ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/TreeMap.java (file contents):
Revision 1.21 by jsr166, Fri Jun 24 00:26:57 2005 UTC vs.
Revision 1.35 by jsr166, Tue May 2 19:42:46 2006 UTC

# Line 1 | Line 1
1   /*
2   * %W% %E%
3   *
4 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
4 > * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5   * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6   */
7  
8   package java.util;
9 import java.util.*; // for javadoc (till 6280605 is fixed)
9  
10   /**
11   * A Red-Black tree based {@link NavigableMap} implementation.
# Line 31 | Line 30 | import java.util.*; // for javadoc (till
30   * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
31   * just fails to obey the general contract of the <tt>Map</tt> interface.
32   *
33 < * <p><b>Note that this implementation is not synchronized.</b> If multiple
34 < * threads access a map concurrently, and at least one of the threads modifies
35 < * the map structurally, it <i>must</i> be synchronized externally.  (A
36 < * structural modification is any operation that adds or deletes one or more
37 < * mappings; merely changing the value associated with an existing key is not
38 < * a structural modification.)  This is typically accomplished by
39 < * synchronizing on some object that naturally encapsulates the map.  If no
40 < * such object exists, the map should be "wrapped" using the
41 < * <tt>Collections.synchronizedMap</tt> method.  This is best done at creation
42 < * time, to prevent accidental unsynchronized access to the map:
43 < * <pre>
44 < *     Map m = Collections.synchronizedMap(new TreeMap(...));
45 < * </pre>
33 > * <p><strong>Note that this implementation is not synchronized.</strong>
34 > * If multiple threads access a map concurrently, and at least one of the
35 > * threads modifies the map structurally, it <i>must</i> be synchronized
36 > * externally.  (A structural modification is any operation that adds or
37 > * deletes one or more mappings; merely changing the value associated
38 > * with an existing key is not a structural modification.)  This is
39 > * typically accomplished by synchronizing on some object that naturally
40 > * encapsulates the map.
41 > * If no such object exists, the map should be "wrapped" using the
42 > * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
43 > * method.  This is best done at creation time, to prevent accidental
44 > * unsynchronized access to the map: <pre>
45 > *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
46   *
47   * <p>The iterators returned by the <tt>iterator</tt> method of the collections
48   * returned by all of this class's "collection view methods" are
# Line 69 | Line 68 | import java.util.*; // for javadoc (till
68   * associated map using <tt>put</tt>.)
69   *
70   * <p>This class is a member of the
71 < * <a href="{@docRoot}/../guide/collections/index.html">
71 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
72   * Java Collections Framework</a>.
73   *
74   * @param <K> the type of keys maintained by this map
# Line 83 | Line 82 | import java.util.*; // for javadoc (till
82   * @see Comparable
83   * @see Comparator
84   * @see Collection
86 * @see Collections#synchronizedMap(Map)
85   * @since 1.2
86   */
87  
# Line 97 | Line 95 | public class TreeMap<K,V>
95       *
96       * @serial
97       */
98 <    private Comparator<? super K> comparator = null;
98 >    private final Comparator<? super K> comparator;
99  
100      private transient Entry<K,V> root = null;
101  
# Line 111 | Line 109 | public class TreeMap<K,V>
109       */
110      private transient int modCount = 0;
111  
114    private void incrementSize()   { modCount++; size++; }
115    private void decrementSize()   { modCount++; size--; }
116
112      /**
113       * Constructs a new, empty tree map, using the natural ordering of its
114       * keys.  All keys inserted into the map must implement the {@link
# Line 127 | Line 122 | public class TreeMap<K,V>
122       * <tt>ClassCastException</tt>.
123       */
124      public TreeMap() {
125 +        comparator = null;
126      }
127  
128      /**
# Line 162 | Line 158 | public class TreeMap<K,V>
158       * @throws NullPointerException if the specified map is null
159       */
160      public TreeMap(Map<? extends K, ? extends V> m) {
161 +        comparator = null;
162          putAll(m);
163      }
164  
# Line 226 | Line 223 | public class TreeMap<K,V>
223       * @since 1.2
224       */
225      public boolean containsValue(Object value) {
226 <        return (root==null ? false :
227 <                (value==null ? valueSearchNull(root)
228 <                             : valueSearchNonNull(root, value)));
229 <    }
233 <
234 <    private boolean valueSearchNull(Entry n) {
235 <        if (n.value == null)
236 <            return true;
237 <
238 <        // Check left and right subtrees for value
239 <        return (n.left  != null && valueSearchNull(n.left)) ||
240 <               (n.right != null && valueSearchNull(n.right));
241 <    }
242 <
243 <    private boolean valueSearchNonNull(Entry n, Object value) {
244 <        // Check this node for the value
245 <        if (value.equals(n.value))
246 <            return true;
247 <
248 <        // Check left and right subtrees for value
249 <        return (n.left  != null && valueSearchNonNull(n.left, value)) ||
250 <               (n.right != null && valueSearchNonNull(n.right, value));
226 >        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
227 >            if (valEquals(value, e.value))
228 >                return true;
229 >        return false;
230      }
231  
232      /**
233 <     * Returns the value to which this map maps the specified key, or
234 <     * <tt>null</tt> if the map contains no mapping for the key.  A return
235 <     * value of <tt>null</tt> does not <i>necessarily</i> indicate that the
236 <     * map contains no mapping for the key; it's also possible that the map
237 <     * explicitly maps the key to <tt>null</tt>.  The {@link #containsKey
238 <     * containsKey} operation may be used to distinguish these two cases.
233 >     * Returns the value to which the specified key is mapped,
234 >     * or {@code null} if this map contains no mapping for the key.
235 >     *
236 >     * <p>More formally, if this map contains a mapping from a key
237 >     * {@code k} to a value {@code v} such that {@code key} compares
238 >     * equal to {@code k} according to the map's ordering, then this
239 >     * method returns {@code v}; otherwise it returns {@code null}.
240 >     * (There can be at most one such mapping.)
241 >     *
242 >     * <p>A return value of {@code null} does not <i>necessarily</i>
243 >     * indicate that the map contains no mapping for the key; it's also
244 >     * possible that the map explicitly maps the key to {@code null}.
245 >     * The {@link #containsKey containsKey} operation may be used to
246 >     * distinguish these two cases.
247       *
261     * @param key key whose associated value is to be returned
262     * @return the value to which this map maps the specified key, or
263     *         <tt>null</tt> if the map contains no mapping for the key
248       * @throws ClassCastException if the specified key cannot be compared
249       *         with the keys currently in the map
250       * @throws NullPointerException if the specified key is null
# Line 332 | Line 316 | public class TreeMap<K,V>
316       *         and this map uses natural ordering, or its comparator
317       *         does not permit null keys
318       */
319 <    private Entry<K,V> getEntry(Object key) {
319 >    final Entry<K,V> getEntry(Object key) {
320          // Offload comparator-based version for sake of performance
321          if (comparator != null)
322              return getEntryUsingComparator(key);
323 +        if (key == null)
324 +            throw new NullPointerException();
325          Comparable<? super K> k = (Comparable<? super K>) key;
326          Entry<K,V> p = root;
327          while (p != null) {
# Line 356 | Line 342 | public class TreeMap<K,V>
342       * that are less dependent on comparator performance, but is
343       * worthwhile here.)
344       */
345 <    private Entry<K,V> getEntryUsingComparator(Object key) {
345 >    final Entry<K,V> getEntryUsingComparator(Object key) {
346          K k = (K) key;
347          Comparator<? super K> cpr = comparator;
348 <        Entry<K,V> p = root;
349 <        while (p != null) {
350 <            int cmp = cpr.compare(k, p.key);
351 <            if (cmp < 0)
352 <                p = p.left;
353 <            else if (cmp > 0)
354 <                p = p.right;
355 <            else
356 <                return p;
348 >        if (cpr != null) {
349 >            Entry<K,V> p = root;
350 >            while (p != null) {
351 >                int cmp = cpr.compare(k, p.key);
352 >                if (cmp < 0)
353 >                    p = p.left;
354 >                else if (cmp > 0)
355 >                    p = p.right;
356 >                else
357 >                    return p;
358 >            }
359          }
360          return null;
361      }
# Line 378 | Line 366 | public class TreeMap<K,V>
366       * key; if no such entry exists (i.e., the greatest key in the Tree is less
367       * than the specified key), returns <tt>null</tt>.
368       */
369 <    private Entry<K,V> getCeilingEntry(K key) {
369 >    final Entry<K,V> getCeilingEntry(K key) {
370          Entry<K,V> p = root;
371 <        if (p==null)
384 <            return null;
385 <
386 <        while (true) {
371 >        while (p != null) {
372              int cmp = compare(key, p.key);
373              if (cmp < 0) {
374                  if (p.left != null)
# Line 405 | Line 390 | public class TreeMap<K,V>
390              } else
391                  return p;
392          }
393 +        return null;
394      }
395  
396      /**
# Line 412 | Line 398 | public class TreeMap<K,V>
398       * exists, returns the entry for the greatest key less than the specified
399       * key; if no such entry exists, returns <tt>null</tt>.
400       */
401 <    private Entry<K,V> getFloorEntry(K key) {
401 >    final Entry<K,V> getFloorEntry(K key) {
402          Entry<K,V> p = root;
403 <        if (p==null)
418 <            return null;
419 <
420 <        while (true) {
403 >        while (p != null) {
404              int cmp = compare(key, p.key);
405              if (cmp > 0) {
406                  if (p.right != null)
# Line 440 | Line 423 | public class TreeMap<K,V>
423                  return p;
424  
425          }
426 +        return null;
427      }
428  
429      /**
# Line 448 | Line 432 | public class TreeMap<K,V>
432       * key greater than the specified key; if no such entry exists
433       * returns <tt>null</tt>.
434       */
435 <    private Entry<K,V> getHigherEntry(K key) {
435 >    final Entry<K,V> getHigherEntry(K key) {
436          Entry<K,V> p = root;
437 <        if (p==null)
454 <            return null;
455 <
456 <        while (true) {
437 >        while (p != null) {
438              int cmp = compare(key, p.key);
439              if (cmp < 0) {
440                  if (p.left != null)
# Line 474 | Line 455 | public class TreeMap<K,V>
455                  }
456              }
457          }
458 +        return null;
459      }
460  
461      /**
# Line 481 | Line 463 | public class TreeMap<K,V>
463       * no such entry exists (i.e., the least key in the Tree is greater than
464       * the specified key), returns <tt>null</tt>.
465       */
466 <    private Entry<K,V> getLowerEntry(K key) {
466 >    final Entry<K,V> getLowerEntry(K key) {
467          Entry<K,V> p = root;
468 <        if (p==null)
487 <            return null;
488 <
489 <        while (true) {
468 >        while (p != null) {
469              int cmp = compare(key, p.key);
470              if (cmp > 0) {
471                  if (p.right != null)
# Line 507 | Line 486 | public class TreeMap<K,V>
486                  }
487              }
488          }
489 <    }
511 <
512 <    /**
513 <     * Returns the key corresponding to the specified Entry.
514 <     * @throws NoSuchElementException if the Entry is null
515 <     */
516 <    private static <K> K key(Entry<K,?> e) {
517 <        if (e==null)
518 <            throw new NoSuchElementException();
519 <        return e.key;
489 >        return null;
490      }
491  
492      /**
# Line 539 | Line 509 | public class TreeMap<K,V>
509       */
510      public V put(K key, V value) {
511          Entry<K,V> t = root;
542
512          if (t == null) {
513 <            if (key == null) {
514 <                if (comparator == null)
515 <                    throw new NullPointerException();
516 <                comparator.compare(key, key);
517 <            }
549 <            incrementSize();
513 >            // TBD:
514 >            // 5045147: (coll) Adding null to an empty TreeSet should
515 >            // throw NullPointerException
516 >            //
517 >            // compare(key, key); // type check
518              root = new Entry<K,V>(key, value, null);
519 +            size = 1;
520 +            modCount++;
521              return null;
522          }
523 <
524 <        while (true) {
525 <            int cmp = compare(key, t.key);
526 <            if (cmp == 0) {
527 <                return t.setValue(value);
528 <            } else if (cmp < 0) {
529 <                if (t.left != null) {
523 >        int cmp;
524 >        Entry<K,V> parent;
525 >        // split comparator and comparable paths
526 >        Comparator<? super K> cpr = comparator;
527 >        if (cpr != null) {
528 >            do {
529 >                parent = t;
530 >                cmp = cpr.compare(key, t.key);
531 >                if (cmp < 0)
532                      t = t.left;
533 <                } else {
562 <                    incrementSize();
563 <                    t.left = new Entry<K,V>(key, value, t);
564 <                    fixAfterInsertion(t.left);
565 <                    return null;
566 <                }
567 <            } else { // cmp > 0
568 <                if (t.right != null) {
533 >                else if (cmp > 0)
534                      t = t.right;
535 <                } else {
536 <                    incrementSize();
537 <                    t.right = new Entry<K,V>(key, value, t);
573 <                    fixAfterInsertion(t.right);
574 <                    return null;
575 <                }
576 <            }
535 >                else
536 >                    return t.setValue(value);
537 >            } while (t != null);
538          }
539 +        else {
540 +            if (key == null)
541 +                throw new NullPointerException();
542 +            Comparable<? super K> k = (Comparable<? super K>) key;
543 +            do {
544 +                parent = t;
545 +                cmp = k.compareTo(t.key);
546 +                if (cmp < 0)
547 +                    t = t.left;
548 +                else if (cmp > 0)
549 +                    t = t.right;
550 +                else
551 +                    return t.setValue(value);
552 +            } while (t != null);
553 +        }
554 +        Entry<K,V> e = new Entry<K,V>(key, value, parent);
555 +        if (cmp < 0)
556 +            parent.left = e;
557 +        else
558 +            parent.right = e;
559 +        fixAfterInsertion(e);
560 +        size++;
561 +        modCount++;
562 +        return null;
563      }
564  
565      /**
# Line 630 | Line 615 | public class TreeMap<K,V>
615          clone.size = 0;
616          clone.modCount = 0;
617          clone.entrySet = null;
618 <        clone.descendingEntrySet = null;
619 <        clone.descendingKeySet = null;
618 >        clone.navigableKeySet = null;
619 >        clone.descendingMap = null;
620  
621          // Initialize clone with our mappings
622          try {
# Line 645 | Line 630 | public class TreeMap<K,V>
630  
631      // NavigableMap API methods
632  
633 +    /**
634 +     * @since 1.6
635 +     */
636      public Map.Entry<K,V> firstEntry() {
637 <        Entry<K,V> e = getFirstEntry();
650 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
637 >        return exportEntry(getFirstEntry());
638      }
639  
640 +    /**
641 +     * @since 1.6
642 +     */
643      public Map.Entry<K,V> lastEntry() {
644 <        Entry<K,V> e = getLastEntry();
655 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
644 >        return exportEntry(getLastEntry());
645      }
646  
647 +    /**
648 +     * @since 1.6
649 +     */
650      public Map.Entry<K,V> pollFirstEntry() {
651          Entry<K,V> p = getFirstEntry();
652 <        if (p == null)
653 <            return null;
654 <        Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
663 <        deleteEntry(p);
652 >        Map.Entry<K,V> result = exportEntry(p);
653 >        if (p != null)
654 >            deleteEntry(p);
655          return result;
656      }
657  
658 +    /**
659 +     * @since 1.6
660 +     */
661      public Map.Entry<K,V> pollLastEntry() {
662          Entry<K,V> p = getLastEntry();
663 <        if (p == null)
664 <            return null;
665 <        Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
672 <        deleteEntry(p);
663 >        Map.Entry<K,V> result = exportEntry(p);
664 >        if (p != null)
665 >            deleteEntry(p);
666          return result;
667      }
668  
# Line 678 | Line 671 | public class TreeMap<K,V>
671       * @throws NullPointerException if the specified key is null
672       *         and this map uses natural ordering, or its comparator
673       *         does not permit null keys
674 +     * @since 1.6
675       */
676      public Map.Entry<K,V> lowerEntry(K key) {
677 <        Entry<K,V> e =  getLowerEntry(key);
684 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
677 >        return exportEntry(getLowerEntry(key));
678      }
679  
680      /**
# Line 689 | Line 682 | public class TreeMap<K,V>
682       * @throws NullPointerException if the specified key is null
683       *         and this map uses natural ordering, or its comparator
684       *         does not permit null keys
685 +     * @since 1.6
686       */
687      public K lowerKey(K key) {
688 <        Entry<K,V> e =  getLowerEntry(key);
695 <        return (e == null)? null : e.key;
688 >        return keyOrNull(getLowerEntry(key));
689      }
690  
691      /**
# Line 700 | Line 693 | public class TreeMap<K,V>
693       * @throws NullPointerException if the specified key is null
694       *         and this map uses natural ordering, or its comparator
695       *         does not permit null keys
696 +     * @since 1.6
697       */
698      public Map.Entry<K,V> floorEntry(K key) {
699 <        Entry<K,V> e = getFloorEntry(key);
706 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
699 >        return exportEntry(getFloorEntry(key));
700      }
701  
702      /**
# Line 711 | Line 704 | public class TreeMap<K,V>
704       * @throws NullPointerException if the specified key is null
705       *         and this map uses natural ordering, or its comparator
706       *         does not permit null keys
707 +     * @since 1.6
708       */
709      public K floorKey(K key) {
710 <        Entry<K,V> e = getFloorEntry(key);
717 <        return (e == null)? null : e.key;
710 >        return keyOrNull(getFloorEntry(key));
711      }
712  
713      /**
# Line 722 | Line 715 | public class TreeMap<K,V>
715       * @throws NullPointerException if the specified key is null
716       *         and this map uses natural ordering, or its comparator
717       *         does not permit null keys
718 +     * @since 1.6
719       */
720      public Map.Entry<K,V> ceilingEntry(K key) {
721 <        Entry<K,V> e = getCeilingEntry(key);
728 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
721 >        return exportEntry(getCeilingEntry(key));
722      }
723  
724      /**
# Line 733 | Line 726 | public class TreeMap<K,V>
726       * @throws NullPointerException if the specified key is null
727       *         and this map uses natural ordering, or its comparator
728       *         does not permit null keys
729 +     * @since 1.6
730       */
731      public K ceilingKey(K key) {
732 <        Entry<K,V> e = getCeilingEntry(key);
739 <        return (e == null)? null : e.key;
732 >        return keyOrNull(getCeilingEntry(key));
733      }
734  
735      /**
# Line 744 | Line 737 | public class TreeMap<K,V>
737       * @throws NullPointerException if the specified key is null
738       *         and this map uses natural ordering, or its comparator
739       *         does not permit null keys
740 +     * @since 1.6
741       */
742      public Map.Entry<K,V> higherEntry(K key) {
743 <        Entry<K,V> e = getHigherEntry(key);
750 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
743 >        return exportEntry(getHigherEntry(key));
744      }
745  
746      /**
# Line 755 | Line 748 | public class TreeMap<K,V>
748       * @throws NullPointerException if the specified key is null
749       *         and this map uses natural ordering, or its comparator
750       *         does not permit null keys
751 +     * @since 1.6
752       */
753      public K higherKey(K key) {
754 <        Entry<K,V> e = getHigherEntry(key);
761 <        return (e == null)? null : e.key;
754 >        return keyOrNull(getHigherEntry(key));
755      }
756  
757      // Views
# Line 768 | Line 761 | public class TreeMap<K,V>
761       * the first time this view is requested.  Views are stateless, so
762       * there's no reason to create more than one.
763       */
764 <    private transient Set<Map.Entry<K,V>> entrySet = null;
765 <    private transient Set<Map.Entry<K,V>> descendingEntrySet = null;
766 <    private transient Set<K> descendingKeySet = null;
764 >    private transient EntrySet entrySet = null;
765 >    private transient KeySet<K> navigableKeySet = null;
766 >    private transient NavigableMap<K,V> descendingMap = null;
767  
768      /**
769       * Returns a {@link Set} view of the keys contained in this map.
# Line 787 | Line 780 | public class TreeMap<K,V>
780       * operations.
781       */
782      public Set<K> keySet() {
783 <        Set<K> ks = keySet;
791 <        return (ks != null) ? ks : (keySet = new KeySet());
783 >        return navigableKeySet();
784      }
785  
786 <    class KeySet extends AbstractSet<K> {
787 <        public Iterator<K> iterator() {
788 <            return new KeyIterator(getFirstEntry());
789 <        }
790 <
791 <        public int size() {
792 <            return TreeMap.this.size();
801 <        }
802 <
803 <        public boolean contains(Object o) {
804 <            return containsKey(o);
805 <        }
806 <
807 <        public boolean remove(Object o) {
808 <            int oldSize = size;
809 <            TreeMap.this.remove(o);
810 <            return size != oldSize;
811 <        }
786 >    /**
787 >     * @since 1.6
788 >     */
789 >    public NavigableSet<K> navigableKeySet() {
790 >        KeySet<K> nks = navigableKeySet;
791 >        return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
792 >    }
793  
794 <        public void clear() {
795 <            TreeMap.this.clear();
796 <        }
794 >    /**
795 >     * @since 1.6
796 >     */
797 >    public NavigableSet<K> descendingKeySet() {
798 >        return descendingMap().navigableKeySet();
799      }
800  
801      /**
# Line 835 | Line 818 | public class TreeMap<K,V>
818          return (vs != null) ? vs : (values = new Values());
819      }
820  
821 +    /**
822 +     * Returns a {@link Set} view of the mappings contained in this map.
823 +     * The set's iterator returns the entries in ascending key order.
824 +     * The set is backed by the map, so changes to the map are
825 +     * reflected in the set, and vice-versa.  If the map is modified
826 +     * while an iteration over the set is in progress (except through
827 +     * the iterator's own <tt>remove</tt> operation, or through the
828 +     * <tt>setValue</tt> operation on a map entry returned by the
829 +     * iterator) the results of the iteration are undefined.  The set
830 +     * supports element removal, which removes the corresponding
831 +     * mapping from the map, via the <tt>Iterator.remove</tt>,
832 +     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
833 +     * <tt>clear</tt> operations.  It does not support the
834 +     * <tt>add</tt> or <tt>addAll</tt> operations.
835 +     */
836 +    public Set<Map.Entry<K,V>> entrySet() {
837 +        EntrySet es = entrySet;
838 +        return (es != null) ? es : (entrySet = new EntrySet());
839 +    }
840 +
841 +    /**
842 +     * @since 1.6
843 +     */
844 +    public NavigableMap<K, V> descendingMap() {
845 +        NavigableMap<K, V> km = descendingMap;
846 +        return (km != null) ? km :
847 +            (descendingMap = new DescendingSubMap(this,
848 +                                                  true, null, true,
849 +                                                  true, null, true));
850 +    }
851 +
852 +    /**
853 +     * @throws ClassCastException       {@inheritDoc}
854 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
855 +     *         null and this map uses natural ordering, or its comparator
856 +     *         does not permit null keys
857 +     * @throws IllegalArgumentException {@inheritDoc}
858 +     * @since 1.6
859 +     */
860 +    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
861 +                                    K toKey,   boolean toInclusive) {
862 +        return new AscendingSubMap(this,
863 +                                   false, fromKey, fromInclusive,
864 +                                   false, toKey,   toInclusive);
865 +    }
866 +
867 +    /**
868 +     * @throws ClassCastException       {@inheritDoc}
869 +     * @throws NullPointerException if <tt>toKey</tt> is null
870 +     *         and this map uses natural ordering, or its comparator
871 +     *         does not permit null keys
872 +     * @throws IllegalArgumentException {@inheritDoc}
873 +     * @since 1.6
874 +     */
875 +    public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
876 +        return new AscendingSubMap(this,
877 +                                   true,  null,  true,
878 +                                   false, toKey, inclusive);
879 +    }
880 +
881 +    /**
882 +     * @throws ClassCastException       {@inheritDoc}
883 +     * @throws NullPointerException if <tt>fromKey</tt> is null
884 +     *         and this map uses natural ordering, or its comparator
885 +     *         does not permit null keys
886 +     * @throws IllegalArgumentException {@inheritDoc}
887 +     * @since 1.6
888 +     */
889 +    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
890 +        return new AscendingSubMap(this,
891 +                                   false, fromKey, inclusive,
892 +                                   true,  null,    true);
893 +    }
894 +
895 +    /**
896 +     * @throws ClassCastException       {@inheritDoc}
897 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
898 +     *         null and this map uses natural ordering, or its comparator
899 +     *         does not permit null keys
900 +     * @throws IllegalArgumentException {@inheritDoc}
901 +     */
902 +    public SortedMap<K,V> subMap(K fromKey, K toKey) {
903 +        return subMap(fromKey, true, toKey, false);
904 +    }
905 +
906 +    /**
907 +     * @throws ClassCastException       {@inheritDoc}
908 +     * @throws NullPointerException if <tt>toKey</tt> is null
909 +     *         and this map uses natural ordering, or its comparator
910 +     *         does not permit null keys
911 +     * @throws IllegalArgumentException {@inheritDoc}
912 +     */
913 +    public SortedMap<K,V> headMap(K toKey) {
914 +        return headMap(toKey, false);
915 +    }
916 +
917 +    /**
918 +     * @throws ClassCastException       {@inheritDoc}
919 +     * @throws NullPointerException if <tt>fromKey</tt> is null
920 +     *         and this map uses natural ordering, or its comparator
921 +     *         does not permit null keys
922 +     * @throws IllegalArgumentException {@inheritDoc}
923 +     */
924 +    public SortedMap<K,V> tailMap(K fromKey) {
925 +        return tailMap(fromKey, true);
926 +    }
927 +
928 +    // View class support
929 +
930      class Values extends AbstractCollection<V> {
931          public Iterator<V> iterator() {
932              return new ValueIterator(getFirstEntry());
# Line 845 | Line 937 | public class TreeMap<K,V>
937          }
938  
939          public boolean contains(Object o) {
940 <            for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
849 <                if (valEquals(e.getValue(), o))
850 <                    return true;
851 <            return false;
940 >            return TreeMap.this.containsValue(o);
941          }
942  
943          public boolean remove(Object o) {
# Line 866 | Line 955 | public class TreeMap<K,V>
955          }
956      }
957  
869    /**
870     * Returns a {@link Set} view of the mappings contained in this map.
871     * The set's iterator returns the entries in ascending key order.
872     * The set is backed by the map, so changes to the map are
873     * reflected in the set, and vice-versa.  If the map is modified
874     * while an iteration over the set is in progress (except through
875     * the iterator's own <tt>remove</tt> operation, or through the
876     * <tt>setValue</tt> operation on a map entry returned by the
877     * iterator) the results of the iteration are undefined.  The set
878     * supports element removal, which removes the corresponding
879     * mapping from the map, via the <tt>Iterator.remove</tt>,
880     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
881     * <tt>clear</tt> operations.  It does not support the
882     * <tt>add</tt> or <tt>addAll</tt> operations.
883     */
884    public Set<Map.Entry<K,V>> entrySet() {
885        Set<Map.Entry<K,V>> es = entrySet;
886        return (es != null) ? es : (entrySet = new EntrySet());
887    }
888
958      class EntrySet extends AbstractSet<Map.Entry<K,V>> {
959          public Iterator<Map.Entry<K,V>> iterator() {
960              return new EntryIterator(getFirstEntry());
# Line 922 | Line 991 | public class TreeMap<K,V>
991          }
992      }
993  
994 <    public Set<Map.Entry<K,V>> descendingEntrySet() {
995 <        Set<Map.Entry<K,V>> es = descendingEntrySet;
996 <        return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
997 <    }
994 >    /*
995 >     * Unlike Values and EntrySet, the KeySet class is static,
996 >     * delegating to a NavigableMap to allow use by SubMaps, which
997 >     * outweighs the ugliness of needing type-tests for the following
998 >     * Iterator methods that are defined appropriately in main versus
999 >     * submap classes.
1000 >     */
1001  
1002 <    class DescendingEntrySet extends EntrySet {
1003 <        public Iterator<Map.Entry<K,V>> iterator() {
932 <            return new DescendingEntryIterator(getLastEntry());
933 <        }
1002 >    Iterator<K> keyIterator() {
1003 >        return new KeyIterator(getFirstEntry());
1004      }
1005  
1006 <    public Set<K> descendingKeySet() {
1007 <        Set<K> ks = descendingKeySet;
938 <        return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1006 >    Iterator<K> descendingKeyIterator() {
1007 >        return new DescendingKeyIterator(getFirstEntry());
1008      }
1009  
1010 <    class DescendingKeySet extends KeySet {
1011 <        public Iterator<K> iterator() {
1012 <            return new DescendingKeyIterator(getLastEntry());
1010 >    static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1011 >        private final NavigableMap<E, Object> m;
1012 >        KeySet(NavigableMap<E,Object> map) { m = map; }
1013 >
1014 >        public Iterator<E> iterator() {
1015 >            if (m instanceof TreeMap)
1016 >                return ((TreeMap<E,Object>)m).keyIterator();
1017 >            else
1018 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
1019 >        }
1020 >
1021 >        public Iterator<E> descendingIterator() {
1022 >            if (m instanceof TreeMap)
1023 >                return ((TreeMap<E,Object>)m).descendingKeyIterator();
1024 >            else
1025 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
1026 >        }
1027 >
1028 >        public int size() { return m.size(); }
1029 >        public boolean isEmpty() { return m.isEmpty(); }
1030 >        public boolean contains(Object o) { return m.containsKey(o); }
1031 >        public void clear() { m.clear(); }
1032 >        public E lower(E e) { return m.lowerKey(e); }
1033 >        public E floor(E e) { return m.floorKey(e); }
1034 >        public E ceiling(E e) { return m.ceilingKey(e); }
1035 >        public E higher(E e) { return m.higherKey(e); }
1036 >        public E first() { return m.firstKey(); }
1037 >        public E last() { return m.lastKey(); }
1038 >        public Comparator<? super E> comparator() { return m.comparator(); }
1039 >        public E pollFirst() {
1040 >            Map.Entry<E,Object> e = m.pollFirstEntry();
1041 >            return e == null? null : e.getKey();
1042 >        }
1043 >        public E pollLast() {
1044 >            Map.Entry<E,Object> e = m.pollLastEntry();
1045 >            return e == null? null : e.getKey();
1046 >        }
1047 >        public boolean remove(Object o) {
1048 >            int oldSize = size();
1049 >            m.remove(o);
1050 >            return size() != oldSize;
1051 >        }
1052 >        public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1053 >                                      E toElement, boolean toInclusive) {
1054 >            return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
1055 >                                           toElement,   toInclusive));
1056 >        }
1057 >        public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1058 >            return new TreeSet<E>(m.headMap(toElement, inclusive));
1059 >        }
1060 >        public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1061 >            return new TreeSet<E>(m.tailMap(fromElement, inclusive));
1062 >        }
1063 >        public SortedSet<E> subSet(E fromElement, E toElement) {
1064 >            return subSet(fromElement, true, toElement, false);
1065 >        }
1066 >        public SortedSet<E> headSet(E toElement) {
1067 >            return headSet(toElement, false);
1068 >        }
1069 >        public SortedSet<E> tailSet(E fromElement) {
1070 >            return tailSet(fromElement, true);
1071 >        }
1072 >        public NavigableSet<E> descendingSet() {
1073 >            return new TreeSet(m.descendingMap());
1074          }
1075      }
1076  
1077      /**
1078 <     * @throws ClassCastException       {@inheritDoc}
949 <     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
950 <     *         null and this map uses natural ordering, or its comparator
951 <     *         does not permit null keys
952 <     * @throws IllegalArgumentException {@inheritDoc}
1078 >     * Base class for TreeMap Iterators
1079       */
1080 <    public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1081 <        return new SubMap(fromKey, toKey);
1080 >    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1081 >        Entry<K,V> next;
1082 >        Entry<K,V> lastReturned;
1083 >        int expectedModCount;
1084 >
1085 >        PrivateEntryIterator(Entry<K,V> first) {
1086 >            expectedModCount = modCount;
1087 >            lastReturned = null;
1088 >            next = first;
1089 >        }
1090 >
1091 >        public final boolean hasNext() {
1092 >            return next != null;
1093 >        }
1094 >
1095 >        final Entry<K,V> nextEntry() {
1096 >            Entry<K,V> e = lastReturned = next;
1097 >            if (e == null)
1098 >                throw new NoSuchElementException();
1099 >            if (modCount != expectedModCount)
1100 >                throw new ConcurrentModificationException();
1101 >            next = successor(e);
1102 >            return e;
1103 >        }
1104 >
1105 >        final Entry<K,V> prevEntry() {
1106 >            Entry<K,V> e = lastReturned= next;
1107 >            if (e == null)
1108 >                throw new NoSuchElementException();
1109 >            if (modCount != expectedModCount)
1110 >                throw new ConcurrentModificationException();
1111 >            next = predecessor(e);
1112 >            return e;
1113 >        }
1114 >
1115 >        public void remove() {
1116 >            if (lastReturned == null)
1117 >                throw new IllegalStateException();
1118 >            if (modCount != expectedModCount)
1119 >                throw new ConcurrentModificationException();
1120 >            if (lastReturned.left != null && lastReturned.right != null)
1121 >                next = lastReturned;
1122 >            deleteEntry(lastReturned);
1123 >            expectedModCount++;
1124 >            lastReturned = null;
1125 >        }
1126      }
1127  
1128 +    final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1129 +        EntryIterator(Entry<K,V> first) {
1130 +            super(first);
1131 +        }
1132 +        public Map.Entry<K,V> next() {
1133 +            return nextEntry();
1134 +        }
1135 +    }
1136 +
1137 +    final class ValueIterator extends PrivateEntryIterator<V> {
1138 +        ValueIterator(Entry<K,V> first) {
1139 +            super(first);
1140 +        }
1141 +        public V next() {
1142 +            return nextEntry().value;
1143 +        }
1144 +    }
1145 +
1146 +    final class KeyIterator extends PrivateEntryIterator<K> {
1147 +        KeyIterator(Entry<K,V> first) {
1148 +            super(first);
1149 +        }
1150 +        public K next() {
1151 +            return nextEntry().key;
1152 +        }
1153 +    }
1154 +
1155 +    final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1156 +        DescendingKeyIterator(Entry<K,V> first) {
1157 +            super(first);
1158 +        }
1159 +        public K next() {
1160 +            return prevEntry().key;
1161 +        }
1162 +    }
1163 +
1164 +    // Little utilities
1165 +
1166      /**
1167 <     * @throws ClassCastException       {@inheritDoc}
960 <     * @throws NullPointerException if <tt>toKey</tt> is null
961 <     *         and this map uses natural ordering, or its comparator
962 <     *         does not permit null keys
963 <     * @throws IllegalArgumentException {@inheritDoc}
1167 >     * Compares two keys using the correct comparison method for this TreeMap.
1168       */
1169 <    public NavigableMap<K,V> navigableHeadMap(K toKey) {
1170 <        return new SubMap(toKey, true);
1169 >    final int compare(Object k1, Object k2) {
1170 >        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1171 >            : comparator.compare((K)k1, (K)k2);
1172      }
1173  
1174      /**
1175 <     * @throws ClassCastException       {@inheritDoc}
1176 <     * @throws NullPointerException if <tt>fromKey</tt> is null
972 <     *         and this map uses natural ordering, or its comparator
973 <     *         does not permit null keys
974 <     * @throws IllegalArgumentException {@inheritDoc}
1175 >     * Test two values for equality.  Differs from o1.equals(o2) only in
1176 >     * that it copes with <tt>null</tt> o1 properly.
1177       */
1178 <    public NavigableMap<K,V> navigableTailMap(K fromKey) {
1179 <        return new SubMap(fromKey, false);
1178 >    final static boolean valEquals(Object o1, Object o2) {
1179 >        return (o1==null ? o2==null : o1.equals(o2));
1180      }
1181  
1182      /**
1183 <     * Equivalent to {@link #navigableSubMap} but with a return type
982 <     * conforming to the <tt>SortedMap</tt> interface.
983 <     *
984 <     * <p>{@inheritDoc}
985 <     *
986 <     * @throws ClassCastException       {@inheritDoc}
987 <     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
988 <     *         null and this map uses natural ordering, or its comparator
989 <     *         does not permit null keys
990 <     * @throws IllegalArgumentException {@inheritDoc}
1183 >     * Return SimpleImmutableEntry for entry, or null if null
1184       */
1185 <    public SortedMap<K,V> subMap(K fromKey, K toKey) {
1186 <        return new SubMap(fromKey, toKey);
1185 >    static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
1186 >        return e == null? null :
1187 >            new AbstractMap.SimpleImmutableEntry<K,V>(e);
1188      }
1189  
1190      /**
1191 <     * Equivalent to {@link #navigableHeadMap} but with a return type
998 <     * conforming to the <tt>SortedMap</tt> interface.
999 <     *
1000 <     * <p>{@inheritDoc}
1001 <     *
1002 <     * @throws ClassCastException       {@inheritDoc}
1003 <     * @throws NullPointerException if <tt>toKey</tt> is null
1004 <     *         and this map uses natural ordering, or its comparator
1005 <     *         does not permit null keys
1006 <     * @throws IllegalArgumentException {@inheritDoc}
1191 >     * Return key for entry, or null if null
1192       */
1193 <    public SortedMap<K,V> headMap(K toKey) {
1194 <        return new SubMap(toKey, true);
1193 >    static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
1194 >        return e == null? null : e.key;
1195      }
1196  
1197      /**
1198 <     * Equivalent to {@link #navigableTailMap} but with a return type
1199 <     * conforming to the <tt>SortedMap</tt> interface.
1015 <     *
1016 <     * <p>{@inheritDoc}
1017 <     *
1018 <     * @throws ClassCastException       {@inheritDoc}
1019 <     * @throws NullPointerException if <tt>fromKey</tt> is null
1020 <     *         and this map uses natural ordering, or its comparator
1021 <     *         does not permit null keys
1022 <     * @throws IllegalArgumentException {@inheritDoc}
1198 >     * Returns the key corresponding to the specified Entry.
1199 >     * @throws NoSuchElementException if the Entry is null
1200       */
1201 <    public SortedMap<K,V> tailMap(K fromKey) {
1202 <        return new SubMap(fromKey, false);
1201 >    static <K> K key(Entry<K,?> e) {
1202 >        if (e==null)
1203 >            throw new NoSuchElementException();
1204 >        return e.key;
1205      }
1206  
1028    private class SubMap
1029        extends AbstractMap<K,V>
1030        implements NavigableMap<K,V>, java.io.Serializable {
1031        private static final long serialVersionUID = -6520786458950516097L;
1207  
1208 <        /**
1209 <         * fromKey is significant only if fromStart is false.  Similarly,
1210 <         * toKey is significant only if toStart is false.
1208 >    // SubMaps
1209 >
1210 >    static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>
1211 >        implements NavigableMap<K,V>, java.io.Serializable {
1212 >        /*
1213 >         * The backing map.
1214           */
1215 <        private boolean fromStart = false, toEnd = false;
1038 <        private K fromKey, toKey;
1215 >        final TreeMap<K,V> m;
1216  
1217 <        SubMap(K fromKey, K toKey) {
1218 <            if (compare(fromKey, toKey) > 0)
1219 <                throw new IllegalArgumentException("fromKey > toKey");
1220 <            this.fromKey = fromKey;
1221 <            this.toKey = toKey;
1222 <        }
1217 >        /*
1218 >         * Endpoints are represented as triples (fromStart, lo,
1219 >         * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1220 >         * true, then the low (absolute) bound is the start of the
1221 >         * backing map, and the other values are ignored. Otherwise,
1222 >         * if loInclusive is true, lo is the inclusive bound, else lo
1223 >         * is the exclusive bound. Similarly for the upper bound.
1224 >         */
1225  
1226 <        SubMap(K key, boolean headMap) {
1227 <            compare(key, key); // Type-check key
1228 <
1229 <            if (headMap) {
1230 <                fromStart = true;
1231 <                toKey = key;
1226 >        final K lo, hi;
1227 >        final boolean fromStart, toEnd;
1228 >        final boolean loInclusive, hiInclusive;
1229 >
1230 >        NavigableSubMap(TreeMap<K,V> m,
1231 >                        boolean fromStart, K lo, boolean loInclusive,
1232 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1233 >            if (!fromStart && !toEnd) {
1234 >                if (m.compare(lo, hi) > 0)
1235 >                    throw new IllegalArgumentException("fromKey > toKey");
1236              } else {
1237 <                toEnd = true;
1238 <                fromKey = key;
1237 >                if (!fromStart) // type check
1238 >                    m.compare(lo, lo);
1239 >                if (!toEnd)
1240 >                    m.compare(hi, hi);
1241              }
1057        }
1242  
1243 <        SubMap(boolean fromStart, K fromKey, boolean toEnd, K toKey) {
1243 >            this.m = m;
1244              this.fromStart = fromStart;
1245 <            this.fromKey= fromKey;
1245 >            this.lo = lo;
1246 >            this.loInclusive = loInclusive;
1247              this.toEnd = toEnd;
1248 <            this.toKey = toKey;
1248 >            this.hi = hi;
1249 >            this.hiInclusive = hiInclusive;
1250 >        }
1251 >
1252 >        // internal utilities
1253 >
1254 >        final boolean tooLow(Object key) {
1255 >            if (!fromStart) {
1256 >                int c = m.compare(key, lo);
1257 >                if (c < 0 || (c == 0 && !loInclusive))
1258 >                    return true;
1259 >            }
1260 >            return false;
1261 >        }
1262 >
1263 >        final boolean tooHigh(Object key) {
1264 >            if (!toEnd) {
1265 >                int c = m.compare(key, hi);
1266 >                if (c > 0 || (c == 0 && !hiInclusive))
1267 >                    return true;
1268 >            }
1269 >            return false;
1270 >        }
1271 >
1272 >        final boolean inRange(Object key) {
1273 >            return !tooLow(key) && !tooHigh(key);
1274 >        }
1275 >
1276 >        final boolean inClosedRange(Object key) {
1277 >            return (fromStart || m.compare(key, lo) >= 0)
1278 >                && (toEnd || m.compare(hi, key) >= 0);
1279 >        }
1280 >
1281 >        final boolean inRange(Object key, boolean inclusive) {
1282 >            return inclusive ? inRange(key) : inClosedRange(key);
1283 >        }
1284 >
1285 >        /*
1286 >         * Absolute versions of relation operations.
1287 >         * Subclasses map to these using like-named "sub"
1288 >         * versions that invert senses for descending maps
1289 >         */
1290 >
1291 >        final TreeMap.Entry<K,V> absLowest() {
1292 >            TreeMap.Entry<K,V> e =
1293 >                (fromStart ?  m.getFirstEntry() :
1294 >                 (loInclusive ? m.getCeilingEntry(lo) :
1295 >                                m.getHigherEntry(lo)));
1296 >            return (e == null || tooHigh(e.key)) ? null : e;
1297 >        }
1298 >
1299 >        final TreeMap.Entry<K,V> absHighest() {
1300 >            TreeMap.Entry<K,V> e =
1301 >                (toEnd ?  m.getLastEntry() :
1302 >                 (hiInclusive ?  m.getFloorEntry(hi) :
1303 >                                 m.getLowerEntry(hi)));
1304 >            return (e == null || tooLow(e.key)) ? null : e;
1305 >        }
1306 >
1307 >        final TreeMap.Entry<K,V> absCeiling(K key) {
1308 >            if (tooLow(key))
1309 >                return absLowest();
1310 >            TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1311 >            return (e == null || tooHigh(e.key)) ? null : e;
1312 >        }
1313 >
1314 >        final TreeMap.Entry<K,V> absHigher(K key) {
1315 >            if (tooLow(key))
1316 >                return absLowest();
1317 >            TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1318 >            return (e == null || tooHigh(e.key)) ? null : e;
1319 >        }
1320 >
1321 >        final TreeMap.Entry<K,V> absFloor(K key) {
1322 >            if (tooHigh(key))
1323 >                return absHighest();
1324 >            TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1325 >            return (e == null || tooLow(e.key)) ? null : e;
1326 >        }
1327 >
1328 >        final TreeMap.Entry<K,V> absLower(K key) {
1329 >            if (tooHigh(key))
1330 >                return absHighest();
1331 >            TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1332 >            return (e == null || tooLow(e.key)) ? null : e;
1333 >        }
1334 >
1335 >        /** Returns the absolute high fence for ascending traversal */
1336 >        final TreeMap.Entry<K,V> absHighFence() {
1337 >            return (toEnd ? null : (hiInclusive ?
1338 >                                    m.getHigherEntry(hi) :
1339 >                                    m.getCeilingEntry(hi)));
1340 >        }
1341 >
1342 >        /** Return the absolute low fence for descending traversal  */
1343 >        final TreeMap.Entry<K,V> absLowFence() {
1344 >            return (fromStart ? null : (loInclusive ?
1345 >                                        m.getLowerEntry(lo) :
1346 >                                        m.getFloorEntry(lo)));
1347          }
1348  
1349 +        // Abstract methods defined in ascending vs descending classes
1350 +        // These relay to the appropriate  absolute versions
1351 +
1352 +        abstract TreeMap.Entry<K,V> subLowest();
1353 +        abstract TreeMap.Entry<K,V> subHighest();
1354 +        abstract TreeMap.Entry<K,V> subCeiling(K key);
1355 +        abstract TreeMap.Entry<K,V> subHigher(K key);
1356 +        abstract TreeMap.Entry<K,V> subFloor(K key);
1357 +        abstract TreeMap.Entry<K,V> subLower(K key);
1358 +
1359 +        /** Returns ascending iterator from the perspective of this submap */
1360 +        abstract Iterator<K> keyIterator();
1361 +
1362 +        /** Returns descending iterator from the perspective of this submap */
1363 +        abstract Iterator<K> descendingKeyIterator();
1364 +
1365 +        // public methods
1366 +
1367          public boolean isEmpty() {
1368 <            return entrySet().isEmpty();
1368 >            return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1369          }
1370  
1371 <        public boolean containsKey(Object key) {
1372 <            return inRange(key) && TreeMap.this.containsKey(key);
1371 >        public int size() {
1372 >            return (fromStart && toEnd) ? m.size() : entrySet().size();
1373          }
1374  
1375 <        public V get(Object key) {
1376 <            if (!inRange(key))
1076 <                return null;
1077 <            return TreeMap.this.get(key);
1375 >        public final boolean containsKey(Object key) {
1376 >            return inRange(key) && m.containsKey(key);
1377          }
1378  
1379 <        public V put(K key, V value) {
1379 >        public final V put(K key, V value) {
1380              if (!inRange(key))
1381                  throw new IllegalArgumentException("key out of range");
1382 <            return TreeMap.this.put(key, value);
1382 >            return m.put(key, value);
1383          }
1384  
1385 <        public V remove(Object key) {
1386 <            if (!inRange(key))
1088 <                return null;
1089 <            return TreeMap.this.remove(key);
1385 >        public final V get(Object key) {
1386 >            return !inRange(key)? null :  m.get(key);
1387          }
1388  
1389 <        public Comparator<? super K> comparator() {
1390 <            return comparator;
1389 >        public final V remove(Object key) {
1390 >            return !inRange(key)? null  : m.remove(key);
1391          }
1392  
1393 <        public K firstKey() {
1394 <            TreeMap.Entry<K,V> e = fromStart ? getFirstEntry() : getCeilingEntry(fromKey);
1098 <            K first = key(e);
1099 <            if (!toEnd && compare(first, toKey) >= 0)
1100 <                throw new NoSuchElementException();
1101 <            return first;
1393 >        public final Map.Entry<K,V> ceilingEntry(K key) {
1394 >            return exportEntry(subCeiling(key));
1395          }
1396  
1397 <        public K lastKey() {
1398 <            TreeMap.Entry<K,V> e = toEnd ? getLastEntry() : getLowerEntry(toKey);
1106 <            K last = key(e);
1107 <            if (!fromStart && compare(last, fromKey) < 0)
1108 <                throw new NoSuchElementException();
1109 <            return last;
1397 >        public final K ceilingKey(K key) {
1398 >            return keyOrNull(subCeiling(key));
1399          }
1400  
1401 <        public Map.Entry<K,V> firstEntry() {
1402 <            TreeMap.Entry<K,V> e = fromStart ?
1114 <                getFirstEntry() : getCeilingEntry(fromKey);
1115 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1116 <                return null;
1117 <            return e;
1401 >        public final Map.Entry<K,V> higherEntry(K key) {
1402 >            return exportEntry(subHigher(key));
1403          }
1404  
1405 <        public Map.Entry<K,V> lastEntry() {
1406 <            TreeMap.Entry<K,V> e = toEnd ?
1122 <                getLastEntry() : getLowerEntry(toKey);
1123 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1124 <                return null;
1125 <            return e;
1405 >        public final K higherKey(K key) {
1406 >            return keyOrNull(subHigher(key));
1407          }
1408  
1409 <        public Map.Entry<K,V> pollFirstEntry() {
1410 <            TreeMap.Entry<K,V> e = fromStart ?
1130 <                getFirstEntry() : getCeilingEntry(fromKey);
1131 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1132 <                return null;
1133 <            Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(e);
1134 <            deleteEntry(e);
1135 <            return result;
1409 >        public final Map.Entry<K,V> floorEntry(K key) {
1410 >            return exportEntry(subFloor(key));
1411          }
1412  
1413 <        public Map.Entry<K,V> pollLastEntry() {
1414 <            TreeMap.Entry<K,V> e = toEnd ?
1140 <                getLastEntry() : getLowerEntry(toKey);
1141 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1142 <                return null;
1143 <            Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(e);
1144 <            deleteEntry(e);
1145 <            return result;
1413 >        public final K floorKey(K key) {
1414 >            return keyOrNull(subFloor(key));
1415          }
1416  
1417 <        private TreeMap.Entry<K,V> subceiling(K key) {
1418 <            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1150 <                getCeilingEntry(fromKey) : getCeilingEntry(key);
1151 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1152 <                return null;
1153 <            return e;
1417 >        public final Map.Entry<K,V> lowerEntry(K key) {
1418 >            return exportEntry(subLower(key));
1419          }
1420  
1421 <        public Map.Entry<K,V> ceilingEntry(K key) {
1422 <            TreeMap.Entry<K,V> e = subceiling(key);
1158 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1421 >        public final K lowerKey(K key) {
1422 >            return keyOrNull(subLower(key));
1423          }
1424  
1425 <        public K ceilingKey(K key) {
1426 <            TreeMap.Entry<K,V> e = subceiling(key);
1163 <            return e == null? null : e.key;
1425 >        public final K firstKey() {
1426 >            return key(subLowest());
1427          }
1428  
1429 <
1430 <        private TreeMap.Entry<K,V> subhigher(K key) {
1168 <            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1169 <                getCeilingEntry(fromKey) : getHigherEntry(key);
1170 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1171 <                return null;
1172 <            return e;
1429 >        public final K lastKey() {
1430 >            return key(subHighest());
1431          }
1432  
1433 <        public Map.Entry<K,V> higherEntry(K key) {
1434 <            TreeMap.Entry<K,V> e = subhigher(key);
1177 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1433 >        public final Map.Entry<K,V> firstEntry() {
1434 >            return exportEntry(subLowest());
1435          }
1436  
1437 <        public K higherKey(K key) {
1438 <            TreeMap.Entry<K,V> e = subhigher(key);
1182 <            return e == null? null : e.key;
1437 >        public final Map.Entry<K,V> lastEntry() {
1438 >            return exportEntry(subHighest());
1439          }
1440  
1441 <        private TreeMap.Entry<K,V> subfloor(K key) {
1442 <            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1443 <                getLowerEntry(toKey) : getFloorEntry(key);
1444 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1445 <                return null;
1446 <            return e;
1441 >        public final Map.Entry<K,V> pollFirstEntry() {
1442 >            TreeMap.Entry<K,V> e = subLowest();
1443 >            Map.Entry<K,V> result = exportEntry(e);
1444 >            if (e != null)
1445 >                m.deleteEntry(e);
1446 >            return result;
1447          }
1448  
1449 <        public Map.Entry<K,V> floorEntry(K key) {
1450 <            TreeMap.Entry<K,V> e = subfloor(key);
1451 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1449 >        public final Map.Entry<K,V> pollLastEntry() {
1450 >            TreeMap.Entry<K,V> e = subHighest();
1451 >            Map.Entry<K,V> result = exportEntry(e);
1452 >            if (e != null)
1453 >                m.deleteEntry(e);
1454 >            return result;
1455          }
1456  
1457 <        public K floorKey(K key) {
1458 <            TreeMap.Entry<K,V> e = subfloor(key);
1459 <            return e == null? null : e.key;
1457 >        // Views
1458 >        transient NavigableMap<K,V> descendingMapView = null;
1459 >        transient EntrySetView entrySetView = null;
1460 >        transient KeySet<K> navigableKeySetView = null;
1461 >
1462 >        public final NavigableSet<K> navigableKeySet() {
1463 >            KeySet<K> nksv = navigableKeySetView;
1464 >            return (nksv != null) ? nksv :
1465 >                (navigableKeySetView = new TreeMap.KeySet(this));
1466          }
1467  
1468 <        private TreeMap.Entry<K,V> sublower(K key) {
1469 <            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1205 <                getLowerEntry(toKey) :  getLowerEntry(key);
1206 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1207 <                return null;
1208 <            return e;
1468 >        public final Set<K> keySet() {
1469 >            return navigableKeySet();
1470          }
1471  
1472 <        public Map.Entry<K,V> lowerEntry(K key) {
1473 <            TreeMap.Entry<K,V> e = sublower(key);
1213 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1472 >        public NavigableSet<K> descendingKeySet() {
1473 >            return descendingMap().navigableKeySet();
1474          }
1475  
1476 <        public K lowerKey(K key) {
1477 <            TreeMap.Entry<K,V> e = sublower(key);
1218 <            return e == null? null : e.key;
1476 >        public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1477 >            return subMap(fromKey, true, toKey, false);
1478          }
1479  
1480 <        private transient Set<Map.Entry<K,V>> entrySet = null;
1480 >        public final SortedMap<K,V> headMap(K toKey) {
1481 >            return headMap(toKey, false);
1482 >        }
1483  
1484 <        public Set<Map.Entry<K,V>> entrySet() {
1485 <            Set<Map.Entry<K,V>> es = entrySet;
1225 <            return (es != null)? es : (entrySet = new EntrySetView());
1484 >        public final SortedMap<K,V> tailMap(K fromKey) {
1485 >            return tailMap(fromKey, true);
1486          }
1487  
1488 <        private class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1488 >        // View classes
1489 >
1490 >        abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1491              private transient int size = -1, sizeModCount;
1492  
1493              public int size() {
1494 <                if (size == -1 || sizeModCount != TreeMap.this.modCount) {
1495 <                    size = 0;  sizeModCount = TreeMap.this.modCount;
1494 >                if (fromStart && toEnd)
1495 >                    return m.size();
1496 >                if (size == -1 || sizeModCount != m.modCount) {
1497 >                    sizeModCount = m.modCount;
1498 >                    size = 0;
1499                      Iterator i = iterator();
1500                      while (i.hasNext()) {
1501                          size++;
# Line 1241 | Line 1506 | public class TreeMap<K,V>
1506              }
1507  
1508              public boolean isEmpty() {
1509 <                return !iterator().hasNext();
1509 >                TreeMap.Entry<K,V> n = absLowest();
1510 >                return n == null || tooHigh(n.key);
1511              }
1512  
1513              public boolean contains(Object o) {
# Line 1251 | Line 1517 | public class TreeMap<K,V>
1517                  K key = entry.getKey();
1518                  if (!inRange(key))
1519                      return false;
1520 <                TreeMap.Entry node = getEntry(key);
1520 >                TreeMap.Entry node = m.getEntry(key);
1521                  return node != null &&
1522 <                       valEquals(node.getValue(), entry.getValue());
1522 >                    valEquals(node.getValue(), entry.getValue());
1523              }
1524  
1525              public boolean remove(Object o) {
# Line 1263 | Line 1529 | public class TreeMap<K,V>
1529                  K key = entry.getKey();
1530                  if (!inRange(key))
1531                      return false;
1532 <                TreeMap.Entry<K,V> node = getEntry(key);
1532 >                TreeMap.Entry<K,V> node = m.getEntry(key);
1533                  if (node!=null && valEquals(node.getValue(),entry.getValue())){
1534 <                    deleteEntry(node);
1534 >                    m.deleteEntry(node);
1535                      return true;
1536                  }
1537                  return false;
1538              }
1273
1274            public Iterator<Map.Entry<K,V>> iterator() {
1275                return new SubMapEntryIterator(
1276                    (fromStart ? getFirstEntry() : getCeilingEntry(fromKey)),
1277                    (toEnd     ? null            : getCeilingEntry(toKey)));
1278            }
1539          }
1540  
1541 <        private transient Set<Map.Entry<K,V>> descendingEntrySetView = null;
1542 <        private transient Set<K> descendingKeySetView = null;
1543 <
1544 <        public Set<Map.Entry<K,V>> descendingEntrySet() {
1545 <            Set<Map.Entry<K,V>> es = descendingEntrySetView;
1546 <            return (es != null) ? es :
1547 <                (descendingEntrySetView = new DescendingEntrySetView());
1548 <        }
1289 <
1290 <        public Set<K> descendingKeySet() {
1291 <            Set<K> ks = descendingKeySetView;
1292 <            return (ks != null) ? ks :
1293 <                (descendingKeySetView = new DescendingKeySetView());
1294 <        }
1541 >        /**
1542 >         * Iterators for SubMaps
1543 >         */
1544 >        abstract class SubMapIterator<T> implements Iterator<T> {
1545 >            TreeMap.Entry<K,V> lastReturned;
1546 >            TreeMap.Entry<K,V> next;
1547 >            final K fenceKey;
1548 >            int expectedModCount;
1549  
1550 <        private class DescendingEntrySetView extends EntrySetView {
1551 <            public Iterator<Map.Entry<K,V>> iterator() {
1552 <                return new DescendingSubMapEntryIterator
1553 <                    ((toEnd     ? getLastEntry()  : getLowerEntry(toKey)),
1554 <                     (fromStart ? null            : getLowerEntry(fromKey)));
1550 >            SubMapIterator(TreeMap.Entry<K,V> first,
1551 >                           TreeMap.Entry<K,V> fence) {
1552 >                expectedModCount = m.modCount;
1553 >                lastReturned = null;
1554 >                next = first;
1555 >                fenceKey = fence == null ? null : fence.key;
1556              }
1302        }
1557  
1558 <        private class DescendingKeySetView extends AbstractSet<K> {
1559 <            public Iterator<K> iterator() {
1560 <                return new Iterator<K>() {
1307 <                    private Iterator<Entry<K,V>> i = descendingEntrySet().iterator();
1558 >            public final boolean hasNext() {
1559 >                return next != null && next.key != fenceKey;
1560 >            }
1561  
1562 <                    public boolean hasNext() { return i.hasNext(); }
1563 <                    public K next() { return i.next().getKey(); }
1564 <                    public void remove() { i.remove(); }
1565 <                };
1562 >            final TreeMap.Entry<K,V> nextEntry() {
1563 >                TreeMap.Entry<K,V> e = lastReturned = next;
1564 >                if (e == null || e.key == fenceKey)
1565 >                    throw new NoSuchElementException();
1566 >                if (m.modCount != expectedModCount)
1567 >                    throw new ConcurrentModificationException();
1568 >                next = successor(e);
1569 >                return e;
1570              }
1571  
1572 <            public int size() {
1573 <                return SubMap.this.size();
1572 >            final TreeMap.Entry<K,V> prevEntry() {
1573 >                TreeMap.Entry<K,V> e = lastReturned = next;
1574 >                if (e == null || e.key == fenceKey)
1575 >                    throw new NoSuchElementException();
1576 >                if (m.modCount != expectedModCount)
1577 >                    throw new ConcurrentModificationException();
1578 >                next = predecessor(e);
1579 >                return e;
1580              }
1581  
1582 <            public boolean contains(Object k) {
1583 <                return SubMap.this.containsKey(k);
1582 >            public void remove() {
1583 >                if (lastReturned == null)
1584 >                    throw new IllegalStateException();
1585 >                if (m.modCount != expectedModCount)
1586 >                    throw new ConcurrentModificationException();
1587 >                if (lastReturned.left != null && lastReturned.right != null)
1588 >                    next = lastReturned;
1589 >                m.deleteEntry(lastReturned);
1590 >                expectedModCount++;
1591 >                lastReturned = null;
1592              }
1593          }
1594  
1595 <        public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1596 <            if (!inRange2(fromKey))
1597 <                throw new IllegalArgumentException("fromKey out of range");
1598 <            if (!inRange2(toKey))
1599 <                throw new IllegalArgumentException("toKey out of range");
1600 <            return new SubMap(fromKey, toKey);
1595 >        final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1596 >            SubMapEntryIterator(TreeMap.Entry<K,V> first,
1597 >                                TreeMap.Entry<K,V> fence) {
1598 >                super(first, fence);
1599 >            }
1600 >            public Map.Entry<K,V> next() {
1601 >                return nextEntry();
1602 >            }
1603          }
1604  
1605 <        public NavigableMap<K,V> navigableHeadMap(K toKey) {
1606 <            if (!inRange2(toKey))
1607 <                throw new IllegalArgumentException("toKey out of range");
1608 <            return new SubMap(fromStart, fromKey, false, toKey);
1605 >        final class SubMapKeyIterator extends SubMapIterator<K> {
1606 >            SubMapKeyIterator(TreeMap.Entry<K,V> first,
1607 >                              TreeMap.Entry<K,V> fence) {
1608 >                super(first, fence);
1609 >            }
1610 >            public K next() {
1611 >                return nextEntry().key;
1612 >            }
1613          }
1614  
1615 <        public NavigableMap<K,V> navigableTailMap(K fromKey) {
1616 <            if (!inRange2(fromKey))
1617 <                throw new IllegalArgumentException("fromKey out of range");
1618 <            return new SubMap(false, fromKey, toEnd, toKey);
1619 <        }
1615 >        final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1616 >            DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1617 >                                          TreeMap.Entry<K,V> fence) {
1618 >                super(last, fence);
1619 >            }
1620  
1621 <        public SortedMap<K,V> subMap(K fromKey, K toKey) {
1622 <            return navigableSubMap(fromKey, toKey);
1621 >            public Map.Entry<K,V> next() {
1622 >                return prevEntry();
1623 >            }
1624          }
1625  
1626 <        public SortedMap<K,V> headMap(K toKey) {
1627 <            return navigableHeadMap(toKey);
1626 >        final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
1627 >            DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1628 >                                        TreeMap.Entry<K,V> fence) {
1629 >                super(last, fence);
1630 >            }
1631 >            public K next() {
1632 >                return prevEntry().key;
1633 >            }
1634          }
1635 +    }
1636  
1637 <        public SortedMap<K,V> tailMap(K fromKey) {
1638 <            return navigableTailMap(fromKey);
1354 <        }
1637 >    static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1638 >        private static final long serialVersionUID = 912986545866124060L;
1639  
1640 <        private boolean inRange(Object key) {
1641 <            return (fromStart || compare(key, fromKey) >= 0) &&
1642 <                   (toEnd     || compare(key, toKey)   <  0);
1640 >        AscendingSubMap(TreeMap<K,V> m,
1641 >                        boolean fromStart, K lo, boolean loInclusive,
1642 >                        boolean toEnd, K hi, boolean hiInclusive) {
1643 >            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1644          }
1645  
1646 <        // This form allows the high endpoint (as well as all legit keys)
1647 <        private boolean inRange2(Object key) {
1363 <            return (fromStart || compare(key, fromKey) >= 0) &&
1364 <                   (toEnd     || compare(key, toKey)   <= 0);
1646 >        public Comparator<? super K> comparator() {
1647 >            return m.comparator();
1648          }
1366    }
1367
1368    /**
1369     * TreeMap Iterator.
1370     */
1371    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1372        int expectedModCount = TreeMap.this.modCount;
1373        Entry<K,V> lastReturned = null;
1374        Entry<K,V> next;
1649  
1650 <        PrivateEntryIterator(Entry<K,V> first) {
1651 <            next = first;
1650 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1651 >                                        K toKey, boolean toInclusive) {
1652 >            if (!inRange(fromKey, fromInclusive))
1653 >                throw new IllegalArgumentException("fromKey out of range");
1654 >            if (!inRange(toKey, toInclusive))
1655 >                throw new IllegalArgumentException("toKey out of range");
1656 >            return new AscendingSubMap(m,
1657 >                                       false, fromKey, fromInclusive,
1658 >                                       false, toKey,   toInclusive);
1659          }
1660  
1661 <        public boolean hasNext() {
1662 <            return next != null;
1661 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1662 >            if (!inClosedRange(toKey))
1663 >                throw new IllegalArgumentException("toKey out of range");
1664 >            return new AscendingSubMap(m,
1665 >                                       fromStart, lo,    loInclusive,
1666 >                                       false,     toKey, inclusive);
1667          }
1668  
1669 <        Entry<K,V> nextEntry() {
1670 <            if (next == null)
1671 <                throw new NoSuchElementException();
1672 <            if (modCount != expectedModCount)
1673 <                throw new ConcurrentModificationException();
1674 <            lastReturned = next;
1390 <            next = successor(next);
1391 <            return lastReturned;
1669 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1670 >            if (!inRange(fromKey, inclusive))
1671 >                throw new IllegalArgumentException("fromKey out of range");
1672 >            return new AscendingSubMap(m,
1673 >                                       false, fromKey, inclusive,
1674 >                                       toEnd, hi,      hiInclusive);
1675          }
1676  
1677 <        public void remove() {
1678 <            if (lastReturned == null)
1679 <                throw new IllegalStateException();
1680 <            if (modCount != expectedModCount)
1681 <                throw new ConcurrentModificationException();
1682 <            if (lastReturned.left != null && lastReturned.right != null)
1683 <                next = lastReturned;
1401 <            deleteEntry(lastReturned);
1402 <            expectedModCount++;
1403 <            lastReturned = null;
1677 >        public NavigableMap<K,V> descendingMap() {
1678 >            NavigableMap<K,V> mv = descendingMapView;
1679 >            return (mv != null) ? mv :
1680 >                (descendingMapView =
1681 >                 new DescendingSubMap(m,
1682 >                                      fromStart, lo, loInclusive,
1683 >                                      toEnd,     hi, hiInclusive));
1684          }
1405    }
1685  
1686 <    class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1687 <        EntryIterator(Entry<K,V> first) {
1409 <            super(first);
1686 >        Iterator<K> keyIterator() {
1687 >            return new SubMapKeyIterator(absLowest(), absHighFence());
1688          }
1411        public Map.Entry<K,V> next() {
1412            return nextEntry();
1413        }
1414    }
1689  
1690 <    class KeyIterator extends PrivateEntryIterator<K> {
1691 <        KeyIterator(Entry<K,V> first) {
1418 <            super(first);
1419 <        }
1420 <        public K next() {
1421 <            return nextEntry().key;
1690 >        Iterator<K> descendingKeyIterator() {
1691 >            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1692          }
1423    }
1693  
1694 <    class ValueIterator extends PrivateEntryIterator<V> {
1695 <        ValueIterator(Entry<K,V> first) {
1696 <            super(first);
1694 >        final class AscendingEntrySetView extends EntrySetView {
1695 >            public Iterator<Map.Entry<K,V>> iterator() {
1696 >                return new SubMapEntryIterator(absLowest(), absHighFence());
1697 >            }
1698          }
1699 <        public V next() {
1700 <            return nextEntry().value;
1699 >
1700 >        public Set<Map.Entry<K,V>> entrySet() {
1701 >            EntrySetView es = entrySetView;
1702 >            return (es != null) ? es : new AscendingEntrySetView();
1703          }
1432    }
1704  
1705 <    class SubMapEntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1706 <        private final K firstExcludedKey;
1705 >        TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
1706 >        TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
1707 >        TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
1708 >        TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
1709 >        TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
1710 >        TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
1711 >    }
1712  
1713 <        SubMapEntryIterator(Entry<K,V> first, Entry<K,V> firstExcluded) {
1714 <            super(first);
1715 <            firstExcludedKey = (firstExcluded == null
1716 <                                ? null
1717 <                                : firstExcluded.key);
1713 >    static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
1714 >        private static final long serialVersionUID = 912986545866120460L;
1715 >        DescendingSubMap(TreeMap<K,V> m,
1716 >                        boolean fromStart, K lo, boolean loInclusive,
1717 >                        boolean toEnd, K hi, boolean hiInclusive) {
1718 >            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1719          }
1720  
1721 <        public boolean hasNext() {
1722 <            return next != null && next.key != firstExcludedKey;
1446 <        }
1721 >        private final Comparator<? super K> reverseComparator =
1722 >            Collections.reverseOrder(m.comparator);
1723  
1724 <        public Map.Entry<K,V> next() {
1725 <            if (next == null || next.key == firstExcludedKey)
1450 <                throw new NoSuchElementException();
1451 <            return nextEntry();
1724 >        public Comparator<? super K> comparator() {
1725 >            return reverseComparator;
1726          }
1453    }
1727  
1728 <    /**
1729 <     * Base for Descending Iterators.
1730 <     */
1731 <    abstract class DescendingPrivateEntryIterator<T> extends PrivateEntryIterator<T> {
1732 <        DescendingPrivateEntryIterator(Entry<K,V> first) {
1733 <            super(first);
1728 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1729 >                                        K toKey, boolean toInclusive) {
1730 >            if (!inRange(fromKey, fromInclusive))
1731 >                throw new IllegalArgumentException("fromKey out of range");
1732 >            if (!inRange(toKey, toInclusive))
1733 >                throw new IllegalArgumentException("toKey out of range");
1734 >            return new DescendingSubMap(m,
1735 >                                        false, toKey,   toInclusive,
1736 >                                        false, fromKey, fromInclusive);
1737          }
1738  
1739 <        Entry<K,V> nextEntry() {
1740 <            if (next == null)
1741 <                throw new NoSuchElementException();
1742 <            if (modCount != expectedModCount)
1743 <                throw new ConcurrentModificationException();
1744 <            lastReturned = next;
1469 <            next = predecessor(next);
1470 <            return lastReturned;
1739 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1740 >            if (!inRange(toKey, inclusive))
1741 >                throw new IllegalArgumentException("toKey out of range");
1742 >            return new DescendingSubMap(m,
1743 >                                        false, toKey, inclusive,
1744 >                                        toEnd, hi,    hiInclusive);
1745          }
1472    }
1746  
1747 <    class DescendingEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1748 <        DescendingEntryIterator(Entry<K,V> first) {
1749 <            super(first);
1750 <        }
1751 <        public Map.Entry<K,V> next() {
1752 <            return nextEntry();
1747 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1748 >            if (!inRange(fromKey, inclusive))
1749 >                throw new IllegalArgumentException("fromKey out of range");
1750 >            return new DescendingSubMap(m,
1751 >                                        fromStart, lo, loInclusive,
1752 >                                        false, fromKey, inclusive);
1753          }
1481    }
1754  
1755 <    class DescendingKeyIterator extends DescendingPrivateEntryIterator<K> {
1756 <        DescendingKeyIterator(Entry<K,V> first) {
1757 <            super(first);
1758 <        }
1759 <        public K next() {
1760 <            return nextEntry().key;
1755 >        public NavigableMap<K,V> descendingMap() {
1756 >            NavigableMap<K,V> mv = descendingMapView;
1757 >            return (mv != null) ? mv :
1758 >                (descendingMapView =
1759 >                 new AscendingSubMap(m,
1760 >                                     fromStart, lo, loInclusive,
1761 >                                     toEnd,     hi, hiInclusive));
1762          }
1490    }
1491
1763  
1764 <    class DescendingSubMapEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1765 <        private final K lastExcludedKey;
1764 >        Iterator<K> keyIterator() {
1765 >            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1766 >        }
1767  
1768 <        DescendingSubMapEntryIterator(Entry<K,V> last, Entry<K,V> lastExcluded) {
1769 <            super(last);
1498 <            lastExcludedKey = (lastExcluded == null
1499 <                                ? null
1500 <                                : lastExcluded.key);
1768 >        Iterator<K> descendingKeyIterator() {
1769 >            return new SubMapKeyIterator(absLowest(), absHighFence());
1770          }
1771  
1772 <        public boolean hasNext() {
1773 <            return next != null && next.key != lastExcludedKey;
1772 >        final class DescendingEntrySetView extends EntrySetView {
1773 >            public Iterator<Map.Entry<K,V>> iterator() {
1774 >                return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
1775 >            }
1776          }
1777  
1778 <        public Map.Entry<K,V> next() {
1779 <            if (next == null || next.key == lastExcludedKey)
1780 <                throw new NoSuchElementException();
1510 <            return nextEntry();
1778 >        public Set<Map.Entry<K,V>> entrySet() {
1779 >            EntrySetView es = entrySetView;
1780 >            return (es != null) ? es : new DescendingEntrySetView();
1781          }
1782  
1783 +        TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
1784 +        TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
1785 +        TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
1786 +        TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
1787 +        TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
1788 +        TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
1789      }
1790  
1791      /**
1792 <     * Compares two keys using the correct comparison method for this TreeMap.
1792 >     * This class exists solely for the sake of serialization
1793 >     * compatibility with previous releases of TreeMap that did not
1794 >     * support NavigableMap.  It translates an old-version SubMap into
1795 >     * a new-version AscendingSubMap. This class is never otherwise
1796 >     * used.
1797       */
1798 <    private int compare(Object k1, Object k2) {
1799 <        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1800 <                                : comparator.compare((K)k1, (K)k2);
1798 >    private class SubMap extends AbstractMap<K,V>
1799 >        implements SortedMap<K,V>, java.io.Serializable {
1800 >        private static final long serialVersionUID = -6520786458950516097L;
1801 >        private boolean fromStart = false, toEnd = false;
1802 >        private K fromKey, toKey;
1803 >        private Object readResolve() {
1804 >            return new AscendingSubMap(TreeMap.this,
1805 >                                       fromStart, fromKey, true,
1806 >                                       toEnd, toKey, false);
1807 >        }
1808 >        public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1809 >        public K lastKey() { throw new InternalError(); }
1810 >        public K firstKey() { throw new InternalError(); }
1811 >        public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1812 >        public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1813 >        public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1814 >        public Comparator<? super K> comparator() { throw new InternalError(); }
1815      }
1816  
1817 <    /**
1818 <     * Test two values for equality.  Differs from o1.equals(o2) only in
1525 <     * that it copes with <tt>null</tt> o1 properly.
1526 <     */
1527 <    private static boolean valEquals(Object o1, Object o2) {
1528 <        return (o1==null ? o2==null : o1.equals(o2));
1529 <    }
1817 >
1818 >    // Red-black mechanics
1819  
1820      private static final boolean RED   = false;
1821      private static final boolean BLACK = true;
# Line 1536 | Line 1825 | public class TreeMap<K,V>
1825       * user (see Map.Entry).
1826       */
1827  
1828 <    static class Entry<K,V> implements Map.Entry<K,V> {
1828 >    static final class Entry<K,V> implements Map.Entry<K,V> {
1829          K key;
1830          V value;
1831          Entry<K,V> left = null;
# Line 1608 | Line 1897 | public class TreeMap<K,V>
1897       * Returns the first Entry in the TreeMap (according to the TreeMap's
1898       * key-sort function).  Returns null if the TreeMap is empty.
1899       */
1900 <    private Entry<K,V> getFirstEntry() {
1900 >    final Entry<K,V> getFirstEntry() {
1901          Entry<K,V> p = root;
1902          if (p != null)
1903              while (p.left != null)
# Line 1620 | Line 1909 | public class TreeMap<K,V>
1909       * Returns the last Entry in the TreeMap (according to the TreeMap's
1910       * key-sort function).  Returns null if the TreeMap is empty.
1911       */
1912 <    private Entry<K,V> getLastEntry() {
1912 >    final Entry<K,V> getLastEntry() {
1913          Entry<K,V> p = root;
1914          if (p != null)
1915              while (p.right != null)
# Line 1631 | Line 1920 | public class TreeMap<K,V>
1920      /**
1921       * Returns the successor of the specified Entry, or null if no such.
1922       */
1923 <    private Entry<K,V> successor(Entry<K,V> t) {
1923 >    static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
1924          if (t == null)
1925              return null;
1926          else if (t.right != null) {
# Line 1653 | Line 1942 | public class TreeMap<K,V>
1942      /**
1943       * Returns the predecessor of the specified Entry, or null if no such.
1944       */
1945 <    private Entry<K,V> predecessor(Entry<K,V> t) {
1945 >    static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
1946          if (t == null)
1947              return null;
1948          else if (t.left != null) {
# Line 1703 | Line 1992 | public class TreeMap<K,V>
1992          return (p == null) ? null: p.right;
1993      }
1994  
1995 <    /** From CLR **/
1995 >    /** From CLR */
1996      private void rotateLeft(Entry<K,V> p) {
1997 <        Entry<K,V> r = p.right;
1998 <        p.right = r.left;
1999 <        if (r.left != null)
2000 <            r.left.parent = p;
2001 <        r.parent = p.parent;
2002 <        if (p.parent == null)
2003 <            root = r;
2004 <        else if (p.parent.left == p)
2005 <            p.parent.left = r;
2006 <        else
2007 <            p.parent.right = r;
2008 <        r.left = p;
2009 <        p.parent = r;
1997 >        if (p != null) {
1998 >            Entry<K,V> r = p.right;
1999 >            p.right = r.left;
2000 >            if (r.left != null)
2001 >                r.left.parent = p;
2002 >            r.parent = p.parent;
2003 >            if (p.parent == null)
2004 >                root = r;
2005 >            else if (p.parent.left == p)
2006 >                p.parent.left = r;
2007 >            else
2008 >                p.parent.right = r;
2009 >            r.left = p;
2010 >            p.parent = r;
2011 >        }
2012      }
2013  
2014 <    /** From CLR **/
2014 >    /** From CLR */
2015      private void rotateRight(Entry<K,V> p) {
2016 <        Entry<K,V> l = p.left;
2017 <        p.left = l.right;
2018 <        if (l.right != null) l.right.parent = p;
2019 <        l.parent = p.parent;
2020 <        if (p.parent == null)
2021 <            root = l;
2022 <        else if (p.parent.right == p)
2023 <            p.parent.right = l;
2024 <        else p.parent.left = l;
2025 <        l.right = p;
2026 <        p.parent = l;
2016 >        if (p != null) {
2017 >            Entry<K,V> l = p.left;
2018 >            p.left = l.right;
2019 >            if (l.right != null) l.right.parent = p;
2020 >            l.parent = p.parent;
2021 >            if (p.parent == null)
2022 >                root = l;
2023 >            else if (p.parent.right == p)
2024 >                p.parent.right = l;
2025 >            else p.parent.left = l;
2026 >            l.right = p;
2027 >            p.parent = l;
2028 >        }
2029      }
2030  
2031 <
1739 <    /** From CLR **/
2031 >    /** From CLR */
2032      private void fixAfterInsertion(Entry<K,V> x) {
2033          x.color = RED;
2034  
# Line 1755 | Line 2047 | public class TreeMap<K,V>
2047                      }
2048                      setColor(parentOf(x), BLACK);
2049                      setColor(parentOf(parentOf(x)), RED);
2050 <                    if (parentOf(parentOf(x)) != null)
1759 <                        rotateRight(parentOf(parentOf(x)));
2050 >                    rotateRight(parentOf(parentOf(x)));
2051                  }
2052              } else {
2053                  Entry<K,V> y = leftOf(parentOf(parentOf(x)));
# Line 1770 | Line 2061 | public class TreeMap<K,V>
2061                          x = parentOf(x);
2062                          rotateRight(x);
2063                      }
2064 <                    setColor(parentOf(x),  BLACK);
2064 >                    setColor(parentOf(x), BLACK);
2065                      setColor(parentOf(parentOf(x)), RED);
2066 <                    if (parentOf(parentOf(x)) != null)
1776 <                        rotateLeft(parentOf(parentOf(x)));
2066 >                    rotateLeft(parentOf(parentOf(x)));
2067                  }
2068              }
2069          }
# Line 1783 | Line 2073 | public class TreeMap<K,V>
2073      /**
2074       * Delete node p, and then rebalance the tree.
2075       */
1786
2076      private void deleteEntry(Entry<K,V> p) {
2077 <        decrementSize();
2077 >        modCount++;
2078 >        size--;
2079  
2080          // If strictly internal, copy successor's element to p and then make p
2081          // point to successor.
# Line 1831 | Line 2121 | public class TreeMap<K,V>
2121          }
2122      }
2123  
2124 <    /** From CLR **/
2124 >    /** From CLR */
2125      private void fixAfterDeletion(Entry<K,V> x) {
2126          while (x != root && colorOf(x) == BLACK) {
2127              if (x == leftOf(parentOf(x))) {
# Line 1846 | Line 2136 | public class TreeMap<K,V>
2136  
2137                  if (colorOf(leftOf(sib))  == BLACK &&
2138                      colorOf(rightOf(sib)) == BLACK) {
2139 <                    setColor(sib,  RED);
2139 >                    setColor(sib, RED);
2140                      x = parentOf(x);
2141                  } else {
2142                      if (colorOf(rightOf(sib)) == BLACK) {
# Line 1873 | Line 2163 | public class TreeMap<K,V>
2163  
2164                  if (colorOf(rightOf(sib)) == BLACK &&
2165                      colorOf(leftOf(sib)) == BLACK) {
2166 <                    setColor(sib,  RED);
2166 >                    setColor(sib, RED);
2167                      x = parentOf(x);
2168                  } else {
2169                      if (colorOf(leftOf(sib)) == BLACK) {
# Line 1924 | Line 2214 | public class TreeMap<K,V>
2214          }
2215      }
2216  
1927
1928
2217      /**
2218       * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2219       * deserialize it).
# Line 1941 | Line 2229 | public class TreeMap<K,V>
2229          buildFromSorted(size, null, s, null);
2230      }
2231  
2232 <    /** Intended to be called only from TreeSet.readObject **/
2232 >    /** Intended to be called only from TreeSet.readObject */
2233      void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2234          throws java.io.IOException, ClassNotFoundException {
2235          buildFromSorted(size, null, s, defaultVal);
2236      }
2237  
2238 <    /** Intended to be called only from TreeSet.addAll **/
2238 >    /** Intended to be called only from TreeSet.addAll */
2239      void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2240          try {
2241              buildFromSorted(set.size(), set.iterator(), null, defaultVal);
# Line 1987 | Line 2275 | public class TreeMap<K,V>
2275       * @throws ClassNotFoundException propagated from readObject.
2276       *         This cannot occur if str is null.
2277       */
2278 <    private
2279 <    void buildFromSorted(int size, Iterator it,
2280 <                         java.io.ObjectInputStream str,
1993 <                         V defaultVal)
2278 >    private void buildFromSorted(int size, Iterator it,
2279 >                                 java.io.ObjectInputStream str,
2280 >                                 V defaultVal)
2281          throws  java.io.IOException, ClassNotFoundException {
2282          this.size = size;
2283 <        root =
2284 <            buildFromSorted(0, 0, size-1, computeRedLevel(size),
1998 <                            it, str, defaultVal);
2283 >        root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2284 >                               it, str, defaultVal);
2285      }
2286  
2287      /**
2288       * Recursive "helper method" that does the real work of the
2289 <     * of the previous method.  Identically named parameters have
2289 >     * previous method.  Identically named parameters have
2290       * identical definitions.  Additional parameters are documented below.
2291       * It is assumed that the comparator and size fields of the TreeMap are
2292       * already set prior to calling this method.  (It ignores both fields.)

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines