >     * equal to {@code k} according to the map's ordering, then this
257 >     * method returns {@code v}; otherwise it returns {@code null}.
258 >     * (There can be at most one such mapping.)
259 >     *
260 >     * <p>A return value of {@code null} does not <i>necessarily</i>
261 >     * indicate that the map contains no mapping for the key; it's also
262 >     * possible that the map explicitly maps the key to {@code null}.
263 >     * The {@link #containsKey containsKey} operation may be used to
264 >     * distinguish these two cases.
265       *
261     * @param key key whose associated value is to be returned
262     * @return the value to which this map maps the specified key, or
263     *         <tt>null</tt> if the map contains no mapping for the key
266       * @throws ClassCastException if the specified key cannot be compared
267       *         with the keys currently in the map
268       * @throws NullPointerException if the specified key is null
# Line 307 | Line 309 | public class TreeMap<K,V>
309          if (size==0 && mapSize!=0 && map instanceof SortedMap) {
310              Comparator c = ((SortedMap)map).comparator();
311              if (c == comparator || (c != null && c.equals(comparator))) {
312 <                ++modCount;
313 <                try {
314 <                    buildFromSorted(mapSize, map.entrySet().iterator(),
315 <                                    null, null);
316 <                } catch (java.io.IOException cannotHappen) {
317 <                } catch (ClassNotFoundException cannotHappen) {
318 <                }
319 <                return;
312 >                ++modCount;
313 >                try {
314 >                    buildFromSorted(mapSize, map.entrySet().iterator(),
315 >                                    null, null);
316 >                } catch (java.io.IOException cannotHappen) {
317 >                } catch (ClassNotFoundException cannotHappen) {
318 >                }
319 >                return;
320              }
321          }
322          super.putAll(map);
# Line 332 | Line 334 | public class TreeMap<K,V>
334       *         and this map uses natural ordering, or its comparator
335       *         does not permit null keys
336       */
337 <    private Entry<K,V> getEntry(Object key) {
337 >    final Entry<K,V> getEntry(Object key) {
338          // Offload comparator-based version for sake of performance
339          if (comparator != null)
340              return getEntryUsingComparator(key);
341 <        Comparable<? super K> k = (Comparable<? super K>) key;
341 >        if (key == null)
342 >            throw new NullPointerException();
343 >        Comparable<? super K> k = (Comparable<? super K>) key;
344          Entry<K,V> p = root;
345          while (p != null) {
346              int cmp = k.compareTo(p.key);
# Line 356 | Line 360 | public class TreeMap<K,V>
360       * that are less dependent on comparator performance, but is
361       * worthwhile here.)
362       */
363 <    private Entry<K,V> getEntryUsingComparator(Object key) {
364 <        K k = (K) key;
363 >    final Entry<K,V> getEntryUsingComparator(Object key) {
364 >        K k = (K) key;
365          Comparator<? super K> cpr = comparator;
366 <        Entry<K,V> p = root;
367 <        while (p != null) {
368 <            int cmp = cpr.compare(k, p.key);
369 <            if (cmp < 0)
370 <                p = p.left;
371 <            else if (cmp > 0)
372 <                p = p.right;
373 <            else
374 <                return p;
366 >        if (cpr != null) {
367 >            Entry<K,V> p = root;
368 >            while (p != null) {
369 >                int cmp = cpr.compare(k, p.key);
370 >                if (cmp < 0)
371 >                    p = p.left;
372 >                else if (cmp > 0)
373 >                    p = p.right;
374 >                else
375 >                    return p;
376 >            }
377          }
378          return null;
379      }
# Line 378 | Line 384 | public class TreeMap<K,V>
384       * key; if no such entry exists (i.e., the greatest key in the Tree is less
385       * than the specified key), returns <tt>null</tt>.
386       */
387 <    private Entry<K,V> getCeilingEntry(K key) {
387 >    final Entry<K,V> getCeilingEntry(K key) {
388          Entry<K,V> p = root;
389 <        if (p==null)
384 <            return null;
385 <
386 <        while (true) {
389 >        while (p != null) {
390              int cmp = compare(key, p.key);
391              if (cmp < 0) {
392                  if (p.left != null)
# Line 405 | Line 408 | public class TreeMap<K,V>
408              } else
409                  return p;
410          }
411 +        return null;
412      }
413  
414      /**
# Line 412 | Line 416 | public class TreeMap<K,V>
416       * exists, returns the entry for the greatest key less than the specified
417       * key; if no such entry exists, returns <tt>null</tt>.
418       */
419 <    private Entry<K,V> getFloorEntry(K key) {
419 >    final Entry<K,V> getFloorEntry(K key) {
420          Entry<K,V> p = root;
421 <        if (p==null)
418 <            return null;
419 <
420 <        while (true) {
421 >        while (p != null) {
422              int cmp = compare(key, p.key);
423              if (cmp > 0) {
424                  if (p.right != null)
# Line 440 | Line 441 | public class TreeMap<K,V>
441                  return p;
442  
443          }
444 +        return null;
445      }
446  
447      /**
# Line 448 | Line 450 | public class TreeMap<K,V>
450       * key greater than the specified key; if no such entry exists
451       * returns <tt>null</tt>.
452       */
453 <    private Entry<K,V> getHigherEntry(K key) {
453 >    final Entry<K,V> getHigherEntry(K key) {
454          Entry<K,V> p = root;
455 <        if (p==null)
454 <            return null;
455 <
456 <        while (true) {
455 >        while (p != null) {
456              int cmp = compare(key, p.key);
457              if (cmp < 0) {
458                  if (p.left != null)
# Line 474 | Line 473 | public class TreeMap<K,V>
473                  }
474              }
475          }
476 +        return null;
477      }
478  
479      /**
# Line 481 | Line 481 | public class TreeMap<K,V>
481       * no such entry exists (i.e., the least key in the Tree is greater than
482       * the specified key), returns <tt>null</tt>.
483       */
484 <    private Entry<K,V> getLowerEntry(K key) {
484 >    final Entry<K,V> getLowerEntry(K key) {
485          Entry<K,V> p = root;
486 <        if (p==null)
487 <            return null;
488 <
489 <        while (true) {
486 >        while (p != null) {
487              int cmp = compare(key, p.key);
488              if (cmp > 0) {
489                  if (p.right != null)
# Line 507 | Line 504 | public class TreeMap<K,V>
504                  }
505              }
506          }
507 <    }
511 <
512 <    /**
513 <     * Returns the key corresponding to the specified Entry.
514 <     * @throws NoSuchElementException if the Entry is null
515 <     */
516 <    private static <K> K key(Entry<K,?> e) {
517 <        if (e==null)
518 <            throw new NoSuchElementException();
519 <        return e.key;
507 >        return null;
508      }
509  
510      /**
# Line 539 | Line 527 | public class TreeMap<K,V>
527       */
528      public V put(K key, V value) {
529          Entry<K,V> t = root;
542
530          if (t == null) {
531 <            if (key == null) {
532 <                if (comparator == null)
533 <                    throw new NullPointerException();
534 <                comparator.compare(key, key);
535 <            }
549 <            incrementSize();
531 >            // TBD:
532 >            // 5045147: (coll) Adding null to an empty TreeSet should
533 >            // throw NullPointerException
534 >            //
535 >            // compare(key, key); // type check
536              root = new Entry<K,V>(key, value, null);
537 +            size = 1;
538 +            modCount++;
539              return null;
540          }
541 <
542 <        while (true) {
543 <            int cmp = compare(key, t.key);
544 <            if (cmp == 0) {
545 <                return t.setValue(value);
546 <            } else if (cmp < 0) {
547 <                if (t.left != null) {
541 >        int cmp;
542 >        Entry<K,V> parent;
543 >        // split comparator and comparable paths
544 >        Comparator<? super K> cpr = comparator;
545 >        if (cpr != null) {
546 >            do {
547 >                parent = t;
548 >                cmp = cpr.compare(key, t.key);
549 >                if (cmp < 0)
550                      t = t.left;
551 <                } else {
562 <                    incrementSize();
563 <                    t.left = new Entry<K,V>(key, value, t);
564 <                    fixAfterInsertion(t.left);
565 <                    return null;
566 <                }
567 <            } else { // cmp > 0
568 <                if (t.right != null) {
551 >                else if (cmp > 0)
552                      t = t.right;
553 <                } else {
554 <                    incrementSize();
555 <                    t.right = new Entry<K,V>(key, value, t);
556 <                    fixAfterInsertion(t.right);
557 <                    return null;
558 <                }
559 <            }
553 >                else
554 >                    return t.setValue(value);
555 >            } while (t != null);
556 >        }
557 >        else {
558 >            if (key == null)
559 >                throw new NullPointerException();
560 >            Comparable<? super K> k = (Comparable<? super K>) key;
561 >            do {
562 >                parent = t;
563 >                cmp = k.compareTo(t.key);
564 >                if (cmp < 0)
565 >                    t = t.left;
566 >                else if (cmp > 0)
567 >                    t = t.right;
568 >                else
569 >                    return t.setValue(value);
570 >            } while (t != null);
571          }
572 +        Entry<K,V> e = new Entry<K,V>(key, value, parent);
573 +        if (cmp < 0)
574 +            parent.left = e;
575 +        else
576 +            parent.right = e;
577 +        fixAfterInsertion(e);
578 +        size++;
579 +        modCount++;
580 +        return null;
581      }
582  
583      /**
# Line 630 | Line 633 | public class TreeMap<K,V>
633          clone.size = 0;
634          clone.modCount = 0;
635          clone.entrySet = null;
636 <        clone.descendingEntrySet = null;
637 <        clone.descendingKeySet = null;
636 >        clone.navigableKeySet = null;
637 >        clone.descendingMap = null;
638  
639          // Initialize clone with our mappings
640          try {
# Line 645 | Line 648 | public class TreeMap<K,V>
648  
649      // NavigableMap API methods
650  
651 +    /**
652 +     * @since 1.6
653 +     */
654      public Map.Entry<K,V> firstEntry() {
655 <        Entry<K,V> e = getFirstEntry();
650 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
655 >        return exportEntry(getFirstEntry());
656      }
657  
658 +    /**
659 +     * @since 1.6
660 +     */
661      public Map.Entry<K,V> lastEntry() {
662 <        Entry<K,V> e = getLastEntry();
655 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
662 >        return exportEntry(getLastEntry());
663      }
664  
665 +    /**
666 +     * @since 1.6
667 +     */
668      public Map.Entry<K,V> pollFirstEntry() {
669          Entry<K,V> p = getFirstEntry();
670 <        if (p == null)
671 <            return null;
672 <        Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
663 <        deleteEntry(p);
670 >        Map.Entry<K,V> result = exportEntry(p);
671 >        if (p != null)
672 >            deleteEntry(p);
673          return result;
674      }
675  
676 +    /**
677 +     * @since 1.6
678 +     */
679      public Map.Entry<K,V> pollLastEntry() {
680          Entry<K,V> p = getLastEntry();
681 <        if (p == null)
682 <            return null;
683 <        Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
672 <        deleteEntry(p);
681 >        Map.Entry<K,V> result = exportEntry(p);
682 >        if (p != null)
683 >            deleteEntry(p);
684          return result;
685      }
686  
# Line 678 | Line 689 | public class TreeMap<K,V>
689       * @throws NullPointerException if the specified key is null
690       *         and this map uses natural ordering, or its comparator
691       *         does not permit null keys
692 +     * @since 1.6
693       */
694      public Map.Entry<K,V> lowerEntry(K key) {
695 <        Entry<K,V> e =  getLowerEntry(key);
684 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
695 >        return exportEntry(getLowerEntry(key));
696      }
697  
698      /**
# Line 689 | Line 700 | public class TreeMap<K,V>
700       * @throws NullPointerException if the specified key is null
701       *         and this map uses natural ordering, or its comparator
702       *         does not permit null keys
703 +     * @since 1.6
704       */
705      public K lowerKey(K key) {
706 <        Entry<K,V> e =  getLowerEntry(key);
695 <        return (e == null)? null : e.key;
706 >        return keyOrNull(getLowerEntry(key));
707      }
708  
709      /**
# Line 700 | Line 711 | public class TreeMap<K,V>
711       * @throws NullPointerException if the specified key is null
712       *         and this map uses natural ordering, or its comparator
713       *         does not permit null keys
714 +     * @since 1.6
715       */
716      public Map.Entry<K,V> floorEntry(K key) {
717 <        Entry<K,V> e = getFloorEntry(key);
706 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
717 >        return exportEntry(getFloorEntry(key));
718      }
719  
720      /**
# Line 711 | Line 722 | public class TreeMap<K,V>
722       * @throws NullPointerException if the specified key is null
723       *         and this map uses natural ordering, or its comparator
724       *         does not permit null keys
725 +     * @since 1.6
726       */
727      public K floorKey(K key) {
728 <        Entry<K,V> e = getFloorEntry(key);
717 <        return (e == null)? null : e.key;
728 >        return keyOrNull(getFloorEntry(key));
729      }
730  
731      /**
# Line 722 | Line 733 | public class TreeMap<K,V>
733       * @throws NullPointerException if the specified key is null
734       *         and this map uses natural ordering, or its comparator
735       *         does not permit null keys
736 +     * @since 1.6
737       */
738      public Map.Entry<K,V> ceilingEntry(K key) {
739 <        Entry<K,V> e = getCeilingEntry(key);
728 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
739 >        return exportEntry(getCeilingEntry(key));
740      }
741  
742      /**
# Line 733 | Line 744 | public class TreeMap<K,V>
744       * @throws NullPointerException if the specified key is null
745       *         and this map uses natural ordering, or its comparator
746       *         does not permit null keys
747 +     * @since 1.6
748       */
749      public K ceilingKey(K key) {
750 <        Entry<K,V> e = getCeilingEntry(key);
739 <        return (e == null)? null : e.key;
750 >        return keyOrNull(getCeilingEntry(key));
751      }
752  
753      /**
# Line 744 | Line 755 | public class TreeMap<K,V>
755       * @throws NullPointerException if the specified key is null
756       *         and this map uses natural ordering, or its comparator
757       *         does not permit null keys
758 +     * @since 1.6
759       */
760      public Map.Entry<K,V> higherEntry(K key) {
761 <        Entry<K,V> e = getHigherEntry(key);
750 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
761 >        return exportEntry(getHigherEntry(key));
762      }
763  
764      /**
# Line 755 | Line 766 | public class TreeMap<K,V>
766       * @throws NullPointerException if the specified key is null
767       *         and this map uses natural ordering, or its comparator
768       *         does not permit null keys
769 +     * @since 1.6
770       */
771      public K higherKey(K key) {
772 <        Entry<K,V> e = getHigherEntry(key);
761 <        return (e == null)? null : e.key;
772 >        return keyOrNull(getHigherEntry(key));
773      }
774  
775      // Views
# Line 768 | Line 779 | public class TreeMap<K,V>
779       * the first time this view is requested.  Views are stateless, so
780       * there's no reason to create more than one.
781       */
782 <    private transient Set<Map.Entry<K,V>> entrySet = null;
783 <    private transient Set<Map.Entry<K,V>> descendingEntrySet = null;
784 <    private transient Set<K> descendingKeySet = null;
782 >    private transient EntrySet entrySet = null;
783 >    private transient KeySet<K> navigableKeySet = null;
784 >    private transient NavigableMap<K,V> descendingMap = null;
785  
786      /**
787       * Returns a {@link Set} view of the keys contained in this map.
# Line 787 | Line 798 | public class TreeMap<K,V>
798       * operations.
799       */
800      public Set<K> keySet() {
801 <        Set<K> ks = keySet;
791 <        return (ks != null) ? ks : (keySet = new KeySet());
801 >        return navigableKeySet();
802      }
803  
804 <    class KeySet extends AbstractSet<K> {
805 <        public Iterator<K> iterator() {
806 <            return new KeyIterator(getFirstEntry());
807 <        }
808 <
809 <        public int size() {
810 <            return TreeMap.this.size();
801 <        }
802 <
803 <        public boolean contains(Object o) {
804 <            return containsKey(o);
805 <        }
806 <
807 <        public boolean remove(Object o) {
808 <            int oldSize = size;
809 <            TreeMap.this.remove(o);
810 <            return size != oldSize;
811 <        }
804 >    /**
805 >     * @since 1.6
806 >     */
807 >    public NavigableSet<K> navigableKeySet() {
808 >        KeySet<K> nks = navigableKeySet;
809 >        return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
810 >    }
811  
812 <        public void clear() {
813 <            TreeMap.this.clear();
814 <        }
812 >    /**
813 >     * @since 1.6
814 >     */
815 >    public NavigableSet<K> descendingKeySet() {
816 >        return descendingMap().navigableKeySet();
817      }
818  
819      /**
# Line 835 | Line 836 | public class TreeMap<K,V>
836          return (vs != null) ? vs : (values = new Values());
837      }
838  
839 +    /**
840 +     * Returns a {@link Set} view of the mappings contained in this map.
841 +     * The set's iterator returns the entries in ascending key order.
842 +     * The set is backed by the map, so changes to the map are
843 +     * reflected in the set, and vice-versa.  If the map is modified
844 +     * while an iteration over the set is in progress (except through
845 +     * the iterator's own <tt>remove</tt> operation, or through the
846 +     * <tt>setValue</tt> operation on a map entry returned by the
847 +     * iterator) the results of the iteration are undefined.  The set
848 +     * supports element removal, which removes the corresponding
849 +     * mapping from the map, via the <tt>Iterator.remove</tt>,
850 +     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
851 +     * <tt>clear</tt> operations.  It does not support the
852 +     * <tt>add</tt> or <tt>addAll</tt> operations.
853 +     */
854 +    public Set<Map.Entry<K,V>> entrySet() {
855 +        EntrySet es = entrySet;
856 +        return (es != null) ? es : (entrySet = new EntrySet());
857 +    }
858 +
859 +    /**
860 +     * @since 1.6
861 +     */
862 +    public NavigableMap<K, V> descendingMap() {
863 +        NavigableMap<K, V> km = descendingMap;
864 +        return (km != null) ? km :
865 +            (descendingMap = new DescendingSubMap(this,
866 +                                                  true, null, true,
867 +                                                  true, null, true));
868 +    }
869 +
870 +    /**
871 +     * @throws ClassCastException       {@inheritDoc}
872 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
873 +     *         null and this map uses natural ordering, or its comparator
874 +     *         does not permit null keys
875 +     * @throws IllegalArgumentException {@inheritDoc}
876 +     * @since 1.6
877 +     */
878 +    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
879 +                                    K toKey,   boolean toInclusive) {
880 +        return new AscendingSubMap(this,
881 +                                   false, fromKey, fromInclusive,
882 +                                   false, toKey,   toInclusive);
883 +    }
884 +
885 +    /**
886 +     * @throws ClassCastException       {@inheritDoc}
887 +     * @throws NullPointerException if <tt>toKey</tt> is null
888 +     *         and this map uses natural ordering, or its comparator
889 +     *         does not permit null keys
890 +     * @throws IllegalArgumentException {@inheritDoc}
891 +     * @since 1.6
892 +     */
893 +    public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
894 +        return new AscendingSubMap(this,
895 +                                   true,  null,  true,
896 +                                   false, toKey, inclusive);
897 +    }
898 +
899 +    /**
900 +     * @throws ClassCastException       {@inheritDoc}
901 +     * @throws NullPointerException if <tt>fromKey</tt> is null
902 +     *         and this map uses natural ordering, or its comparator
903 +     *         does not permit null keys
904 +     * @throws IllegalArgumentException {@inheritDoc}
905 +     * @since 1.6
906 +     */
907 +    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
908 +        return new AscendingSubMap(this,
909 +                                   false, fromKey, inclusive,
910 +                                   true,  null,    true);
911 +    }
912 +
913 +    /**
914 +     * @throws ClassCastException       {@inheritDoc}
915 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
916 +     *         null and this map uses natural ordering, or its comparator
917 +     *         does not permit null keys
918 +     * @throws IllegalArgumentException {@inheritDoc}
919 +     */
920 +    public SortedMap<K,V> subMap(K fromKey, K toKey) {
921 +        return subMap(fromKey, true, toKey, false);
922 +    }
923 +
924 +    /**
925 +     * @throws ClassCastException       {@inheritDoc}
926 +     * @throws NullPointerException if <tt>toKey</tt> is null
927 +     *         and this map uses natural ordering, or its comparator
928 +     *         does not permit null keys
929 +     * @throws IllegalArgumentException {@inheritDoc}
930 +     */
931 +    public SortedMap<K,V> headMap(K toKey) {
932 +        return headMap(toKey, false);
933 +    }
934 +
935 +    /**
936 +     * @throws ClassCastException       {@inheritDoc}
937 +     * @throws NullPointerException if <tt>fromKey</tt> is null
938 +     *         and this map uses natural ordering, or its comparator
939 +     *         does not permit null keys
940 +     * @throws IllegalArgumentException {@inheritDoc}
941 +     */
942 +    public SortedMap<K,V> tailMap(K fromKey) {
943 +        return tailMap(fromKey, true);
944 +    }
945 +
946 +    // View class support
947 +
948      class Values extends AbstractCollection<V> {
949          public Iterator<V> iterator() {
950              return new ValueIterator(getFirstEntry());
# Line 845 | Line 955 | public class TreeMap<K,V>
955          }
956  
957          public boolean contains(Object o) {
958 <            for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
849 <                if (valEquals(e.getValue(), o))
850 <                    return true;
851 <            return false;
958 >            return TreeMap.this.containsValue(o);
959          }
960  
961          public boolean remove(Object o) {
# Line 866 | Line 973 | public class TreeMap<K,V>
973          }
974      }
975  
869    /**
870     * Returns a {@link Set} view of the mappings contained in this map.
871     * The set's iterator returns the entries in ascending key order.
872     * The set is backed by the map, so changes to the map are
873     * reflected in the set, and vice-versa.  If the map is modified
874     * while an iteration over the set is in progress (except through
875     * the iterator's own <tt>remove</tt> operation, or through the
876     * <tt>setValue</tt> operation on a map entry returned by the
877     * iterator) the results of the iteration are undefined.  The set
878     * supports element removal, which removes the corresponding
879     * mapping from the map, via the <tt>Iterator.remove</tt>,
880     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
881     * <tt>clear</tt> operations.  It does not support the
882     * <tt>add</tt> or <tt>addAll</tt> operations.
883     */
884    public Set<Map.Entry<K,V>> entrySet() {
885        Set<Map.Entry<K,V>> es = entrySet;
886        return (es != null) ? es : (entrySet = new EntrySet());
887    }
888
976      class EntrySet extends AbstractSet<Map.Entry<K,V>> {
977          public Iterator<Map.Entry<K,V>> iterator() {
978              return new EntryIterator(getFirstEntry());
# Line 922 | Line 1009 | public class TreeMap<K,V>
1009          }
1010      }
1011  
1012 <    public Set<Map.Entry<K,V>> descendingEntrySet() {
1013 <        Set<Map.Entry<K,V>> es = descendingEntrySet;
1014 <        return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
1012 >    /*
1013 >     * Unlike Values and EntrySet, the KeySet class is static,
1014 >     * delegating to a NavigableMap to allow use by SubMaps, which
1015 >     * outweighs the ugliness of needing type-tests for the following
1016 >     * Iterator methods that are defined appropriately in main versus
1017 >     * submap classes.
1018 >     */
1019 >
1020 >    Iterator<K> keyIterator() {
1021 >        return new KeyIterator(getFirstEntry());
1022      }
1023  
1024 <    class DescendingEntrySet extends EntrySet {
1025 <        public Iterator<Map.Entry<K,V>> iterator() {
1026 <            return new DescendingEntryIterator(getLastEntry());
1024 >    Iterator<K> descendingKeyIterator() {
1025 >        return new DescendingKeyIterator(getFirstEntry());
1026 >    }
1027 >
1028 >    static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1029 >        private final NavigableMap<E, Object> m;
1030 >        KeySet(NavigableMap<E,Object> map) { m = map; }
1031 >
1032 >        public Iterator<E> iterator() {
1033 >            if (m instanceof TreeMap)
1034 >                return ((TreeMap<E,Object>)m).keyIterator();
1035 >            else
1036 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
1037 >        }
1038 >
1039 >        public Iterator<E> descendingIterator() {
1040 >            if (m instanceof TreeMap)
1041 >                return ((TreeMap<E,Object>)m).descendingKeyIterator();
1042 >            else
1043 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
1044 >        }
1045 >
1046 >        public int size() { return m.size(); }
1047 >        public boolean isEmpty() { return m.isEmpty(); }
1048 >        public boolean contains(Object o) { return m.containsKey(o); }
1049 >        public void clear() { m.clear(); }
1050 >        public E lower(E e) { return m.lowerKey(e); }
1051 >        public E floor(E e) { return m.floorKey(e); }
1052 >        public E ceiling(E e) { return m.ceilingKey(e); }
1053 >        public E higher(E e) { return m.higherKey(e); }
1054 >        public E first() { return m.firstKey(); }
1055 >        public E last() { return m.lastKey(); }
1056 >        public Comparator<? super E> comparator() { return m.comparator(); }
1057 >        public E pollFirst() {
1058 >            Map.Entry<E,Object> e = m.pollFirstEntry();
1059 >            return e == null? null : e.getKey();
1060 >        }
1061 >        public E pollLast() {
1062 >            Map.Entry<E,Object> e = m.pollLastEntry();
1063 >            return e == null? null : e.getKey();
1064 >        }
1065 >        public boolean remove(Object o) {
1066 >            int oldSize = size();
1067 >            m.remove(o);
1068 >            return size() != oldSize;
1069 >        }
1070 >        public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1071 >                                      E toElement,   boolean toInclusive) {
1072 >            return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
1073 >                                           toElement,   toInclusive));
1074 >        }
1075 >        public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1076 >            return new TreeSet<E>(m.headMap(toElement, inclusive));
1077 >        }
1078 >        public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1079 >            return new TreeSet<E>(m.tailMap(fromElement, inclusive));
1080 >        }
1081 >        public SortedSet<E> subSet(E fromElement, E toElement) {
1082 >            return subSet(fromElement, true, toElement, false);
1083 >        }
1084 >        public SortedSet<E> headSet(E toElement) {
1085 >            return headSet(toElement, false);
1086 >        }
1087 >        public SortedSet<E> tailSet(E fromElement) {
1088 >            return tailSet(fromElement, true);
1089 >        }
1090 >        public NavigableSet<E> descendingSet() {
1091 >            return new TreeSet(m.descendingMap());
1092 >        }
1093 >    }
1094 >
1095 >    /**
1096 >     * Base class for TreeMap Iterators
1097 >     */
1098 >    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1099 >        Entry<K,V> next;
1100 >        Entry<K,V> lastReturned;
1101 >        int expectedModCount;
1102 >
1103 >        PrivateEntryIterator(Entry<K,V> first) {
1104 >            expectedModCount = modCount;
1105 >            lastReturned = null;
1106 >            next = first;
1107 >        }
1108 >
1109 >        public final boolean hasNext() {
1110 >            return next != null;
1111 >        }
1112 >
1113 >        final Entry<K,V> nextEntry() {
1114 >            Entry<K,V> e = next;
1115 >            if (e == null)
1116 >                throw new NoSuchElementException();
1117 >            if (modCount != expectedModCount)
1118 >                throw new ConcurrentModificationException();
1119 >            next = successor(e);
1120 >            lastReturned = e;
1121 >            return e;
1122 >        }
1123 >
1124 >        final Entry<K,V> prevEntry() {
1125 >            Entry<K,V> e = next;
1126 >            if (e == null)
1127 >                throw new NoSuchElementException();
1128 >            if (modCount != expectedModCount)
1129 >                throw new ConcurrentModificationException();
1130 >            next = predecessor(e);
1131 >            lastReturned = e;
1132 >            return e;
1133 >        }
1134 >
1135 >        public void remove() {
1136 >            if (lastReturned == null)
1137 >                throw new IllegalStateException();
1138 >            if (modCount != expectedModCount)
1139 >                throw new ConcurrentModificationException();
1140 >            // deleted entries are replaced by their successors
1141 >            if (lastReturned.left != null && lastReturned.right != null)
1142 >                next = lastReturned;
1143 >            deleteEntry(lastReturned);
1144 >            expectedModCount = modCount;
1145 >            lastReturned = null;
1146          }
1147      }
1148  
1149 <    public Set<K> descendingKeySet() {
1150 <        Set<K> ks = descendingKeySet;
1151 <        return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1149 >    final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1150 >        EntryIterator(Entry<K,V> first) {
1151 >            super(first);
1152 >        }
1153 >        public Map.Entry<K,V> next() {
1154 >            return nextEntry();
1155 >        }
1156      }
1157  
1158 <    class DescendingKeySet extends KeySet {
1159 <        public Iterator<K> iterator() {
1160 <            return new DescendingKeyIterator(getLastEntry());
1158 >    final class ValueIterator extends PrivateEntryIterator<V> {
1159 >        ValueIterator(Entry<K,V> first) {
1160 >            super(first);
1161 >        }
1162 >        public V next() {
1163 >            return nextEntry().value;
1164          }
1165      }
1166  
1167 +    final class KeyIterator extends PrivateEntryIterator<K> {
1168 +        KeyIterator(Entry<K,V> first) {
1169 +            super(first);
1170 +        }
1171 +        public K next() {
1172 +            return nextEntry().key;
1173 +        }
1174 +    }
1175 +
1176 +    final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1177 +        DescendingKeyIterator(Entry<K,V> first) {
1178 +            super(first);
1179 +        }
1180 +        public K next() {
1181 +            return prevEntry().key;
1182 +        }
1183 +    }
1184 +
1185 +    // Little utilities
1186 +
1187      /**
1188 <     * @throws ClassCastException       {@inheritDoc}
949 <     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
950 <     *         null and this map uses natural ordering, or its comparator
951 <     *         does not permit null keys
952 <     * @throws IllegalArgumentException {@inheritDoc}
1188 >     * Compares two keys using the correct comparison method for this TreeMap.
1189       */
1190 <    public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1191 <        return new SubMap(fromKey, toKey);
1190 >    final int compare(Object k1, Object k2) {
1191 >        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1192 >            : comparator.compare((K)k1, (K)k2);
1193      }
1194  
1195      /**
1196 <     * @throws ClassCastException       {@inheritDoc}
1197 <     * @throws NullPointerException if <tt>toKey</tt> is null
961 <     *         and this map uses natural ordering, or its comparator
962 <     *         does not permit null keys
963 <     * @throws IllegalArgumentException {@inheritDoc}
1196 >     * Test two values for equality.  Differs from o1.equals(o2) only in
1197 >     * that it copes with <tt>null</tt> o1 properly.
1198       */
1199 <    public NavigableMap<K,V> navigableHeadMap(K toKey) {
1200 <        return new SubMap(toKey, true);
1199 >    final static boolean valEquals(Object o1, Object o2) {
1200 >        return (o1==null ? o2==null : o1.equals(o2));
1201      }
1202  
1203      /**
1204 <     * @throws ClassCastException       {@inheritDoc}
971 <     * @throws NullPointerException if <tt>fromKey</tt> is null
972 <     *         and this map uses natural ordering, or its comparator
973 <     *         does not permit null keys
974 <     * @throws IllegalArgumentException {@inheritDoc}
1204 >     * Return SimpleImmutableEntry for entry, or null if null
1205       */
1206 <    public NavigableMap<K,V> navigableTailMap(K fromKey) {
1207 <        return new SubMap(fromKey, false);
1206 >    static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
1207 >        return e == null? null :
1208 >            new AbstractMap.SimpleImmutableEntry<K,V>(e);
1209      }
1210  
1211      /**
1212 <     * Equivalent to {@link #navigableSubMap} but with a return type
982 <     * conforming to the <tt>SortedMap</tt> interface.
983 <     *
984 <     * <p>{@inheritDoc}
985 <     *
986 <     * @throws ClassCastException       {@inheritDoc}
987 <     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
988 <     *         null and this map uses natural ordering, or its comparator
989 <     *         does not permit null keys
990 <     * @throws IllegalArgumentException {@inheritDoc}
1212 >     * Return key for entry, or null if null
1213       */
1214 <    public SortedMap<K,V> subMap(K fromKey, K toKey) {
1215 <        return new SubMap(fromKey, toKey);
1214 >    static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
1215 >        return e == null? null : e.key;
1216      }
1217  
1218      /**
1219 <     * Equivalent to {@link #navigableHeadMap} but with a return type
1220 <     * conforming to the <tt>SortedMap</tt> interface.
999 <     *
1000 <     * <p>{@inheritDoc}
1001 <     *
1002 <     * @throws ClassCastException       {@inheritDoc}
1003 <     * @throws NullPointerException if <tt>toKey</tt> is null
1004 <     *         and this map uses natural ordering, or its comparator
1005 <     *         does not permit null keys
1006 <     * @throws IllegalArgumentException {@inheritDoc}
1219 >     * Returns the key corresponding to the specified Entry.
1220 >     * @throws NoSuchElementException if the Entry is null
1221       */
1222 <    public SortedMap<K,V> headMap(K toKey) {
1223 <        return new SubMap(toKey, true);
1222 >    static <K> K key(Entry<K,?> e) {
1223 >        if (e==null)
1224 >            throw new NoSuchElementException();
1225 >        return e.key;
1226      }
1227  
1228 +
1229 +    // SubMaps
1230 +
1231      /**
1232 <     * Equivalent to {@link #navigableTailMap} but with a return type
1233 <     * conforming to the <tt>SortedMap</tt> interface.
1015 <     *
1016 <     * <p>{@inheritDoc}
1017 <     *
1018 <     * @throws ClassCastException       {@inheritDoc}
1019 <     * @throws NullPointerException if <tt>fromKey</tt> is null
1020 <     *         and this map uses natural ordering, or its comparator
1021 <     *         does not permit null keys
1022 <     * @throws IllegalArgumentException {@inheritDoc}
1232 >     * Dummy value serving as unmatchable fence key for unbounded
1233 >     * SubMapIterators
1234       */
1235 <    public SortedMap<K,V> tailMap(K fromKey) {
1025 <        return new SubMap(fromKey, false);
1026 <    }
1235 >    private static final Object UNBOUNDED = new Object();
1236  
1237 <    private class SubMap
1238 <        extends AbstractMap<K,V>
1239 <        implements NavigableMap<K,V>, java.io.Serializable {
1240 <        private static final long serialVersionUID = -6520786458950516097L;
1237 >    /**
1238 >     * @serial include
1239 >     */
1240 >    static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>
1241 >        implements NavigableMap<K,V>, java.io.Serializable {
1242 >        /**
1243 >         * The backing map.
1244 >         */
1245 >        final TreeMap<K,V> m;
1246  
1247          /**
1248 <         * fromKey is significant only if fromStart is false.  Similarly,
1249 <         * toKey is significant only if toStart is false.
1248 >         * Endpoints are represented as triples (fromStart, lo,
1249 >         * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1250 >         * true, then the low (absolute) bound is the start of the
1251 >         * backing map, and the other values are ignored. Otherwise,
1252 >         * if loInclusive is true, lo is the inclusive bound, else lo
1253 >         * is the exclusive bound. Similarly for the upper bound.
1254           */
1255 <        private boolean fromStart = false, toEnd = false;
1256 <        private K fromKey, toKey;
1255 >        final K lo, hi;
1256 >        final boolean fromStart, toEnd;
1257 >        final boolean loInclusive, hiInclusive;
1258 >
1259 >        NavigableSubMap(TreeMap<K,V> m,
1260 >                        boolean fromStart, K lo, boolean loInclusive,
1261 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1262 >            if (!fromStart && !toEnd) {
1263 >                if (m.compare(lo, hi) > 0)
1264 >                    throw new IllegalArgumentException("fromKey > toKey");
1265 >            } else {
1266 >                if (!fromStart) // type check
1267 >                    m.compare(lo, lo);
1268 >                if (!toEnd)
1269 >                    m.compare(hi, hi);
1270 >            }
1271  
1272 <        SubMap(K fromKey, K toKey) {
1273 <            if (compare(fromKey, toKey) > 0)
1274 <                throw new IllegalArgumentException("fromKey > toKey");
1275 <            this.fromKey = fromKey;
1276 <            this.toKey = toKey;
1272 >            this.m = m;
1273 >            this.fromStart = fromStart;
1274 >            this.lo = lo;
1275 >            this.loInclusive = loInclusive;
1276 >            this.toEnd = toEnd;
1277 >            this.hi = hi;
1278 >            this.hiInclusive = hiInclusive;
1279          }
1280  
1281 <        SubMap(K key, boolean headMap) {
1282 <            compare(key, key); // Type-check key
1283 <
1284 <            if (headMap) {
1285 <                fromStart = true;
1286 <                toKey = key;
1287 <            } else {
1288 <                toEnd = true;
1289 <                fromKey = key;
1281 >        // internal utilities
1282 >
1283 >        final boolean tooLow(Object key) {
1284 >            if (!fromStart) {
1285 >                int c = m.compare(key, lo);
1286 >                if (c < 0 || (c == 0 && !loInclusive))
1287 >                    return true;
1288 >            }
1289 >            return false;
1290 >        }
1291 >
1292 >        final boolean tooHigh(Object key) {
1293 >            if (!toEnd) {
1294 >                int c = m.compare(key, hi);
1295 >                if (c > 0 || (c == 0 && !hiInclusive))
1296 >                    return true;
1297              }
1298 +            return false;
1299          }
1300  
1301 <        SubMap(boolean fromStart, K fromKey, boolean toEnd, K toKey) {
1302 <            this.fromStart = fromStart;
1303 <            this.fromKey= fromKey;
1304 <            this.toEnd = toEnd;
1305 <            this.toKey = toKey;
1301 >        final boolean inRange(Object key) {
1302 >            return !tooLow(key) && !tooHigh(key);
1303 >        }
1304 >
1305 >        final boolean inClosedRange(Object key) {
1306 >            return (fromStart || m.compare(key, lo) >= 0)
1307 >                && (toEnd || m.compare(hi, key) >= 0);
1308 >        }
1309 >
1310 >        final boolean inRange(Object key, boolean inclusive) {
1311 >            return inclusive ? inRange(key) : inClosedRange(key);
1312 >        }
1313 >
1314 >        /*
1315 >         * Absolute versions of relation operations.
1316 >         * Subclasses map to these using like-named "sub"
1317 >         * versions that invert senses for descending maps
1318 >         */
1319 >
1320 >        final TreeMap.Entry<K,V> absLowest() {
1321 >            TreeMap.Entry<K,V> e =
1322 >                (fromStart ?  m.getFirstEntry() :
1323 >                 (loInclusive ? m.getCeilingEntry(lo) :
1324 >                                m.getHigherEntry(lo)));
1325 >            return (e == null || tooHigh(e.key)) ? null : e;
1326 >        }
1327 >
1328 >        final TreeMap.Entry<K,V> absHighest() {
1329 >            TreeMap.Entry<K,V> e =
1330 >                (toEnd ?  m.getLastEntry() :
1331 >                 (hiInclusive ?  m.getFloorEntry(hi) :
1332 >                                 m.getLowerEntry(hi)));
1333 >            return (e == null || tooLow(e.key)) ? null : e;
1334 >        }
1335 >
1336 >        final TreeMap.Entry<K,V> absCeiling(K key) {
1337 >            if (tooLow(key))
1338 >                return absLowest();
1339 >            TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1340 >            return (e == null || tooHigh(e.key)) ? null : e;
1341 >        }
1342 >
1343 >        final TreeMap.Entry<K,V> absHigher(K key) {
1344 >            if (tooLow(key))
1345 >                return absLowest();
1346 >            TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1347 >            return (e == null || tooHigh(e.key)) ? null : e;
1348 >        }
1349 >
1350 >        final TreeMap.Entry<K,V> absFloor(K key) {
1351 >            if (tooHigh(key))
1352 >                return absHighest();
1353 >            TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1354 >            return (e == null || tooLow(e.key)) ? null : e;
1355 >        }
1356 >
1357 >        final TreeMap.Entry<K,V> absLower(K key) {
1358 >            if (tooHigh(key))
1359 >                return absHighest();
1360 >            TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1361 >            return (e == null || tooLow(e.key)) ? null : e;
1362          }
1363  
1364 +        /** Returns the absolute high fence for ascending traversal */
1365 +        final TreeMap.Entry<K,V> absHighFence() {
1366 +            return (toEnd ? null : (hiInclusive ?
1367 +                                    m.getHigherEntry(hi) :
1368 +                                    m.getCeilingEntry(hi)));
1369 +        }
1370 +
1371 +        /** Return the absolute low fence for descending traversal  */
1372 +        final TreeMap.Entry<K,V> absLowFence() {
1373 +            return (fromStart ? null : (loInclusive ?
1374 +                                        m.getLowerEntry(lo) :
1375 +                                        m.getFloorEntry(lo)));
1376 +        }
1377 +
1378 +        // Abstract methods defined in ascending vs descending classes
1379 +        // These relay to the appropriate absolute versions
1380 +
1381 +        abstract TreeMap.Entry<K,V> subLowest();
1382 +        abstract TreeMap.Entry<K,V> subHighest();
1383 +        abstract TreeMap.Entry<K,V> subCeiling(K key);
1384 +        abstract TreeMap.Entry<K,V> subHigher(K key);
1385 +        abstract TreeMap.Entry<K,V> subFloor(K key);
1386 +        abstract TreeMap.Entry<K,V> subLower(K key);
1387 +
1388 +        /** Returns ascending iterator from the perspective of this submap */
1389 +        abstract Iterator<K> keyIterator();
1390 +
1391 +        /** Returns descending iterator from the perspective of this submap */
1392 +        abstract Iterator<K> descendingKeyIterator();
1393 +
1394 +        // public methods
1395 +
1396          public boolean isEmpty() {
1397 <            return entrySet().isEmpty();
1397 >            return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1398          }
1399  
1400 <        public boolean containsKey(Object key) {
1401 <            return inRange(key) && TreeMap.this.containsKey(key);
1400 >        public int size() {
1401 >            return (fromStart && toEnd) ? m.size() : entrySet().size();
1402          }
1403  
1404 <        public V get(Object key) {
1405 <            if (!inRange(key))
1076 <                return null;
1077 <            return TreeMap.this.get(key);
1404 >        public final boolean containsKey(Object key) {
1405 >            return inRange(key) && m.containsKey(key);
1406          }
1407  
1408 <        public V put(K key, V value) {
1408 >        public final V put(K key, V value) {
1409              if (!inRange(key))
1410                  throw new IllegalArgumentException("key out of range");
1411 <            return TreeMap.this.put(key, value);
1411 >            return m.put(key, value);
1412          }
1413  
1414 <        public V remove(Object key) {
1415 <            if (!inRange(key))
1088 <                return null;
1089 <            return TreeMap.this.remove(key);
1414 >        public final V get(Object key) {
1415 >            return !inRange(key)? null :  m.get(key);
1416          }
1417  
1418 <        public Comparator<? super K> comparator() {
1419 <            return comparator;
1418 >        public final V remove(Object key) {
1419 >            return !inRange(key)? null  : m.remove(key);
1420          }
1421  
1422 <        public K firstKey() {
1423 <            TreeMap.Entry<K,V> e = fromStart ? getFirstEntry() : getCeilingEntry(fromKey);
1098 <            K first = key(e);
1099 <            if (!toEnd && compare(first, toKey) >= 0)
1100 <                throw new NoSuchElementException();
1101 <            return first;
1422 >        public final Map.Entry<K,V> ceilingEntry(K key) {
1423 >            return exportEntry(subCeiling(key));
1424          }
1425  
1426 <        public K lastKey() {
1427 <            TreeMap.Entry<K,V> e = toEnd ? getLastEntry() : getLowerEntry(toKey);
1106 <            K last = key(e);
1107 <            if (!fromStart && compare(last, fromKey) < 0)
1108 <                throw new NoSuchElementException();
1109 <            return last;
1426 >        public final K ceilingKey(K key) {
1427 >            return keyOrNull(subCeiling(key));
1428          }
1429  
1430 <        public Map.Entry<K,V> firstEntry() {
1431 <            TreeMap.Entry<K,V> e = fromStart ?
1114 <                getFirstEntry() : getCeilingEntry(fromKey);
1115 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1116 <                return null;
1117 <            return e;
1430 >        public final Map.Entry<K,V> higherEntry(K key) {
1431 >            return exportEntry(subHigher(key));
1432          }
1433  
1434 <        public Map.Entry<K,V> lastEntry() {
1435 <            TreeMap.Entry<K,V> e = toEnd ?
1122 <                getLastEntry() : getLowerEntry(toKey);
1123 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1124 <                return null;
1125 <            return e;
1434 >        public final K higherKey(K key) {
1435 >            return keyOrNull(subHigher(key));
1436          }
1437  
1438 <        public Map.Entry<K,V> pollFirstEntry() {
1439 <            TreeMap.Entry<K,V> e = fromStart ?
1130 <                getFirstEntry() : getCeilingEntry(fromKey);
1131 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1132 <                return null;
1133 <            Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(e);
1134 <            deleteEntry(e);
1135 <            return result;
1438 >        public final Map.Entry<K,V> floorEntry(K key) {
1439 >            return exportEntry(subFloor(key));
1440          }
1441  
1442 <        public Map.Entry<K,V> pollLastEntry() {
1443 <            TreeMap.Entry<K,V> e = toEnd ?
1140 <                getLastEntry() : getLowerEntry(toKey);
1141 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1142 <                return null;
1143 <            Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(e);
1144 <            deleteEntry(e);
1145 <            return result;
1442 >        public final K floorKey(K key) {
1443 >            return keyOrNull(subFloor(key));
1444          }
1445  
1446 <        private TreeMap.Entry<K,V> subceiling(K key) {
1447 <            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1150 <                getCeilingEntry(fromKey) : getCeilingEntry(key);
1151 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1152 <                return null;
1153 <            return e;
1446 >        public final Map.Entry<K,V> lowerEntry(K key) {
1447 >            return exportEntry(subLower(key));
1448          }
1449  
1450 <        public Map.Entry<K,V> ceilingEntry(K key) {
1451 <            TreeMap.Entry<K,V> e = subceiling(key);
1158 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1450 >        public final K lowerKey(K key) {
1451 >            return keyOrNull(subLower(key));
1452          }
1453  
1454 <        public K ceilingKey(K key) {
1455 <            TreeMap.Entry<K,V> e = subceiling(key);
1163 <            return e == null? null : e.key;
1454 >        public final K firstKey() {
1455 >            return key(subLowest());
1456          }
1457  
1458 <
1459 <        private TreeMap.Entry<K,V> subhigher(K key) {
1168 <            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1169 <                getCeilingEntry(fromKey) : getHigherEntry(key);
1170 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1171 <                return null;
1172 <            return e;
1458 >        public final K lastKey() {
1459 >            return key(subHighest());
1460          }
1461  
1462 <        public Map.Entry<K,V> higherEntry(K key) {
1463 <            TreeMap.Entry<K,V> e = subhigher(key);
1177 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1462 >        public final Map.Entry<K,V> firstEntry() {
1463 >            return exportEntry(subLowest());
1464          }
1465  
1466 <        public K higherKey(K key) {
1467 <            TreeMap.Entry<K,V> e = subhigher(key);
1182 <            return e == null? null : e.key;
1466 >        public final Map.Entry<K,V> lastEntry() {
1467 >            return exportEntry(subHighest());
1468          }
1469  
1470 <        private TreeMap.Entry<K,V> subfloor(K key) {
1471 <            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1472 <                getLowerEntry(toKey) : getFloorEntry(key);
1473 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1474 <                return null;
1475 <            return e;
1470 >        public final Map.Entry<K,V> pollFirstEntry() {
1471 >            TreeMap.Entry<K,V> e = subLowest();
1472 >            Map.Entry<K,V> result = exportEntry(e);
1473 >            if (e != null)
1474 >                m.deleteEntry(e);
1475 >            return result;
1476          }
1477  
1478 <        public Map.Entry<K,V> floorEntry(K key) {
1479 <            TreeMap.Entry<K,V> e = subfloor(key);
1480 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1478 >        public final Map.Entry<K,V> pollLastEntry() {
1479 >            TreeMap.Entry<K,V> e = subHighest();
1480 >            Map.Entry<K,V> result = exportEntry(e);
1481 >            if (e != null)
1482 >                m.deleteEntry(e);
1483 >            return result;
1484          }
1485  
1486 <        public K floorKey(K key) {
1487 <            TreeMap.Entry<K,V> e = subfloor(key);
1488 <            return e == null? null : e.key;
1486 >        // Views
1487 >        transient NavigableMap<K,V> descendingMapView = null;
1488 >        transient EntrySetView entrySetView = null;
1489 >        transient KeySet<K> navigableKeySetView = null;
1490 >
1491 >        public final NavigableSet<K> navigableKeySet() {
1492 >            KeySet<K> nksv = navigableKeySetView;
1493 >            return (nksv != null) ? nksv :
1494 >                (navigableKeySetView = new TreeMap.KeySet(this));
1495          }
1496  
1497 <        private TreeMap.Entry<K,V> sublower(K key) {
1498 <            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1205 <                getLowerEntry(toKey) :  getLowerEntry(key);
1206 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1207 <                return null;
1208 <            return e;
1497 >        public final Set<K> keySet() {
1498 >            return navigableKeySet();
1499          }
1500  
1501 <        public Map.Entry<K,V> lowerEntry(K key) {
1502 <            TreeMap.Entry<K,V> e = sublower(key);
1213 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1501 >        public NavigableSet<K> descendingKeySet() {
1502 >            return descendingMap().navigableKeySet();
1503          }
1504  
1505 <        public K lowerKey(K key) {
1506 <            TreeMap.Entry<K,V> e = sublower(key);
1218 <            return e == null? null : e.key;
1505 >        public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1506 >            return subMap(fromKey, true, toKey, false);
1507          }
1508  
1509 <        private transient Set<Map.Entry<K,V>> entrySet = null;
1509 >        public final SortedMap<K,V> headMap(K toKey) {
1510 >            return headMap(toKey, false);
1511 >        }
1512  
1513 <        public Set<Map.Entry<K,V>> entrySet() {
1514 <            Set<Map.Entry<K,V>> es = entrySet;
1225 <            return (es != null)? es : (entrySet = new EntrySetView());
1513 >        public final SortedMap<K,V> tailMap(K fromKey) {
1514 >            return tailMap(fromKey, true);
1515          }
1516  
1517 <        private class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1517 >        // View classes
1518 >
1519 >        abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1520              private transient int size = -1, sizeModCount;
1521  
1522              public int size() {
1523 <                if (size == -1 || sizeModCount != TreeMap.this.modCount) {
1524 <                    size = 0;  sizeModCount = TreeMap.this.modCount;
1523 >                if (fromStart && toEnd)
1524 >                    return m.size();
1525 >                if (size == -1 || sizeModCount != m.modCount) {
1526 >                    sizeModCount = m.modCount;
1527 >                    size = 0;
1528                      Iterator i = iterator();
1529                      while (i.hasNext()) {
1530                          size++;
# Line 1241 | Line 1535 | public class TreeMap<K,V>
1535              }
1536  
1537              public boolean isEmpty() {
1538 <                return !iterator().hasNext();
1538 >                TreeMap.Entry<K,V> n = absLowest();
1539 >                return n == null || tooHigh(n.key);
1540              }
1541  
1542              public boolean contains(Object o) {
# Line 1251 | Line 1546 | public class TreeMap<K,V>
1546                  K key = entry.getKey();
1547                  if (!inRange(key))
1548                      return false;
1549 <                TreeMap.Entry node = getEntry(key);
1549 >                TreeMap.Entry node = m.getEntry(key);
1550                  return node != null &&
1551 <                       valEquals(node.getValue(), entry.getValue());
1551 >                    valEquals(node.getValue(), entry.getValue());
1552              }
1553  
1554              public boolean remove(Object o) {
# Line 1263 | Line 1558 | public class TreeMap<K,V>
1558                  K key = entry.getKey();
1559                  if (!inRange(key))
1560                      return false;
1561 <                TreeMap.Entry<K,V> node = getEntry(key);
1561 >                TreeMap.Entry<K,V> node = m.getEntry(key);
1562                  if (node!=null && valEquals(node.getValue(),entry.getValue())){
1563 <                    deleteEntry(node);
1563 >                    m.deleteEntry(node);
1564                      return true;
1565                  }
1566                  return false;
1567              }
1273
1274            public Iterator<Map.Entry<K,V>> iterator() {
1275                return new SubMapEntryIterator(
1276                    (fromStart ? getFirstEntry() : getCeilingEntry(fromKey)),
1277                    (toEnd     ? null            : getCeilingEntry(toKey)));
1278            }
1279        }
1280
1281        private transient Set<Map.Entry<K,V>> descendingEntrySetView = null;
1282        private transient Set<K> descendingKeySetView = null;
1283
1284        public Set<Map.Entry<K,V>> descendingEntrySet() {
1285            Set<Map.Entry<K,V>> es = descendingEntrySetView;
1286            return (es != null) ? es :
1287                (descendingEntrySetView = new DescendingEntrySetView());
1568          }
1569  
1570 <        public Set<K> descendingKeySet() {
1571 <            Set<K> ks = descendingKeySetView;
1572 <            return (ks != null) ? ks :
1573 <                (descendingKeySetView = new DescendingKeySetView());
1574 <        }
1570 >        /**
1571 >         * Iterators for SubMaps
1572 >         */
1573 >        abstract class SubMapIterator<T> implements Iterator<T> {
1574 >            TreeMap.Entry<K,V> lastReturned;
1575 >            TreeMap.Entry<K,V> next;
1576 >            final Object fenceKey;
1577 >            int expectedModCount;
1578  
1579 <        private class DescendingEntrySetView extends EntrySetView {
1580 <            public Iterator<Map.Entry<K,V>> iterator() {
1581 <                return new DescendingSubMapEntryIterator
1582 <                    ((toEnd     ? getLastEntry()  : getLowerEntry(toKey)),
1583 <                     (fromStart ? null            : getLowerEntry(fromKey)));
1579 >            SubMapIterator(TreeMap.Entry<K,V> first,
1580 >                           TreeMap.Entry<K,V> fence) {
1581 >                expectedModCount = m.modCount;
1582 >                lastReturned = null;
1583 >                next = first;
1584 >                fenceKey = fence == null ? UNBOUNDED : fence.key;
1585              }
1302        }
1303
1304        private class DescendingKeySetView extends AbstractSet<K> {
1305            public Iterator<K> iterator() {
1306                return new Iterator<K>() {
1307                    private Iterator<Entry<K,V>> i = descendingEntrySet().iterator();
1586  
1587 <                    public boolean hasNext() { return i.hasNext(); }
1588 <                    public K next() { return i.next().getKey(); }
1311 <                    public void remove() { i.remove(); }
1312 <                };
1587 >            public final boolean hasNext() {
1588 >                return next != null && next.key != fenceKey;
1589              }
1590  
1591 <            public int size() {
1592 <                return SubMap.this.size();
1591 >            final TreeMap.Entry<K,V> nextEntry() {
1592 >                TreeMap.Entry<K,V> e = next;
1593 >                if (e == null || e.key == fenceKey)
1594 >                    throw new NoSuchElementException();
1595 >                if (m.modCount != expectedModCount)
1596 >                    throw new ConcurrentModificationException();
1597 >                next = successor(e);
1598 >                lastReturned = e;
1599 >                return e;
1600              }
1601  
1602 <            public boolean contains(Object k) {
1603 <                return SubMap.this.containsKey(k);
1602 >            final TreeMap.Entry<K,V> prevEntry() {
1603 >                TreeMap.Entry<K,V> e = next;
1604 >                if (e == null || e.key == fenceKey)
1605 >                    throw new NoSuchElementException();
1606 >                if (m.modCount != expectedModCount)
1607 >                    throw new ConcurrentModificationException();
1608 >                next = predecessor(e);
1609 >                lastReturned = e;
1610 >                return e;
1611              }
1322        }
1612  
1613 <        public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1614 <            if (!inRange2(fromKey))
1615 <                throw new IllegalArgumentException("fromKey out of range");
1616 <            if (!inRange2(toKey))
1617 <                throw new IllegalArgumentException("toKey out of range");
1618 <            return new SubMap(fromKey, toKey);
1619 <        }
1613 >            final void removeAscending() {
1614 >                if (lastReturned == null)
1615 >                    throw new IllegalStateException();
1616 >                if (m.modCount != expectedModCount)
1617 >                    throw new ConcurrentModificationException();
1618 >                // deleted entries are replaced by their successors
1619 >                if (lastReturned.left != null && lastReturned.right != null)
1620 >                    next = lastReturned;
1621 >                m.deleteEntry(lastReturned);
1622 >                lastReturned = null;
1623 >                expectedModCount = m.modCount;
1624 >            }
1625  
1626 <        public NavigableMap<K,V> navigableHeadMap(K toKey) {
1627 <            if (!inRange2(toKey))
1628 <                throw new IllegalArgumentException("toKey out of range");
1629 <            return new SubMap(fromStart, fromKey, false, toKey);
1630 <        }
1626 >            final void removeDescending() {
1627 >                if (lastReturned == null)
1628 >                    throw new IllegalStateException();
1629 >                if (m.modCount != expectedModCount)
1630 >                    throw new ConcurrentModificationException();
1631 >                m.deleteEntry(lastReturned);
1632 >                lastReturned = null;
1633 >                expectedModCount = m.modCount;
1634 >            }
1635  
1338        public NavigableMap<K,V> navigableTailMap(K fromKey) {
1339            if (!inRange2(fromKey))
1340                throw new IllegalArgumentException("fromKey out of range");
1341            return new SubMap(false, fromKey, toEnd, toKey);
1636          }
1637  
1638 <        public SortedMap<K,V> subMap(K fromKey, K toKey) {
1639 <            return navigableSubMap(fromKey, toKey);
1638 >        final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1639 >            SubMapEntryIterator(TreeMap.Entry<K,V> first,
1640 >                                TreeMap.Entry<K,V> fence) {
1641 >                super(first, fence);
1642 >            }
1643 >            public Map.Entry<K,V> next() {
1644 >                return nextEntry();
1645 >            }
1646 >            public void remove() {
1647 >                removeAscending();
1648 >            }
1649          }
1650  
1651 <        public SortedMap<K,V> headMap(K toKey) {
1652 <            return navigableHeadMap(toKey);
1651 >        final class SubMapKeyIterator extends SubMapIterator<K> {
1652 >            SubMapKeyIterator(TreeMap.Entry<K,V> first,
1653 >                              TreeMap.Entry<K,V> fence) {
1654 >                super(first, fence);
1655 >            }
1656 >            public K next() {
1657 >                return nextEntry().key;
1658 >            }
1659 >            public void remove() {
1660 >                removeAscending();
1661 >            }
1662          }
1663  
1664 <        public SortedMap<K,V> tailMap(K fromKey) {
1665 <            return navigableTailMap(fromKey);
1666 <        }
1664 >        final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1665 >            DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1666 >                                          TreeMap.Entry<K,V> fence) {
1667 >                super(last, fence);
1668 >            }
1669  
1670 <        private boolean inRange(Object key) {
1671 <            return (fromStart || compare(key, fromKey) >= 0) &&
1672 <                   (toEnd     || compare(key, toKey)   <  0);
1670 >            public Map.Entry<K,V> next() {
1671 >                return prevEntry();
1672 >            }
1673 >            public void remove() {
1674 >                removeDescending();
1675 >            }
1676          }
1677  
1678 <        // This form allows the high endpoint (as well as all legit keys)
1679 <        private boolean inRange2(Object key) {
1680 <            return (fromStart || compare(key, fromKey) >= 0) &&
1681 <                   (toEnd     || compare(key, toKey)   <= 0);
1678 >        final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
1679 >            DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1680 >                                        TreeMap.Entry<K,V> fence) {
1681 >                super(last, fence);
1682 >            }
1683 >            public K next() {
1684 >                return prevEntry().key;
1685 >            }
1686 >            public void remove() {
1687 >                removeDescending();
1688 >            }
1689          }
1690      }
1691  
1692      /**
1693 <     * TreeMap Iterator.
1693 >     * @serial include
1694       */
1695 <    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1696 <        int expectedModCount = TreeMap.this.modCount;
1373 <        Entry<K,V> lastReturned = null;
1374 <        Entry<K,V> next;
1695 >    static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1696 >        private static final long serialVersionUID = 912986545866124060L;
1697  
1698 <        PrivateEntryIterator(Entry<K,V> first) {
1699 <            next = first;
1698 >        AscendingSubMap(TreeMap<K,V> m,
1699 >                        boolean fromStart, K lo, boolean loInclusive,
1700 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1701 >            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1702          }
1703  
1704 <        public boolean hasNext() {
1705 <            return next != null;
1704 >        public Comparator<? super K> comparator() {
1705 >            return m.comparator();
1706          }
1707  
1708 <        Entry<K,V> nextEntry() {
1709 <            if (next == null)
1710 <                throw new NoSuchElementException();
1711 <            if (modCount != expectedModCount)
1712 <                throw new ConcurrentModificationException();
1713 <            lastReturned = next;
1714 <            next = successor(next);
1715 <            return lastReturned;
1708 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1709 >                                        K toKey,   boolean toInclusive) {
1710 >            if (!inRange(fromKey, fromInclusive))
1711 >                throw new IllegalArgumentException("fromKey out of range");
1712 >            if (!inRange(toKey, toInclusive))
1713 >                throw new IllegalArgumentException("toKey out of range");
1714 >            return new AscendingSubMap(m,
1715 >                                       false, fromKey, fromInclusive,
1716 >                                       false, toKey,   toInclusive);
1717          }
1718  
1719 <        public void remove() {
1720 <            if (lastReturned == null)
1721 <                throw new IllegalStateException();
1722 <            if (modCount != expectedModCount)
1723 <                throw new ConcurrentModificationException();
1724 <            if (lastReturned.left != null && lastReturned.right != null)
1400 <                next = lastReturned;
1401 <            deleteEntry(lastReturned);
1402 <            expectedModCount++;
1403 <            lastReturned = null;
1719 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1720 >            if (!inRange(toKey, inclusive))
1721 >                throw new IllegalArgumentException("toKey out of range");
1722 >            return new AscendingSubMap(m,
1723 >                                       fromStart, lo,    loInclusive,
1724 >                                       false,     toKey, inclusive);
1725          }
1405    }
1726  
1727 <    class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1728 <        EntryIterator(Entry<K,V> first) {
1729 <            super(first);
1730 <        }
1731 <        public Map.Entry<K,V> next() {
1732 <            return nextEntry();
1727 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1728 >            if (!inRange(fromKey, inclusive))
1729 >                throw new IllegalArgumentException("fromKey out of range");
1730 >            return new AscendingSubMap(m,
1731 >                                       false, fromKey, inclusive,
1732 >                                       toEnd, hi,      hiInclusive);
1733          }
1414    }
1734  
1735 <    class KeyIterator extends PrivateEntryIterator<K> {
1736 <        KeyIterator(Entry<K,V> first) {
1737 <            super(first);
1735 >        public NavigableMap<K,V> descendingMap() {
1736 >            NavigableMap<K,V> mv = descendingMapView;
1737 >            return (mv != null) ? mv :
1738 >                (descendingMapView =
1739 >                 new DescendingSubMap(m,
1740 >                                      fromStart, lo, loInclusive,
1741 >                                      toEnd,     hi, hiInclusive));
1742          }
1420        public K next() {
1421            return nextEntry().key;
1422        }
1423    }
1743  
1744 <    class ValueIterator extends PrivateEntryIterator<V> {
1745 <        ValueIterator(Entry<K,V> first) {
1427 <            super(first);
1428 <        }
1429 <        public V next() {
1430 <            return nextEntry().value;
1744 >        Iterator<K> keyIterator() {
1745 >            return new SubMapKeyIterator(absLowest(), absHighFence());
1746          }
1432    }
1433
1434    class SubMapEntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1435        private final K firstExcludedKey;
1747  
1748 <        SubMapEntryIterator(Entry<K,V> first, Entry<K,V> firstExcluded) {
1749 <            super(first);
1439 <            firstExcludedKey = (firstExcluded == null
1440 <                                ? null
1441 <                                : firstExcluded.key);
1748 >        Iterator<K> descendingKeyIterator() {
1749 >            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1750          }
1751  
1752 <        public boolean hasNext() {
1753 <            return next != null && next.key != firstExcludedKey;
1752 >        final class AscendingEntrySetView extends EntrySetView {
1753 >            public Iterator<Map.Entry<K,V>> iterator() {
1754 >                return new SubMapEntryIterator(absLowest(), absHighFence());
1755 >            }
1756          }
1757  
1758 <        public Map.Entry<K,V> next() {
1759 <            if (next == null || next.key == firstExcludedKey)
1760 <                throw new NoSuchElementException();
1451 <            return nextEntry();
1758 >        public Set<Map.Entry<K,V>> entrySet() {
1759 >            EntrySetView es = entrySetView;
1760 >            return (es != null) ? es : new AscendingEntrySetView();
1761          }
1762 +
1763 +        TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
1764 +        TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
1765 +        TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
1766 +        TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
1767 +        TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
1768 +        TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
1769      }
1770  
1771      /**
1772 <     * Base for Descending Iterators.
1772 >     * @serial include
1773       */
1774 <    abstract class DescendingPrivateEntryIterator<T> extends PrivateEntryIterator<T> {
1775 <        DescendingPrivateEntryIterator(Entry<K,V> first) {
1776 <            super(first);
1774 >    static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
1775 >        private static final long serialVersionUID = 912986545866120460L;
1776 >        DescendingSubMap(TreeMap<K,V> m,
1777 >                        boolean fromStart, K lo, boolean loInclusive,
1778 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1779 >            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1780          }
1781  
1782 <        Entry<K,V> nextEntry() {
1783 <            if (next == null)
1465 <                throw new NoSuchElementException();
1466 <            if (modCount != expectedModCount)
1467 <                throw new ConcurrentModificationException();
1468 <            lastReturned = next;
1469 <            next = predecessor(next);
1470 <            return lastReturned;
1471 <        }
1472 <    }
1782 >        private final Comparator<? super K> reverseComparator =
1783 >            Collections.reverseOrder(m.comparator);
1784  
1785 <    class DescendingEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1786 <        DescendingEntryIterator(Entry<K,V> first) {
1476 <            super(first);
1785 >        public Comparator<? super K> comparator() {
1786 >            return reverseComparator;
1787          }
1788 <        public Map.Entry<K,V> next() {
1789 <            return nextEntry();
1788 >
1789 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1790 >                                        K toKey,   boolean toInclusive) {
1791 >            if (!inRange(fromKey, fromInclusive))
1792 >                throw new IllegalArgumentException("fromKey out of range");
1793 >            if (!inRange(toKey, toInclusive))
1794 >                throw new IllegalArgumentException("toKey out of range");
1795 >            return new DescendingSubMap(m,
1796 >                                        false, toKey,   toInclusive,
1797 >                                        false, fromKey, fromInclusive);
1798          }
1481    }
1799  
1800 <    class DescendingKeyIterator extends DescendingPrivateEntryIterator<K> {
1801 <        DescendingKeyIterator(Entry<K,V> first) {
1802 <            super(first);
1800 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1801 >            if (!inRange(toKey, inclusive))
1802 >                throw new IllegalArgumentException("toKey out of range");
1803 >            return new DescendingSubMap(m,
1804 >                                        false, toKey, inclusive,
1805 >                                        toEnd, hi,    hiInclusive);
1806          }
1807 <        public K next() {
1808 <            return nextEntry().key;
1807 >
1808 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1809 >            if (!inRange(fromKey, inclusive))
1810 >                throw new IllegalArgumentException("fromKey out of range");
1811 >            return new DescendingSubMap(m,
1812 >                                        fromStart, lo, loInclusive,
1813 >                                        false, fromKey, inclusive);
1814          }
1490    }
1815  
1816 +        public NavigableMap<K,V> descendingMap() {
1817 +            NavigableMap<K,V> mv = descendingMapView;
1818 +            return (mv != null) ? mv :
1819 +                (descendingMapView =
1820 +                 new AscendingSubMap(m,
1821 +                                     fromStart, lo, loInclusive,
1822 +                                     toEnd,     hi, hiInclusive));
1823 +        }
1824  
1825 <    class DescendingSubMapEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1826 <        private final K lastExcludedKey;
1825 >        Iterator<K> keyIterator() {
1826 >            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1827 >        }
1828  
1829 <        DescendingSubMapEntryIterator(Entry<K,V> last, Entry<K,V> lastExcluded) {
1830 <            super(last);
1498 <            lastExcludedKey = (lastExcluded == null
1499 <                                ? null
1500 <                                : lastExcluded.key);
1829 >        Iterator<K> descendingKeyIterator() {
1830 >            return new SubMapKeyIterator(absLowest(), absHighFence());
1831          }
1832  
1833 <        public boolean hasNext() {
1834 <            return next != null && next.key != lastExcludedKey;
1833 >        final class DescendingEntrySetView extends EntrySetView {
1834 >            public Iterator<Map.Entry<K,V>> iterator() {
1835 >                return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
1836 >            }
1837          }
1838  
1839 <        public Map.Entry<K,V> next() {
1840 <            if (next == null || next.key == lastExcludedKey)
1841 <                throw new NoSuchElementException();
1510 <            return nextEntry();
1839 >        public Set<Map.Entry<K,V>> entrySet() {
1840 >            EntrySetView es = entrySetView;
1841 >            return (es != null) ? es : new DescendingEntrySetView();
1842          }
1843  
1844 +        TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
1845 +        TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
1846 +        TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
1847 +        TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
1848 +        TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
1849 +        TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
1850      }
1851  
1852      /**
1853 <     * Compares two keys using the correct comparison method for this TreeMap.
1853 >     * This class exists solely for the sake of serialization
1854 >     * compatibility with previous releases of TreeMap that did not
1855 >     * support NavigableMap.  It translates an old-version SubMap into
1856 >     * a new-version AscendingSubMap. This class is never otherwise
1857 >     * used.
1858 >     *
1859 >     * @serial include
1860       */
1861 <    private int compare(Object k1, Object k2) {
1862 <        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1863 <                                : comparator.compare((K)k1, (K)k2);
1861 >    private class SubMap extends AbstractMap<K,V>
1862 >        implements SortedMap<K,V>, java.io.Serializable {
1863 >        private static final long serialVersionUID = -6520786458950516097L;
1864 >        private boolean fromStart = false, toEnd = false;
1865 >        private K fromKey, toKey;
1866 >        private Object readResolve() {
1867 >            return new AscendingSubMap(TreeMap.this,
1868 >                                       fromStart, fromKey, true,
1869 >                                       toEnd, toKey, false);
1870 >        }
1871 >        public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1872 >        public K lastKey() { throw new InternalError(); }
1873 >        public K firstKey() { throw new InternalError(); }
1874 >        public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1875 >        public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1876 >        public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1877 >        public Comparator<? super K> comparator() { throw new InternalError(); }
1878      }
1879  
1880 <    /**
1881 <     * Test two values for equality.  Differs from o1.equals(o2) only in
1525 <     * that it copes with <tt>null</tt> o1 properly.
1526 <     */
1527 <    private static boolean valEquals(Object o1, Object o2) {
1528 <        return (o1==null ? o2==null : o1.equals(o2));
1529 <    }
1880 >
1881 >    // Red-black mechanics
1882  
1883      private static final boolean RED   = false;
1884      private static final boolean BLACK = true;
# Line 1536 | Line 1888 | public class TreeMap<K,V>
1888       * user (see Map.Entry).
1889       */
1890  
1891 <    static class Entry<K,V> implements Map.Entry<K,V> {
1892 <        K key;
1891 >    static final class Entry<K,V> implements Map.Entry<K,V> {
1892 >        K key;
1893          V value;
1894          Entry<K,V> left = null;
1895          Entry<K,V> right = null;
# Line 1588 | Line 1940 | public class TreeMap<K,V>
1940          public boolean equals(Object o) {
1941              if (!(o instanceof Map.Entry))
1942                  return false;
1943 <            Map.Entry e = (Map.Entry)o;
1943 >            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1944  
1945              return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1946          }
# Line 1608 | Line 1960 | public class TreeMap<K,V>
1960       * Returns the first Entry in the TreeMap (according to the TreeMap's
1961       * key-sort function).  Returns null if the TreeMap is empty.
1962       */
1963 <    private Entry<K,V> getFirstEntry() {
1963 >    final Entry<K,V> getFirstEntry() {
1964          Entry<K,V> p = root;
1965          if (p != null)
1966              while (p.left != null)
# Line 1620 | Line 1972 | public class TreeMap<K,V>
1972       * Returns the last Entry in the TreeMap (according to the TreeMap's
1973       * key-sort function).  Returns null if the TreeMap is empty.
1974       */
1975 <    private Entry<K,V> getLastEntry() {
1975 >    final Entry<K,V> getLastEntry() {
1976          Entry<K,V> p = root;
1977          if (p != null)
1978              while (p.right != null)
# Line 1631 | Line 1983 | public class TreeMap<K,V>
1983      /**
1984       * Returns the successor of the specified Entry, or null if no such.
1985       */
1986 <    private Entry<K,V> successor(Entry<K,V> t) {
1986 >    static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
1987          if (t == null)
1988              return null;
1989          else if (t.right != null) {
# Line 1653 | Line 2005 | public class TreeMap<K,V>
2005      /**
2006       * Returns the predecessor of the specified Entry, or null if no such.
2007       */
2008 <    private Entry<K,V> predecessor(Entry<K,V> t) {
2008 >    static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
2009          if (t == null)
2010              return null;
2011          else if (t.left != null) {
# Line 1692 | Line 2044 | public class TreeMap<K,V>
2044  
2045      private static <K,V> void setColor(Entry<K,V> p, boolean c) {
2046          if (p != null)
2047 <            p.color = c;
2047 >            p.color = c;
2048      }
2049  
2050      private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
# Line 1703 | Line 2055 | public class TreeMap<K,V>
2055          return (p == null) ? null: p.right;
2056      }
2057  
2058 <    /** From CLR **/
2058 >    /** From CLR */
2059      private void rotateLeft(Entry<K,V> p) {
2060 <        Entry<K,V> r = p.right;
2061 <        p.right = r.left;
2062 <        if (r.left != null)
2063 <            r.left.parent = p;
2064 <        r.parent = p.parent;
2065 <        if (p.parent == null)
2066 <            root = r;
2067 <        else if (p.parent.left == p)
2068 <            p.parent.left = r;
2069 <        else
2070 <            p.parent.right = r;
2071 <        r.left = p;
2072 <        p.parent = r;
2060 >        if (p != null) {
2061 >            Entry<K,V> r = p.right;
2062 >            p.right = r.left;
2063 >            if (r.left != null)
2064 >                r.left.parent = p;
2065 >            r.parent = p.parent;
2066 >            if (p.parent == null)
2067 >                root = r;
2068 >            else if (p.parent.left == p)
2069 >                p.parent.left = r;
2070 >            else
2071 >                p.parent.right = r;
2072 >            r.left = p;
2073 >            p.parent = r;
2074 >        }
2075      }
2076  
2077 <    /** From CLR **/
2077 >    /** From CLR */
2078      private void rotateRight(Entry<K,V> p) {
2079 <        Entry<K,V> l = p.left;
2080 <        p.left = l.right;
2081 <        if (l.right != null) l.right.parent = p;
2082 <        l.parent = p.parent;
2083 <        if (p.parent == null)
2084 <            root = l;
2085 <        else if (p.parent.right == p)
2086 <            p.parent.right = l;
2087 <        else p.parent.left = l;
2088 <        l.right = p;
2089 <        p.parent = l;
2079 >        if (p != null) {
2080 >            Entry<K,V> l = p.left;
2081 >            p.left = l.right;
2082 >            if (l.right != null) l.right.parent = p;
2083 >            l.parent = p.parent;
2084 >            if (p.parent == null)
2085 >                root = l;
2086 >            else if (p.parent.right == p)
2087 >                p.parent.right = l;
2088 >            else p.parent.left = l;
2089 >            l.right = p;
2090 >            p.parent = l;
2091 >        }
2092      }
2093  
2094 <
1739 <    /** From CLR **/
2094 >    /** From CLR */
2095      private void fixAfterInsertion(Entry<K,V> x) {
2096          x.color = RED;
2097  
# Line 1755 | Line 2110 | public class TreeMap<K,V>
2110                      }
2111                      setColor(parentOf(x), BLACK);
2112                      setColor(parentOf(parentOf(x)), RED);
2113 <                    if (parentOf(parentOf(x)) != null)
1759 <                        rotateRight(parentOf(parentOf(x)));
2113 >                    rotateRight(parentOf(parentOf(x)));
2114                  }
2115              } else {
2116                  Entry<K,V> y = leftOf(parentOf(parentOf(x)));
# Line 1770 | Line 2124 | public class TreeMap<K,V>
2124                          x = parentOf(x);
2125                          rotateRight(x);
2126                      }
2127 <                    setColor(parentOf(x),  BLACK);
2127 >                    setColor(parentOf(x), BLACK);
2128                      setColor(parentOf(parentOf(x)), RED);
2129 <                    if (parentOf(parentOf(x)) != null)
1776 <                        rotateLeft(parentOf(parentOf(x)));
2129 >                    rotateLeft(parentOf(parentOf(x)));
2130                  }
2131              }
2132          }
# Line 1783 | Line 2136 | public class TreeMap<K,V>
2136      /**
2137       * Delete node p, and then rebalance the tree.
2138       */
1786
2139      private void deleteEntry(Entry<K,V> p) {
2140 <        decrementSize();
2140 >        modCount++;
2141 >        size--;
2142  
2143          // If strictly internal, copy successor's element to p and then make p
2144          // point to successor.
# Line 1831 | Line 2184 | public class TreeMap<K,V>
2184          }
2185      }
2186  
2187 <    /** From CLR **/
2187 >    /** From CLR */
2188      private void fixAfterDeletion(Entry<K,V> x) {
2189          while (x != root && colorOf(x) == BLACK) {
2190              if (x == leftOf(parentOf(x))) {
# Line 1846 | Line 2199 | public class TreeMap<K,V>
2199  
2200                  if (colorOf(leftOf(sib))  == BLACK &&
2201                      colorOf(rightOf(sib)) == BLACK) {
2202 <                    setColor(sib,  RED);
2202 >                    setColor(sib, RED);
2203                      x = parentOf(x);
2204                  } else {
2205                      if (colorOf(rightOf(sib)) == BLACK) {
# Line 1873 | Line 2226 | public class TreeMap<K,V>
2226  
2227                  if (colorOf(rightOf(sib)) == BLACK &&
2228                      colorOf(leftOf(sib)) == BLACK) {
2229 <                    setColor(sib,  RED);
2229 >                    setColor(sib, RED);
2230                      x = parentOf(x);
2231                  } else {
2232                      if (colorOf(leftOf(sib)) == BLACK) {
# Line 1924 | Line 2277 | public class TreeMap<K,V>
2277          }
2278      }
2279  
1927
1928
2280      /**
2281       * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2282       * deserialize it).
# Line 1941 | Line 2292 | public class TreeMap<K,V>
2292          buildFromSorted(size, null, s, null);
2293      }
2294  
2295 <    /** Intended to be called only from TreeSet.readObject **/
2295 >    /** Intended to be called only from TreeSet.readObject */
2296      void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2297          throws java.io.IOException, ClassNotFoundException {
2298          buildFromSorted(size, null, s, defaultVal);
2299      }
2300  
2301 <    /** Intended to be called only from TreeSet.addAll **/
2301 >    /** Intended to be called only from TreeSet.addAll */
2302      void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2303 <        try {
2304 <            buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2305 <        } catch (java.io.IOException cannotHappen) {
2306 <        } catch (ClassNotFoundException cannotHappen) {
2307 <        }
2303 >        try {
2304 >            buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2305 >        } catch (java.io.IOException cannotHappen) {
2306 >        } catch (ClassNotFoundException cannotHappen) {
2307 >        }
2308      }
2309  
2310  
# Line 1987 | Line 2338 | public class TreeMap<K,V>
2338       * @throws ClassNotFoundException propagated from readObject.
2339       *         This cannot occur if str is null.
2340       */
2341 <    private
2342 <    void buildFromSorted(int size, Iterator it,
2343 <                         java.io.ObjectInputStream str,
1993 <                         V defaultVal)
2341 >    private void buildFromSorted(int size, Iterator it,
2342 >                                 java.io.ObjectInputStream str,
2343 >                                 V defaultVal)
2344          throws  java.io.IOException, ClassNotFoundException {
2345          this.size = size;
2346 <        root =
2347 <            buildFromSorted(0, 0, size-1, computeRedLevel(size),
1998 <                            it, str, defaultVal);
2346 >        root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2347 >                               it, str, defaultVal);
2348      }
2349  
2350      /**
2351       * Recursive "helper method" that does the real work of the
2352 <     * of the previous method.  Identically named parameters have
2352 >     * previous method.  Identically named parameters have
2353       * identical definitions.  Additional parameters are documented below.
2354       * It is assumed that the comparator and size fields of the TreeMap are
2355       * already set prior to calling this method.  (It ignores both fields.)
# Line 2013 | Line 2362 | public class TreeMap<K,V>
2362       *        Must be equal to computeRedLevel for tree of this size.
2363       */
2364      private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2365 <                                             int redLevel,
2366 <                                             Iterator it,
2367 <                                             java.io.ObjectInputStream str,
2368 <                                             V defaultVal)
2365 >                                             int redLevel,
2366 >                                             Iterator it,
2367 >                                             java.io.ObjectInputStream str,
2368 >                                             V defaultVal)
2369          throws  java.io.IOException, ClassNotFoundException {
2370          /*
2371           * Strategy: The root is the middlemost element. To get to it, we
# Line 2032 | Line 2381 | public class TreeMap<K,V>
2381  
2382          if (hi < lo) return null;
2383  
2384 <        int mid = (lo + hi) / 2;
2384 >        int mid = (lo + hi) >>> 1;
2385  
2386          Entry<K,V> left  = null;
2387          if (lo < mid)
2388              left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2389 <                                   it, str, defaultVal);
2389 >                                   it, str, defaultVal);
2390  
2391          // extract key and/or value from iterator or stream
2392          K key;
# Line 2069 | Line 2418 | public class TreeMap<K,V>
2418  
2419          if (mid < hi) {
2420              Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2421 <                                               it, str, defaultVal);
2421 >                                               it, str, defaultVal);
2422              middle.right = right;
2423              right.parent = middle;
2424          }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines