ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/TreeMap.java (file contents):
Revision 1.15 by jsr166, Wed May 18 01:39:35 2005 UTC vs.
Revision 1.31 by dl, Fri Apr 21 13:42:57 2006 UTC

# Line 1 | Line 1
1   /*
2   * %W% %E%
3   *
4 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
4 > * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5   * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6   */
7  
# Line 30 | Line 30 | package java.util;
30   * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
31   * just fails to obey the general contract of the <tt>Map</tt> interface.
32   *
33 < * <p><b>Note that this implementation is not synchronized.</b> If multiple
34 < * threads access a map concurrently, and at least one of the threads modifies
35 < * the map structurally, it <i>must</i> be synchronized externally.  (A
36 < * structural modification is any operation that adds or deletes one or more
37 < * mappings; merely changing the value associated with an existing key is not
38 < * a structural modification.)  This is typically accomplished by
39 < * synchronizing on some object that naturally encapsulates the map.  If no
40 < * such object exists, the map should be "wrapped" using the
41 < * <tt>Collections.synchronizedMap</tt> method.  This is best done at creation
42 < * time, to prevent accidental unsynchronized access to the map:
43 < * <pre>
44 < *     Map m = Collections.synchronizedMap(new TreeMap(...));
45 < * </pre>
33 > * <p><strong>Note that this implementation is not synchronized.</strong>
34 > * If multiple threads access a map concurrently, and at least one of the
35 > * threads modifies the map structurally, it <i>must</i> be synchronized
36 > * externally.  (A structural modification is any operation that adds or
37 > * deletes one or more mappings; merely changing the value associated
38 > * with an existing key is not a structural modification.)  This is
39 > * typically accomplished by synchronizing on some object that naturally
40 > * encapsulates the map.
41 > * If no such object exists, the map should be "wrapped" using the
42 > * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
43 > * method.  This is best done at creation time, to prevent accidental
44 > * unsynchronized access to the map: <pre>
45 > *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
46   *
47   * <p>The iterators returned by the <tt>iterator</tt> method of the collections
48   * returned by all of this class's "collection view methods" are
# Line 82 | Line 82 | package java.util;
82   * @see Comparable
83   * @see Comparator
84   * @see Collection
85 * @see Collections#synchronizedMap(Map)
85   * @since 1.2
86   */
87  
# Line 96 | Line 95 | public class TreeMap<K,V>
95       *
96       * @serial
97       */
98 <    private Comparator<? super K> comparator = null;
98 >    private final Comparator<? super K> comparator;
99  
100      private transient Entry<K,V> root = null;
101  
# Line 126 | Line 125 | public class TreeMap<K,V>
125       * <tt>ClassCastException</tt>.
126       */
127      public TreeMap() {
128 +        comparator = null;
129      }
130  
131      /**
# Line 161 | Line 161 | public class TreeMap<K,V>
161       * @throws NullPointerException if the specified map is null
162       */
163      public TreeMap(Map<? extends K, ? extends V> m) {
164 +        comparator = null;
165          putAll(m);
166      }
167  
# Line 216 | Line 217 | public class TreeMap<K,V>
217       * specified value.  More formally, returns <tt>true</tt> if and only if
218       * this map contains at least one mapping to a value <tt>v</tt> such
219       * that <tt>(value==null ? v==null : value.equals(v))</tt>.  This
220 <     * operation requires time linear in the map size.
220 >     * operation will probably require time linear in the map size for
221 >     * most implementations.
222       *
223       * @param value value whose presence in this map is to be tested
224       * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
# Line 226 | Line 228 | public class TreeMap<K,V>
228      public boolean containsValue(Object value) {
229          return (root==null ? false :
230                  (value==null ? valueSearchNull(root)
231 <                             : valueSearchNonNull(root, value)));
231 >                 : valueSearchNonNull(root, value)));
232      }
233  
234      private boolean valueSearchNull(Entry n) {
# Line 235 | Line 237 | public class TreeMap<K,V>
237  
238          // Check left and right subtrees for value
239          return (n.left  != null && valueSearchNull(n.left)) ||
240 <               (n.right != null && valueSearchNull(n.right));
240 >            (n.right != null && valueSearchNull(n.right));
241      }
242  
243      private boolean valueSearchNonNull(Entry n, Object value) {
# Line 245 | Line 247 | public class TreeMap<K,V>
247  
248          // Check left and right subtrees for value
249          return (n.left  != null && valueSearchNonNull(n.left, value)) ||
250 <               (n.right != null && valueSearchNonNull(n.right, value));
250 >            (n.right != null && valueSearchNonNull(n.right, value));
251      }
252  
253      /**
254 <     * Returns the value to which this map maps the specified key, or
255 <     * <tt>null</tt> if the map contains no mapping for the key.  A return
256 <     * value of <tt>null</tt> does not <i>necessarily</i> indicate that the
257 <     * map contains no mapping for the key; it's also possible that the map
258 <     * explicitly maps the key to <tt>null</tt>.  The {@link #containsKey}
259 <     * operation may be used to distinguish these two cases.
254 >     * Returns the value to which the specified key is mapped,
255 >     * or {@code null} if this map contains no mapping for the key.
256 >     *
257 >     * <p>More formally, if this map contains a mapping from a key
258 >     * {@code k} to a value {@code v} such that {@code key} compares
259 >     * equal to {@code k} according to the map's ordering, then this
260 >     * method returns {@code v}; otherwise it returns {@code null}.
261 >     * (There can be at most one such mapping.)
262 >     *
263 >     * <p>A return value of {@code null} does not <i>necessarily</i>
264 >     * indicate that the map contains no mapping for the key; it's also
265 >     * possible that the map explicitly maps the key to {@code null}.
266 >     * The {@link #containsKey containsKey} operation may be used to
267 >     * distinguish these two cases.
268       *
259     * @param key key whose associated value is to be returned
260     * @return the value to which this map maps the specified key, or
261     *         <tt>null</tt> if the map contains no mapping for the key
269       * @throws ClassCastException if the specified key cannot be compared
270       *         with the keys currently in the map
271       * @throws NullPointerException if the specified key is null
# Line 330 | Line 337 | public class TreeMap<K,V>
337       *         and this map uses natural ordering, or its comparator
338       *         does not permit null keys
339       */
340 <    private Entry<K,V> getEntry(Object key) {
340 >    final Entry<K,V> getEntry(Object key) {
341          // Offload comparator-based version for sake of performance
342          if (comparator != null)
343              return getEntryUsingComparator(key);
344 +        if (key == null)
345 +            throw new NullPointerException();
346          Comparable<? super K> k = (Comparable<? super K>) key;
347          Entry<K,V> p = root;
348          while (p != null) {
# Line 352 | Line 361 | public class TreeMap<K,V>
361       * Version of getEntry using comparator. Split off from getEntry
362       * for performance. (This is not worth doing for most methods,
363       * that are less dependent on comparator performance, but is
364 <     * worthwhile here.)
364 >     * worthwhile for get and put.)
365       */
366 <    private Entry<K,V> getEntryUsingComparator(Object key) {
366 >    final Entry<K,V> getEntryUsingComparator(Object key) {
367          K k = (K) key;
368          Comparator<? super K> cpr = comparator;
369          Entry<K,V> p = root;
# Line 376 | Line 385 | public class TreeMap<K,V>
385       * key; if no such entry exists (i.e., the greatest key in the Tree is less
386       * than the specified key), returns <tt>null</tt>.
387       */
388 <    private Entry<K,V> getCeilingEntry(K key) {
388 >    final Entry<K,V> getCeilingEntry(K key) {
389          Entry<K,V> p = root;
390 <        if (p==null)
382 <            return null;
383 <
384 <        while (true) {
390 >        while (p != null) {
391              int cmp = compare(key, p.key);
392              if (cmp < 0) {
393                  if (p.left != null)
# Line 403 | Line 409 | public class TreeMap<K,V>
409              } else
410                  return p;
411          }
412 +        return null;
413      }
414  
415      /**
# Line 410 | Line 417 | public class TreeMap<K,V>
417       * exists, returns the entry for the greatest key less than the specified
418       * key; if no such entry exists, returns <tt>null</tt>.
419       */
420 <    private Entry<K,V> getFloorEntry(K key) {
420 >    final Entry<K,V> getFloorEntry(K key) {
421          Entry<K,V> p = root;
422 <        if (p==null)
416 <            return null;
417 <
418 <        while (true) {
422 >        while (p != null) {
423              int cmp = compare(key, p.key);
424              if (cmp > 0) {
425                  if (p.right != null)
# Line 438 | Line 442 | public class TreeMap<K,V>
442                  return p;
443  
444          }
445 +        return null;
446      }
447  
448      /**
# Line 446 | Line 451 | public class TreeMap<K,V>
451       * key greater than the specified key; if no such entry exists
452       * returns <tt>null</tt>.
453       */
454 <    private Entry<K,V> getHigherEntry(K key) {
454 >    final Entry<K,V> getHigherEntry(K key) {
455          Entry<K,V> p = root;
456 <        if (p==null)
452 <            return null;
453 <
454 <        while (true) {
456 >        while (p != null) {
457              int cmp = compare(key, p.key);
458              if (cmp < 0) {
459                  if (p.left != null)
# Line 472 | Line 474 | public class TreeMap<K,V>
474                  }
475              }
476          }
477 +        return null;
478      }
479  
480      /**
# Line 479 | Line 482 | public class TreeMap<K,V>
482       * no such entry exists (i.e., the least key in the Tree is greater than
483       * the specified key), returns <tt>null</tt>.
484       */
485 <    private Entry<K,V> getLowerEntry(K key) {
485 >    final Entry<K,V> getLowerEntry(K key) {
486          Entry<K,V> p = root;
487 <        if (p==null)
485 <            return null;
486 <
487 <        while (true) {
487 >        while (p != null) {
488              int cmp = compare(key, p.key);
489              if (cmp > 0) {
490                  if (p.right != null)
# Line 505 | Line 505 | public class TreeMap<K,V>
505                  }
506              }
507          }
508 +        return null;
509      }
510  
511      /**
512       * Returns the key corresponding to the specified Entry.
513       * @throws NoSuchElementException if the Entry is null
514       */
515 <    private static <K> K key(Entry<K,?> e) {
515 >    static <K> K key(Entry<K,?> e) {
516          if (e==null)
517              throw new NoSuchElementException();
518          return e.key;
# Line 519 | Line 520 | public class TreeMap<K,V>
520  
521      /**
522       * Associates the specified value with the specified key in this map.
523 <     * If the map previously contained a mapping for this key, the old
523 >     * If the map previously contained a mapping for the key, the old
524       * value is replaced.
525       *
526       * @param key key with which the specified value is to be associated
# Line 536 | Line 537 | public class TreeMap<K,V>
537       *         does not permit null keys
538       */
539      public V put(K key, V value) {
540 <        Entry<K,V> t = root;
540 >        // Offload comparator-based version for sake of performance
541 >        if (comparator != null)
542 >            return putUsingComparator(key, value);
543 >        if (key == null)
544 >            throw new NullPointerException();
545 >        Comparable<? super K> k = (Comparable<? super K>) key;
546  
547 <        if (t == null) {
548 <            if (key == null) {
549 <                if (comparator == null)
550 <                    throw new NullPointerException();
551 <                comparator.compare(key, key);
547 >        Entry<K,V> t = root;
548 >        while (t != null) {
549 >            int cmp = k.compareTo(t.key);
550 >            if (cmp == 0) {
551 >                return t.setValue(value);
552 >            } else if (cmp < 0) {
553 >                if (t.left != null) {
554 >                    t = t.left;
555 >                } else {
556 >                    incrementSize();
557 >                    fixAfterInsertion(t.left = new Entry<K,V>(key, value, t));
558 >                    return null;
559 >                }
560 >            } else { // cmp > 0
561 >                if (t.right != null) {
562 >                    t = t.right;
563 >                } else {
564 >                    incrementSize();
565 >                    fixAfterInsertion(t.right = new Entry<K,V>(key, value, t));
566 >                    return null;
567 >                }
568              }
547            incrementSize();
548            root = new Entry<K,V>(key, value, null);
549            return null;
569          }
570 +        incrementSize();
571 +        root = new Entry<K,V>(key, value, null);
572 +        return null;
573 +    }
574  
575 <        while (true) {
576 <            int cmp = compare(key, t.key);
575 >    /**
576 >     * Version of put using comparator. Split off from put for
577 >     * performance.
578 >     */
579 >    final V putUsingComparator(K key, V value) {
580 >        Comparator<? super K> cpr = comparator;
581 >        Entry<K,V> t = root;
582 >        while (t != null) {
583 >            int cmp = cpr.compare(key, t.key);
584              if (cmp == 0) {
585                  return t.setValue(value);
586              } else if (cmp < 0) {
# Line 558 | Line 588 | public class TreeMap<K,V>
588                      t = t.left;
589                  } else {
590                      incrementSize();
591 <                    t.left = new Entry<K,V>(key, value, t);
562 <                    fixAfterInsertion(t.left);
591 >                    fixAfterInsertion(t.left = new Entry<K,V>(key, value, t));
592                      return null;
593                  }
594              } else { // cmp > 0
# Line 567 | Line 596 | public class TreeMap<K,V>
596                      t = t.right;
597                  } else {
598                      incrementSize();
599 <                    t.right = new Entry<K,V>(key, value, t);
571 <                    fixAfterInsertion(t.right);
599 >                    fixAfterInsertion(t.right = new Entry<K,V>(key, value, t));
600                      return null;
601                  }
602              }
603          }
604 +        cpr.compare(key, key); // type check
605 +        incrementSize();
606 +        root = new Entry<K,V>(key, value, null);
607 +        return null;
608      }
609  
610      /**
# Line 628 | Line 660 | public class TreeMap<K,V>
660          clone.size = 0;
661          clone.modCount = 0;
662          clone.entrySet = null;
663 <        clone.descendingEntrySet = null;
664 <        clone.descendingKeySet = null;
663 >        clone.navigableKeySet = null;
664 >        clone.descendingMap = null;
665  
666          // Initialize clone with our mappings
667          try {
# Line 643 | Line 675 | public class TreeMap<K,V>
675  
676      // NavigableMap API methods
677  
678 +    /**
679 +     * @since 1.6
680 +     */
681      public Map.Entry<K,V> firstEntry() {
682          Entry<K,V> e = getFirstEntry();
683 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
683 >        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
684      }
685  
686 +    /**
687 +     * @since 1.6
688 +     */
689      public Map.Entry<K,V> lastEntry() {
690          Entry<K,V> e = getLastEntry();
691 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
691 >        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
692      }
693  
694 +    /**
695 +     * @since 1.6
696 +     */
697      public Map.Entry<K,V> pollFirstEntry() {
698          Entry<K,V> p = getFirstEntry();
699          if (p == null)
700              return null;
701 <        Map.Entry result = new AbstractMap.SimpleImmutableEntry(p);
701 >        Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
702          deleteEntry(p);
703          return result;
704      }
705  
706 +    /**
707 +     * @since 1.6
708 +     */
709      public Map.Entry<K,V> pollLastEntry() {
710          Entry<K,V> p = getLastEntry();
711          if (p == null)
712              return null;
713 <        Map.Entry result = new AbstractMap.SimpleImmutableEntry(p);
713 >        Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
714          deleteEntry(p);
715          return result;
716      }
# Line 676 | Line 720 | public class TreeMap<K,V>
720       * @throws NullPointerException if the specified key is null
721       *         and this map uses natural ordering, or its comparator
722       *         does not permit null keys
723 +     * @since 1.6
724       */
725      public Map.Entry<K,V> lowerEntry(K key) {
726          Entry<K,V> e =  getLowerEntry(key);
727 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
727 >        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
728      }
729  
730      /**
# Line 687 | Line 732 | public class TreeMap<K,V>
732       * @throws NullPointerException if the specified key is null
733       *         and this map uses natural ordering, or its comparator
734       *         does not permit null keys
735 +     * @since 1.6
736       */
737      public K lowerKey(K key) {
738          Entry<K,V> e =  getLowerEntry(key);
# Line 698 | Line 744 | public class TreeMap<K,V>
744       * @throws NullPointerException if the specified key is null
745       *         and this map uses natural ordering, or its comparator
746       *         does not permit null keys
747 +     * @since 1.6
748       */
749      public Map.Entry<K,V> floorEntry(K key) {
750          Entry<K,V> e = getFloorEntry(key);
751 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
751 >        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
752      }
753  
754      /**
# Line 709 | Line 756 | public class TreeMap<K,V>
756       * @throws NullPointerException if the specified key is null
757       *         and this map uses natural ordering, or its comparator
758       *         does not permit null keys
759 +     * @since 1.6
760       */
761      public K floorKey(K key) {
762          Entry<K,V> e = getFloorEntry(key);
# Line 720 | Line 768 | public class TreeMap<K,V>
768       * @throws NullPointerException if the specified key is null
769       *         and this map uses natural ordering, or its comparator
770       *         does not permit null keys
771 +     * @since 1.6
772       */
773      public Map.Entry<K,V> ceilingEntry(K key) {
774          Entry<K,V> e = getCeilingEntry(key);
775 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
775 >        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
776      }
777  
778      /**
# Line 731 | Line 780 | public class TreeMap<K,V>
780       * @throws NullPointerException if the specified key is null
781       *         and this map uses natural ordering, or its comparator
782       *         does not permit null keys
783 +     * @since 1.6
784       */
785      public K ceilingKey(K key) {
786          Entry<K,V> e = getCeilingEntry(key);
# Line 742 | Line 792 | public class TreeMap<K,V>
792       * @throws NullPointerException if the specified key is null
793       *         and this map uses natural ordering, or its comparator
794       *         does not permit null keys
795 +     * @since 1.6
796       */
797      public Map.Entry<K,V> higherEntry(K key) {
798          Entry<K,V> e = getHigherEntry(key);
799 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry(e);
799 >        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
800      }
801  
802      /**
# Line 753 | Line 804 | public class TreeMap<K,V>
804       * @throws NullPointerException if the specified key is null
805       *         and this map uses natural ordering, or its comparator
806       *         does not permit null keys
807 +     * @since 1.6
808       */
809      public K higherKey(K key) {
810          Entry<K,V> e = getHigherEntry(key);
# Line 766 | Line 818 | public class TreeMap<K,V>
818       * the first time this view is requested.  Views are stateless, so
819       * there's no reason to create more than one.
820       */
821 <    private transient Set<Map.Entry<K,V>> entrySet = null;
822 <    private transient Set<Map.Entry<K,V>> descendingEntrySet = null;
823 <    private transient Set<K> descendingKeySet = null;
821 >    private transient EntrySet entrySet = null;
822 >    private transient KeySet<K> navigableKeySet = null;
823 >    private transient NavigableMap<K,V> descendingMap = null;
824  
825      /**
826       * Returns a {@link Set} view of the keys contained in this map.
# Line 785 | Line 837 | public class TreeMap<K,V>
837       * operations.
838       */
839      public Set<K> keySet() {
840 <        Set<K> ks = keySet;
789 <        return (ks != null) ? ks : (keySet = new KeySet());
840 >        return navigableKeySet();
841      }
842  
843 <    class KeySet extends AbstractSet<K> {
844 <        public Iterator<K> iterator() {
845 <            return new KeyIterator(getFirstEntry());
846 <        }
847 <
848 <        public int size() {
849 <            return TreeMap.this.size();
799 <        }
800 <
801 <        public boolean contains(Object o) {
802 <            return containsKey(o);
803 <        }
804 <
805 <        public boolean remove(Object o) {
806 <            int oldSize = size;
807 <            TreeMap.this.remove(o);
808 <            return size != oldSize;
809 <        }
843 >    /**
844 >     * @since 1.6
845 >     */
846 >    public NavigableSet<K> navigableKeySet() {
847 >        KeySet<K> nks = navigableKeySet;
848 >        return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
849 >    }
850  
851 <        public void clear() {
852 <            TreeMap.this.clear();
853 <        }
851 >    /**
852 >     * @since 1.6
853 >     */
854 >    public NavigableSet<K> descendingKeySet() {
855 >        return descendingMap().navigableKeySet();
856      }
857  
858      /**
# Line 833 | Line 875 | public class TreeMap<K,V>
875          return (vs != null) ? vs : (values = new Values());
876      }
877  
878 +    /**
879 +     * Returns a {@link Set} view of the mappings contained in this map.
880 +     * The set's iterator returns the entries in ascending key order.
881 +     * The set is backed by the map, so changes to the map are
882 +     * reflected in the set, and vice-versa.  If the map is modified
883 +     * while an iteration over the set is in progress (except through
884 +     * the iterator's own <tt>remove</tt> operation, or through the
885 +     * <tt>setValue</tt> operation on a map entry returned by the
886 +     * iterator) the results of the iteration are undefined.  The set
887 +     * supports element removal, which removes the corresponding
888 +     * mapping from the map, via the <tt>Iterator.remove</tt>,
889 +     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
890 +     * <tt>clear</tt> operations.  It does not support the
891 +     * <tt>add</tt> or <tt>addAll</tt> operations.
892 +     */
893 +    public Set<Map.Entry<K,V>> entrySet() {
894 +        EntrySet es = entrySet;
895 +        return (es != null) ? es : (entrySet = new EntrySet());
896 +    }
897 +
898 +    /**
899 +     * @since 1.6
900 +     */
901 +    public NavigableMap<K, V> descendingMap() {
902 +        NavigableMap<K, V> km = descendingMap;
903 +        return (km != null) ? km :
904 +            (descendingMap = new DescendingSubMap(this,
905 +                                                  true, null, 0,
906 +                                                  true, null, 0));
907 +    }
908 +
909 +    /**
910 +     * @throws ClassCastException       {@inheritDoc}
911 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
912 +     *         null and this map uses natural ordering, or its comparator
913 +     *         does not permit null keys
914 +     * @throws IllegalArgumentException {@inheritDoc}
915 +     * @since 1.6
916 +     */
917 +    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
918 +                                    K toKey,   boolean toInclusive) {
919 +        return new AscendingSubMap(this,
920 +                                   false, fromKey, excluded(fromInclusive),
921 +                                   false, toKey,   excluded(toInclusive));
922 +    }
923 +
924 +    /**
925 +     * @throws ClassCastException       {@inheritDoc}
926 +     * @throws NullPointerException if <tt>toKey</tt> is null
927 +     *         and this map uses natural ordering, or its comparator
928 +     *         does not permit null keys
929 +     * @throws IllegalArgumentException {@inheritDoc}
930 +     * @since 1.6
931 +     */
932 +    public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
933 +        return new AscendingSubMap(this,
934 +                                   true,  null,  0,
935 +                                   false, toKey, excluded(inclusive));
936 +    }
937 +
938 +    /**
939 +     * @throws ClassCastException       {@inheritDoc}
940 +     * @throws NullPointerException if <tt>fromKey</tt> is null
941 +     *         and this map uses natural ordering, or its comparator
942 +     *         does not permit null keys
943 +     * @throws IllegalArgumentException {@inheritDoc}
944 +     * @since 1.6
945 +     */
946 +    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
947 +        return new AscendingSubMap(this,
948 +                                   false, fromKey, excluded(inclusive),
949 +                                   true,  null,    0);
950 +    }
951 +
952 +    /**
953 +     * Translates a boolean "inclusive" value to the correct int value
954 +     * for the loExcluded or hiExcluded field.
955 +     */
956 +    static int excluded(boolean inclusive) {
957 +        return inclusive ? 0 : 1;
958 +    }
959 +
960 +    /**
961 +     * @throws ClassCastException       {@inheritDoc}
962 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
963 +     *         null and this map uses natural ordering, or its comparator
964 +     *         does not permit null keys
965 +     * @throws IllegalArgumentException {@inheritDoc}
966 +     */
967 +    public SortedMap<K,V> subMap(K fromKey, K toKey) {
968 +        return subMap(fromKey, true, toKey, false);
969 +    }
970 +
971 +    /**
972 +     * @throws ClassCastException       {@inheritDoc}
973 +     * @throws NullPointerException if <tt>toKey</tt> is null
974 +     *         and this map uses natural ordering, or its comparator
975 +     *         does not permit null keys
976 +     * @throws IllegalArgumentException {@inheritDoc}
977 +     */
978 +    public SortedMap<K,V> headMap(K toKey) {
979 +        return headMap(toKey, false);
980 +    }
981 +
982 +    /**
983 +     * @throws ClassCastException       {@inheritDoc}
984 +     * @throws NullPointerException if <tt>fromKey</tt> is null
985 +     *         and this map uses natural ordering, or its comparator
986 +     *         does not permit null keys
987 +     * @throws IllegalArgumentException {@inheritDoc}
988 +     */
989 +    public SortedMap<K,V> tailMap(K fromKey) {
990 +        return tailMap(fromKey, true);
991 +    }
992 +
993 +    // View class support
994 +
995      class Values extends AbstractCollection<V> {
996          public Iterator<V> iterator() {
997              return new ValueIterator(getFirstEntry());
# Line 864 | Line 1023 | public class TreeMap<K,V>
1023          }
1024      }
1025  
867    /**
868     * Returns a {@link Set} view of the mappings contained in this map.
869     * The set's iterator returns the entries in ascending key order.
870     * The set is backed by the map, so changes to the map are
871     * reflected in the set, and vice-versa.  If the map is modified
872     * while an iteration over the set is in progress (except through
873     * the iterator's own <tt>remove</tt> operation, or through the
874     * <tt>setValue</tt> operation on a map entry returned by the
875     * iterator) the results of the iteration are undefined.  The set
876     * supports element removal, which removes the corresponding
877     * mapping from the map, via the <tt>Iterator.remove</tt>,
878     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
879     * <tt>clear</tt> operations.  It does not support the
880     * <tt>add</tt> or <tt>addAll</tt> operations.
881     */
882    public Set<Map.Entry<K,V>> entrySet() {
883        Set<Map.Entry<K,V>> es = entrySet;
884        return (es != null) ? es : (entrySet = new EntrySet());
885    }
886
1026      class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1027          public Iterator<Map.Entry<K,V>> iterator() {
1028              return new EntryIterator(getFirstEntry());
# Line 920 | Line 1059 | public class TreeMap<K,V>
1059          }
1060      }
1061  
1062 <    public Set<Map.Entry<K,V>> descendingEntrySet() {
1063 <        Set<Map.Entry<K,V>> es = descendingEntrySet;
1064 <        return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
1065 <    }
1062 >    /*
1063 >     * Unlike Values and EntrySet, the KeySet class is static,
1064 >     * delegating to a NavigableMap to allow use by SubMaps, which
1065 >     * outweighs the ugliness of needing type-tests for the following
1066 >     * Iterator methods that are defined appropriately in main versus
1067 >     * submap classes.
1068 >     */
1069  
1070 <    class DescendingEntrySet extends EntrySet {
1071 <        public Iterator<Map.Entry<K,V>> iterator() {
930 <            return new DescendingEntryIterator(getLastEntry());
931 <        }
1070 >    Iterator<K> keyIterator() {
1071 >        return new KeyIterator(getFirstEntry());
1072      }
1073  
1074 <    public Set<K> descendingKeySet() {
1075 <        Set<K> ks = descendingKeySet;
936 <        return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1074 >    Iterator<K> descendingKeyIterator() {
1075 >        return new DescendingKeyIterator(getFirstEntry());
1076      }
1077  
1078 <    class DescendingKeySet extends KeySet {
1079 <        public Iterator<K> iterator() {
1080 <            return new DescendingKeyIterator(getLastEntry());
1078 >    static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1079 >        private final NavigableMap<E, Object> m;
1080 >        KeySet(NavigableMap<E,Object> map) { m = map; }
1081 >
1082 >        public Iterator<E> iterator() {
1083 >            if (m instanceof TreeMap)
1084 >                return ((TreeMap<E,Object>)m).keyIterator();
1085 >            else
1086 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
1087          }
943    }
1088  
1089 <    /**
1090 <     * @throws ClassCastException       {@inheritDoc}
1091 <     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
1092 <     *         null and this map uses natural ordering, or its comparator
1093 <     *         does not permit null keys
1094 <     * @throws IllegalArgumentException {@inheritDoc}
1095 <     */
1096 <    public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1097 <        return new SubMap(fromKey, toKey);
1089 >        public Iterator<E> descendingIterator() {
1090 >            if (m instanceof TreeMap)
1091 >                return ((TreeMap<E,Object>)m).descendingKeyIterator();
1092 >            else
1093 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
1094 >        }
1095 >
1096 >        public int size() { return m.size(); }
1097 >        public boolean isEmpty() { return m.isEmpty(); }
1098 >        public boolean contains(Object o) { return m.containsKey(o); }
1099 >        public void clear() { m.clear(); }
1100 >        public E lower(E e) { return m.lowerKey(e); }
1101 >        public E floor(E e) { return m.floorKey(e); }
1102 >        public E ceiling(E e) { return m.ceilingKey(e); }
1103 >        public E higher(E e) { return m.higherKey(e); }
1104 >        public E first() { return m.firstKey(); }
1105 >        public E last() { return m.lastKey(); }
1106 >        public Comparator<? super E> comparator() { return m.comparator(); }
1107 >        public E pollFirst() {
1108 >            Map.Entry<E,Object> e = m.pollFirstEntry();
1109 >            return e == null? null : e.getKey();
1110 >        }
1111 >        public E pollLast() {
1112 >            Map.Entry<E,Object> e = m.pollLastEntry();
1113 >            return e == null? null : e.getKey();
1114 >        }
1115 >        public boolean remove(Object o) {
1116 >            int oldSize = size();
1117 >            m.remove(o);
1118 >            return size() != oldSize;
1119 >        }
1120 >        public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1121 >                                      E toElement, boolean toInclusive) {
1122 >            return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
1123 >                                           toElement,   toInclusive));
1124 >        }
1125 >        public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1126 >            return new TreeSet<E>(m.headMap(toElement, inclusive));
1127 >        }
1128 >        public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1129 >            return new TreeSet<E>(m.tailMap(fromElement, inclusive));
1130 >        }
1131 >        public SortedSet<E> subSet(E fromElement, E toElement) {
1132 >            return subSet(fromElement, true, toElement, false);
1133 >        }
1134 >        public SortedSet<E> headSet(E toElement) {
1135 >            return headSet(toElement, false);
1136 >        }
1137 >        public SortedSet<E> tailSet(E fromElement) {
1138 >            return tailSet(fromElement, true);
1139 >        }
1140 >        public NavigableSet<E> descendingSet() {
1141 >            return new TreeSet(m.descendingMap());
1142 >        }
1143      }
1144  
1145      /**
1146 <     * @throws ClassCastException       {@inheritDoc}
958 <     * @throws NullPointerException if <tt>toKey</tt> is null
959 <     *         and this map uses natural ordering, or its comparator
960 <     *         does not permit null keys
961 <     * @throws IllegalArgumentException {@inheritDoc}
1146 >     * Base class for TreeMap Iterators
1147       */
1148 <    public NavigableMap<K,V> navigableHeadMap(K toKey) {
1149 <        return new SubMap(toKey, true);
1148 >    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1149 >        Entry<K,V> next;
1150 >        Entry<K,V> lastReturned;
1151 >        int expectedModCount;
1152 >
1153 >        PrivateEntryIterator(Entry<K,V> first) {
1154 >            expectedModCount = modCount;
1155 >            lastReturned = null;
1156 >            next = first;
1157 >        }
1158 >
1159 >        public final boolean hasNext() {
1160 >            return next != null;
1161 >        }
1162 >
1163 >        final Entry<K,V> nextEntry() {
1164 >            Entry<K,V> e = lastReturned = next;
1165 >            if (e == null)
1166 >                throw new NoSuchElementException();
1167 >            if (modCount != expectedModCount)
1168 >                throw new ConcurrentModificationException();
1169 >            next = successor(e);
1170 >            return e;
1171 >        }
1172 >
1173 >        final Entry<K,V> prevEntry() {
1174 >            Entry<K,V> e = lastReturned= next;
1175 >            if (e == null)
1176 >                throw new NoSuchElementException();
1177 >            if (modCount != expectedModCount)
1178 >                throw new ConcurrentModificationException();
1179 >            next = predecessor(e);
1180 >            return e;
1181 >        }
1182 >
1183 >        public void remove() {
1184 >            if (lastReturned == null)
1185 >                throw new IllegalStateException();
1186 >            if (modCount != expectedModCount)
1187 >                throw new ConcurrentModificationException();
1188 >            if (lastReturned.left != null && lastReturned.right != null)
1189 >                next = lastReturned;
1190 >            deleteEntry(lastReturned);
1191 >            expectedModCount++;
1192 >            lastReturned = null;
1193 >        }
1194      }
1195  
1196 <    /**
1197 <     * @throws ClassCastException       {@inheritDoc}
1198 <     * @throws NullPointerException if <tt>fromKey</tt> is null
1199 <     *         and this map uses natural ordering, or its comparator
1200 <     *         does not permit null keys
1201 <     * @throws IllegalArgumentException {@inheritDoc}
1202 <     */
974 <    public NavigableMap<K,V> navigableTailMap(K fromKey) {
975 <        return new SubMap(fromKey, false);
1196 >    final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1197 >        EntryIterator(Entry<K,V> first) {
1198 >            super(first);
1199 >        }
1200 >        public Map.Entry<K,V> next() {
1201 >            return nextEntry();
1202 >        }
1203      }
1204  
1205 <    /**
1206 <     * Equivalent to {@link #navigableSubMap} but with a return type
1207 <     * conforming to the <tt>SortedMap</tt> interface.
1208 <     *
1209 <     * <p>{@inheritDoc}
1210 <     *
1211 <     * @throws ClassCastException       {@inheritDoc}
985 <     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
986 <     *         null and this map uses natural ordering, or its comparator
987 <     *         does not permit null keys
988 <     * @throws IllegalArgumentException {@inheritDoc}
989 <     */
990 <    public SortedMap<K,V> subMap(K fromKey, K toKey) {
991 <        return new SubMap(fromKey, toKey);
1205 >    final class ValueIterator extends PrivateEntryIterator<V> {
1206 >        ValueIterator(Entry<K,V> first) {
1207 >            super(first);
1208 >        }
1209 >        public V next() {
1210 >            return nextEntry().value;
1211 >        }
1212      }
1213  
1214 <    /**
1215 <     * Equivalent to {@link #navigableHeadMap} but with a return type
1216 <     * conforming to the <tt>SortedMap</tt> interface.
1217 <     *
1218 <     * <p>{@inheritDoc}
1219 <     *
1220 <     * @throws ClassCastException       {@inheritDoc}
1001 <     * @throws NullPointerException if <tt>toKey</tt> is null
1002 <     *         and this map uses natural ordering, or its comparator
1003 <     *         does not permit null keys
1004 <     * @throws IllegalArgumentException {@inheritDoc}
1005 <     */
1006 <    public SortedMap<K,V> headMap(K toKey) {
1007 <        return new SubMap(toKey, true);
1214 >    final class KeyIterator extends PrivateEntryIterator<K> {
1215 >        KeyIterator(Entry<K,V> first) {
1216 >            super(first);
1217 >        }
1218 >        public K next() {
1219 >            return nextEntry().key;
1220 >        }
1221      }
1222  
1223 <    /**
1224 <     * Equivalent to {@link #navigableTailMap} but with a return type
1225 <     * conforming to the <tt>SortedMap</tt> interface.
1226 <     *
1227 <     * <p>{@inheritDoc}
1228 <     *
1229 <     * @throws ClassCastException       {@inheritDoc}
1017 <     * @throws NullPointerException if <tt>fromKey</tt> is null
1018 <     *         and this map uses natural ordering, or its comparator
1019 <     *         does not permit null keys
1020 <     * @throws IllegalArgumentException {@inheritDoc}
1021 <     */
1022 <    public SortedMap<K,V> tailMap(K fromKey) {
1023 <        return new SubMap(fromKey, false);
1223 >    final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1224 >        DescendingKeyIterator(Entry<K,V> first) {
1225 >            super(first);
1226 >        }
1227 >        public K next() {
1228 >            return prevEntry().key;
1229 >        }
1230      }
1231  
1232 <    private class SubMap
1027 <        extends AbstractMap<K,V>
1028 <        implements NavigableMap<K,V>, java.io.Serializable {
1029 <        private static final long serialVersionUID = -6520786458950516097L;
1232 >    // SubMaps
1233  
1234 <        /**
1235 <         * fromKey is significant only if fromStart is false.  Similarly,
1236 <         * toKey is significant only if toStart is false.
1234 >    static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>
1235 >        implements NavigableMap<K,V>, java.io.Serializable {
1236 >
1237 >        /*
1238 >         * The backing map.
1239           */
1240 <        private boolean fromStart = false, toEnd = false;
1036 <        private K fromKey, toKey;
1240 >        final TreeMap<K,V> m;
1241  
1242 <        SubMap(K fromKey, K toKey) {
1243 <            if (compare(fromKey, toKey) > 0)
1244 <                throw new IllegalArgumentException("fromKey > toKey");
1245 <            this.fromKey = fromKey;
1246 <            this.toKey = toKey;
1247 <        }
1242 >        /*
1243 >         * Endpoints are represented as triples (fromStart, lo, loExcluded)
1244 >         * and (toEnd, hi, hiExcluded). If fromStart is true, then
1245 >         * the low (absolute) bound is the start of the backing map, and the
1246 >         * other values are ignored. Otherwise, if loExcluded is
1247 >         * zero, lo is the inclusive bound, else loExcluded is one,
1248 >         * and lo is the exclusive bound. Similarly for the upper bound.
1249 >         */
1250  
1251 <        SubMap(K key, boolean headMap) {
1252 <            compare(key, key); // Type-check key
1253 <
1254 <            if (headMap) {
1255 <                fromStart = true;
1256 <                toKey = key;
1257 <            } else {
1258 <                toEnd = true;
1259 <                fromKey = key;
1260 <            }
1261 <        }
1251 >        final K lo, hi;
1252 >        final boolean fromStart, toEnd;
1253 >        final int loExcluded, hiExcluded;
1254 >
1255 >        NavigableSubMap(TreeMap<K,V> m,
1256 >                        boolean fromStart, K lo, int loExcluded,
1257 >                        boolean toEnd,     K hi, int hiExcluded) {
1258 >            if (!fromStart && !toEnd) {
1259 >                if (m.compare(lo, hi) > 0)
1260 >                    throw new IllegalArgumentException("fromKey > toKey");
1261 >            }
1262 >            else if (!fromStart) // type check
1263 >                m.compare(lo, lo);
1264 >            else if (!toEnd)
1265 >                m.compare(hi, hi);
1266  
1267 <        SubMap(boolean fromStart, K fromKey, boolean toEnd, K toKey) {
1267 >            this.m = m;
1268              this.fromStart = fromStart;
1269 <            this.fromKey= fromKey;
1269 >            this.lo = lo;
1270 >            this.loExcluded = loExcluded;
1271              this.toEnd = toEnd;
1272 <            this.toKey = toKey;
1272 >            this.hi = hi;
1273 >            this.hiExcluded = hiExcluded;
1274          }
1275  
1276 <        public boolean isEmpty() {
1277 <            return entrySet().isEmpty();
1276 >        // internal utilities
1277 >
1278 >        final boolean inRange(Object key) {
1279 >            return (fromStart || m.compare(key, lo) >= loExcluded)
1280 >                && (toEnd || m.compare(hi, key) >= hiExcluded);
1281          }
1282  
1283 <        public boolean containsKey(Object key) {
1284 <            return inRange((K) key) && TreeMap.this.containsKey(key);
1283 >        final boolean inClosedRange(Object key) {
1284 >            return (fromStart || m.compare(key, lo) >= 0)
1285 >                && (toEnd || m.compare(hi, key) >= 0);
1286          }
1287  
1288 <        public V get(Object key) {
1289 <            if (!inRange((K) key))
1074 <                return null;
1075 <            return TreeMap.this.get(key);
1288 >        final boolean inRange(Object key, boolean inclusive) {
1289 >            return inclusive ? inRange(key) : inClosedRange(key);
1290          }
1291  
1292 <        public V put(K key, V value) {
1293 <            if (!inRange(key))
1080 <                throw new IllegalArgumentException("key out of range");
1081 <            return TreeMap.this.put(key, value);
1292 >        final boolean tooLow(K key) {
1293 >            return !fromStart && m.compare(key, lo) < loExcluded;
1294          }
1295  
1296 <        public V remove(Object key) {
1297 <            if (!inRange((K) key))
1086 <                return null;
1087 <            return TreeMap.this.remove(key);
1296 >        final boolean tooHigh(K key) {
1297 >            return !toEnd && m.compare(hi, key) < hiExcluded;
1298          }
1299  
1300 <        public Comparator<? super K> comparator() {
1301 <            return comparator;
1300 >        /** Returns the lowest entry in this submap (absolute ordering) */
1301 >        final TreeMap.Entry<K,V> loEntry() {
1302 >            TreeMap.Entry<K,V> result =
1303 >                (fromStart ?  m.getFirstEntry() :
1304 >                 (loExcluded == 0 ? m.getCeilingEntry(lo) :
1305 >                                    m.getHigherEntry(lo)));
1306 >            return (result == null || tooHigh(result.key)) ? null : result;
1307          }
1308  
1309 <        public K firstKey() {
1310 <            TreeMap.Entry<K,V> e = fromStart ? getFirstEntry() : getCeilingEntry(fromKey);
1311 <            K first = key(e);
1312 <            if (!toEnd && compare(first, toKey) >= 0)
1313 <                throw new NoSuchElementException();
1314 <            return first;
1309 >        /** Returns the highest key in this submap (absolute ordering) */
1310 >        final TreeMap.Entry<K,V> hiEntry() {
1311 >            TreeMap.Entry<K,V> result =
1312 >                (toEnd ?  m.getLastEntry() :
1313 >                 (hiExcluded == 0 ?  m.getFloorEntry(hi) :
1314 >                                     m.getLowerEntry(hi)));
1315 >            return (result == null || tooLow(result.key)) ? null : result;
1316          }
1317  
1318 <        public K lastKey() {
1319 <            TreeMap.Entry<K,V> e = toEnd ? getLastEntry() : getLowerEntry(toKey);
1320 <            K last = key(e);
1321 <            if (!fromStart && compare(last, fromKey) < 0)
1322 <                throw new NoSuchElementException();
1323 <            return last;
1318 >        /** Polls the lowest entry in this submap (absolute ordering) */
1319 >        final Map.Entry<K,V> pollLoEntry() {
1320 >            TreeMap.Entry<K,V> e = loEntry();
1321 >            if (e == null)
1322 >                return null;
1323 >            Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(e);
1324 >            m.deleteEntry(e);
1325 >            return result;
1326          }
1327  
1328 <        public Map.Entry<K,V> firstEntry() {
1329 <            TreeMap.Entry<K,V> e = fromStart ?
1330 <                getFirstEntry() : getCeilingEntry(fromKey);
1331 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1328 >        /** Polls the highest key in this submap (absolute ordering) */
1329 >        final Map.Entry<K,V> pollHiEntry() {
1330 >            TreeMap.Entry<K,V> e = hiEntry();
1331 >            if (e == null)
1332                  return null;
1333 <            return e;
1333 >            Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(e);
1334 >            m.deleteEntry(e);
1335 >            return result;
1336          }
1337  
1338 <        public Map.Entry<K,V> lastEntry() {
1339 <            TreeMap.Entry<K,V> e = toEnd ?
1340 <                getLastEntry() : getLowerEntry(toKey);
1341 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1338 >        /**
1339 >         * Return the absolute high fence for ascending traversal
1340 >         */
1341 >        final TreeMap.Entry<K,V> hiFence() {
1342 >            if (toEnd)
1343                  return null;
1344 <            return e;
1344 >            else if (hiExcluded == 0)
1345 >                 return m.getHigherEntry(hi);
1346 >            else
1347 >                return m.getCeilingEntry(hi);
1348          }
1349  
1350 <        public Map.Entry<K,V> pollFirstEntry() {
1351 <            TreeMap.Entry<K,V> e = fromStart ?
1352 <                getFirstEntry() : getCeilingEntry(fromKey);
1353 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1350 >        /**
1351 >         * Return the absolute low fence for descending traversal
1352 >         */
1353 >        final TreeMap.Entry<K,V> loFence() {
1354 >            if (fromStart)
1355                  return null;
1356 <            Map.Entry result = new AbstractMap.SimpleImmutableEntry(e);
1357 <            deleteEntry(e);
1358 <            return result;
1356 >            else if (loExcluded == 0)
1357 >                return m.getLowerEntry(lo);
1358 >            else
1359 >                return m.getFloorEntry(lo);
1360          }
1361  
1362 <        public Map.Entry<K,V> pollLastEntry() {
1363 <            TreeMap.Entry<K,V> e = toEnd ?
1364 <                getLastEntry() : getLowerEntry(toKey);
1365 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1362 >
1363 >        public boolean isEmpty() {
1364 >            return entrySet().isEmpty();
1365 >        }
1366 >
1367 >        public boolean containsKey(Object key) {
1368 >            return inRange(key) && m.containsKey(key);
1369 >        }
1370 >
1371 >        public V get(Object key) {
1372 >            if (!inRange(key))
1373                  return null;
1374 <            Map.Entry result = new AbstractMap.SimpleImmutableEntry(e);
1142 <            deleteEntry(e);
1143 <            return result;
1374 >            return m.get(key);
1375          }
1376  
1377 <        private TreeMap.Entry<K,V> subceiling(K key) {
1378 <            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1379 <                getCeilingEntry(fromKey) : getCeilingEntry(key);
1380 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1377 >        public V put(K key, V value) {
1378 >            if (!inRange(key))
1379 >                throw new IllegalArgumentException("key out of range");
1380 >            return m.put(key, value);
1381 >        }
1382 >
1383 >        public V remove(Object key) {
1384 >            if (!inRange(key))
1385                  return null;
1386 <            return e;
1386 >            return m.remove(key);
1387          }
1388  
1389          public Map.Entry<K,V> ceilingEntry(K key) {
1390 <            TreeMap.Entry<K,V> e = subceiling(key);
1391 <            return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1390 >            TreeMap.Entry<K,V> e = subCeiling(key);
1391 >            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1392          }
1393  
1394          public K ceilingKey(K key) {
1395 <            TreeMap.Entry<K,V> e = subceiling(key);
1395 >            TreeMap.Entry<K,V> e = subCeiling(key);
1396              return e == null? null : e.key;
1397          }
1398  
1164
1165        private TreeMap.Entry<K,V> subhigher(K key) {
1166            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1167                getCeilingEntry(fromKey) : getHigherEntry(key);
1168            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1169                return null;
1170            return e;
1171        }
1172
1399          public Map.Entry<K,V> higherEntry(K key) {
1400 <            TreeMap.Entry<K,V> e = subhigher(key);
1401 <            return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1400 >            TreeMap.Entry<K,V> e = subHigher(key);
1401 >            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1402          }
1403  
1404          public K higherKey(K key) {
1405 <            TreeMap.Entry<K,V> e = subhigher(key);
1405 >            TreeMap.Entry<K,V> e = subHigher(key);
1406              return e == null? null : e.key;
1407          }
1408  
1183        private TreeMap.Entry<K,V> subfloor(K key) {
1184            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1185                getLowerEntry(toKey) : getFloorEntry(key);
1186            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1187                return null;
1188            return e;
1189        }
1190
1409          public Map.Entry<K,V> floorEntry(K key) {
1410 <            TreeMap.Entry<K,V> e = subfloor(key);
1411 <            return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1410 >            TreeMap.Entry<K,V> e = subFloor(key);
1411 >            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1412          }
1413  
1414          public K floorKey(K key) {
1415 <            TreeMap.Entry<K,V> e = subfloor(key);
1415 >            TreeMap.Entry<K,V> e = subFloor(key);
1416              return e == null? null : e.key;
1417          }
1418  
1201        private TreeMap.Entry<K,V> sublower(K key) {
1202            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1203                getLowerEntry(toKey) :  getLowerEntry(key);
1204            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1205                return null;
1206            return e;
1207        }
1208
1419          public Map.Entry<K,V> lowerEntry(K key) {
1420 <            TreeMap.Entry<K,V> e = sublower(key);
1421 <            return e == null? null : new AbstractMap.SimpleImmutableEntry(e);
1420 >            TreeMap.Entry<K,V> e = subLower(key);
1421 >            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1422          }
1423  
1424          public K lowerKey(K key) {
1425 <            TreeMap.Entry<K,V> e = sublower(key);
1425 >            TreeMap.Entry<K,V> e = subLower(key);
1426              return e == null? null : e.key;
1427          }
1428  
1429 <        private transient Set<Map.Entry<K,V>> entrySet = null;
1429 >        abstract Iterator<K> keyIterator();
1430 >        abstract Iterator<K> descendingKeyIterator();
1431  
1432 <        public Set<Map.Entry<K,V>> entrySet() {
1433 <            Set<Map.Entry<K,V>> es = entrySet;
1223 <            return (es != null)? es : (entrySet = new EntrySetView());
1432 >        public NavigableSet<K> descendingKeySet() {
1433 >            return descendingMap().navigableKeySet();
1434          }
1435  
1436 <        private class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1436 >        // Views
1437 >        transient NavigableMap<K,V> descendingMapView = null;
1438 >        transient EntrySetView entrySetView = null;
1439 >        transient KeySet<K> navigableKeySetView = null;
1440 >
1441 >        abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1442              private transient int size = -1, sizeModCount;
1443  
1444              public int size() {
1445 <                if (size == -1 || sizeModCount != TreeMap.this.modCount) {
1446 <                    size = 0;  sizeModCount = TreeMap.this.modCount;
1445 >                if (fromStart && toEnd)
1446 >                    return m.size();
1447 >                if (size == -1 || sizeModCount != m.modCount) {
1448 >                    sizeModCount = m.modCount;
1449 >                    size = 0;
1450                      Iterator i = iterator();
1451                      while (i.hasNext()) {
1452                          size++;
# Line 1239 | Line 1457 | public class TreeMap<K,V>
1457              }
1458  
1459              public boolean isEmpty() {
1460 <                return !iterator().hasNext();
1460 >                TreeMap.Entry<K,V> n = loEntry();
1461 >                return n == null || tooHigh(n.key);
1462              }
1463  
1464              public boolean contains(Object o) {
# Line 1249 | Line 1468 | public class TreeMap<K,V>
1468                  K key = entry.getKey();
1469                  if (!inRange(key))
1470                      return false;
1471 <                TreeMap.Entry node = getEntry(key);
1471 >                TreeMap.Entry node = m.getEntry(key);
1472                  return node != null &&
1473 <                       valEquals(node.getValue(), entry.getValue());
1473 >                    valEquals(node.getValue(), entry.getValue());
1474              }
1475  
1476              public boolean remove(Object o) {
# Line 1261 | Line 1480 | public class TreeMap<K,V>
1480                  K key = entry.getKey();
1481                  if (!inRange(key))
1482                      return false;
1483 <                TreeMap.Entry<K,V> node = getEntry(key);
1483 >                TreeMap.Entry<K,V> node = m.getEntry(key);
1484                  if (node!=null && valEquals(node.getValue(),entry.getValue())){
1485 <                    deleteEntry(node);
1485 >                    m.deleteEntry(node);
1486                      return true;
1487                  }
1488                  return false;
1489              }
1490 +        }
1491  
1492 <            public Iterator<Map.Entry<K,V>> iterator() {
1493 <                return new SubMapEntryIterator(
1494 <                    (fromStart ? getFirstEntry() : getCeilingEntry(fromKey)),
1495 <                    (toEnd     ? null            : getCeilingEntry(toKey)));
1276 <            }
1492 >        public NavigableSet<K> navigableKeySet() {
1493 >            KeySet<K> nksv = navigableKeySetView;
1494 >            return (nksv != null) ? nksv :
1495 >                (navigableKeySetView = new TreeMap.KeySet(this));
1496          }
1497  
1498 <        private transient Set<Map.Entry<K,V>> descendingEntrySetView = null;
1499 <        private transient Set<K> descendingKeySetView = null;
1498 >        public Set<K> keySet() {
1499 >            return navigableKeySet();
1500 >        }
1501  
1502 <        public Set<Map.Entry<K,V>> descendingEntrySet() {
1503 <            Set<Map.Entry<K,V>> es = descendingEntrySetView;
1284 <            return (es != null) ? es :
1285 <                (descendingEntrySetView = new DescendingEntrySetView());
1502 >        public SortedMap<K,V> subMap(K fromKey, K toKey) {
1503 >            return subMap(fromKey, true, toKey, false);
1504          }
1505  
1506 <        public Set<K> descendingKeySet() {
1507 <            Set<K> ks = descendingKeySetView;
1290 <            return (ks != null) ? ks :
1291 <                (descendingKeySetView = new DescendingKeySetView());
1506 >        public SortedMap<K,V> headMap(K toKey) {
1507 >            return headMap(toKey, false);
1508          }
1509  
1510 <        private class DescendingEntrySetView extends EntrySetView {
1511 <            public Iterator<Map.Entry<K,V>> iterator() {
1512 <                return new DescendingSubMapEntryIterator
1513 <                    ((toEnd     ? getLastEntry()  : getLowerEntry(toKey)),
1514 <                     (fromStart ? null            : getLowerEntry(fromKey)));
1510 >        public SortedMap<K,V> tailMap(K fromKey) {
1511 >            return tailMap(fromKey, true);
1512 >        }
1513 >
1514 >        // The following four definitions are correct only for
1515 >        // ascending submaps. They are overridden in DescendingSubMap.
1516 >        // They are defined in the base class because the definitions
1517 >        // in DescendingSubMap rely on those for AscendingSubMap.
1518 >
1519 >        /**
1520 >         * Returns the entry corresponding to the ceiling of the specified
1521 >         * key from the perspective of this submap, or null if the submap
1522 >         * contains no such entry.
1523 >         */
1524 >        TreeMap.Entry<K,V> subCeiling(K key) {
1525 >            if (tooLow(key))
1526 >                return loEntry();
1527 >            TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1528 >            return (e == null || tooHigh(e.key)) ? null : e;
1529 >        }
1530 >
1531 >        /**
1532 >         * Returns the entry corresponding to the higher of the specified
1533 >         * key from the perspective of this submap, or null if the submap
1534 >         * contains no such entry.
1535 >         */
1536 >        TreeMap.Entry<K,V> subHigher(K key) {
1537 >            if (tooLow(key))
1538 >                return loEntry();
1539 >            TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1540 >            return (e == null || tooHigh(e.key)) ? null : e;
1541 >        }
1542 >
1543 >        /**
1544 >         * Returns the entry corresponding to the floor of the specified
1545 >         * key from the perspective of this submap, or null if the submap
1546 >         * contains no such entry.
1547 >         */
1548 >        TreeMap.Entry<K,V> subFloor(K key) {
1549 >            if (tooHigh(key))
1550 >                return hiEntry();
1551 >            TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1552 >            return (e == null || tooLow(e.key)) ? null : e;
1553 >        }
1554 >
1555 >        /**
1556 >         * Returns the entry corresponding to the lower of the specified
1557 >         * key from the perspective of this submap, or null if the submap
1558 >         * contains no such entry.
1559 >         */
1560 >        TreeMap.Entry<K,V> subLower(K key) {
1561 >            if (tooHigh(key))
1562 >                return hiEntry();
1563 >            TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1564 >            return (e == null || tooLow(e.key)) ? null : e;
1565 >        }
1566 >
1567 >        /**
1568 >         * Iterators for SubMaps
1569 >         */
1570 >        abstract class SubMapIterator<T> implements Iterator<T> {
1571 >            TreeMap.Entry<K,V> lastReturned;
1572 >            TreeMap.Entry<K,V> next;
1573 >            final K fenceKey;
1574 >            int expectedModCount;
1575 >
1576 >            SubMapIterator(TreeMap.Entry<K,V> first,
1577 >                           TreeMap.Entry<K,V> fence) {
1578 >                expectedModCount = m.modCount;
1579 >                lastReturned = null;
1580 >                next = first;
1581 >                fenceKey = fence == null ? null : fence.key;
1582 >            }
1583 >
1584 >            public final boolean hasNext() {
1585 >                return next != null && next.key != fenceKey;
1586 >            }
1587 >
1588 >            final TreeMap.Entry<K,V> nextEntry() {
1589 >                TreeMap.Entry<K,V> e = lastReturned = next;
1590 >                if (e == null || e.key == fenceKey)
1591 >                    throw new NoSuchElementException();
1592 >                if (m.modCount != expectedModCount)
1593 >                    throw new ConcurrentModificationException();
1594 >                next = successor(e);
1595 >                return e;
1596 >            }
1597 >
1598 >            final TreeMap.Entry<K,V> prevEntry() {
1599 >                TreeMap.Entry<K,V> e = lastReturned = next;
1600 >                if (e == null || e.key == fenceKey)
1601 >                    throw new NoSuchElementException();
1602 >                if (m.modCount != expectedModCount)
1603 >                    throw new ConcurrentModificationException();
1604 >                next = predecessor(e);
1605 >                return e;
1606 >            }
1607 >
1608 >            public void remove() {
1609 >                if (lastReturned == null)
1610 >                    throw new IllegalStateException();
1611 >                if (m.modCount != expectedModCount)
1612 >                    throw new ConcurrentModificationException();
1613 >                if (lastReturned.left != null && lastReturned.right != null)
1614 >                    next = lastReturned;
1615 >                m.deleteEntry(lastReturned);
1616 >                expectedModCount++;
1617 >                lastReturned = null;
1618              }
1619          }
1620  
1621 <        private class DescendingKeySetView extends AbstractSet<K> {
1622 <            public Iterator<K> iterator() {
1623 <                return new Iterator<K>() {
1624 <                    private Iterator<Entry<K,V>> i = descendingEntrySet().iterator();
1621 >        final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1622 >            SubMapEntryIterator(TreeMap.Entry<K,V> first,
1623 >                                TreeMap.Entry<K,V> fence) {
1624 >                super(first, fence);
1625 >            }
1626 >            public Map.Entry<K,V> next() {
1627 >                return nextEntry();
1628 >            }
1629 >        }
1630  
1631 <                    public boolean hasNext() { return i.hasNext(); }
1632 <                    public K next() { return i.next().getKey(); }
1633 <                    public void remove() { i.remove(); }
1634 <                };
1631 >        final class SubMapKeyIterator extends SubMapIterator<K> {
1632 >            SubMapKeyIterator(TreeMap.Entry<K,V> first,
1633 >                              TreeMap.Entry<K,V> fence) {
1634 >                super(first, fence);
1635              }
1636 +            public K next() {
1637 +                return nextEntry().key;
1638 +            }
1639 +        }
1640  
1641 <            public int size() {
1642 <                return SubMap.this.size();
1641 >        final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1642 >            DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1643 >                                          TreeMap.Entry<K,V> lastExcluded) {
1644 >                super(last, lastExcluded);
1645 >            }
1646 >
1647 >            public Map.Entry<K,V> next() {
1648 >                return prevEntry();
1649              }
1650 +        }
1651  
1652 <            public boolean contains(Object k) {
1653 <                return SubMap.this.containsKey(k);
1652 >        final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
1653 >            DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1654 >                                        TreeMap.Entry<K,V> lastExcluded) {
1655 >                super(last, lastExcluded);
1656 >            }
1657 >            public K next() {
1658 >                return prevEntry().key;
1659              }
1660          }
1661 +    }
1662 +
1663 +    static class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1664 +        private static final long serialVersionUID = 912986545866124060L;
1665  
1666 <        public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1667 <            if (!inRange2(fromKey))
1666 >        AscendingSubMap(TreeMap<K,V> m,
1667 >                        boolean fromStart, K lo, int loExcluded,
1668 >                        boolean toEnd, K hi, int hiExcluded) {
1669 >            super(m, fromStart, lo, loExcluded, toEnd, hi, hiExcluded);
1670 >        }
1671 >
1672 >        public Comparator<? super K> comparator() {
1673 >            return m.comparator();
1674 >        }
1675 >
1676 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1677 >                                        K toKey, boolean toInclusive) {
1678 >            if (!inRange(fromKey, fromInclusive))
1679                  throw new IllegalArgumentException("fromKey out of range");
1680 <            if (!inRange2(toKey))
1680 >            if (!inRange(toKey, toInclusive))
1681                  throw new IllegalArgumentException("toKey out of range");
1682 <            return new SubMap(fromKey, toKey);
1682 >            return new AscendingSubMap(m,
1683 >                                       false, fromKey, excluded(fromInclusive),
1684 >                                       false, toKey,   excluded(toInclusive));
1685          }
1686  
1687 <        public NavigableMap<K,V> navigableHeadMap(K toKey) {
1688 <            if (!inRange2(toKey))
1687 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1688 >            if (!inClosedRange(toKey))
1689                  throw new IllegalArgumentException("toKey out of range");
1690 <            return new SubMap(fromStart, fromKey, false, toKey);
1690 >            return new AscendingSubMap(m,
1691 >                                       fromStart, lo,    loExcluded,
1692 >                                       false,     toKey, excluded(inclusive));
1693          }
1694  
1695 <        public NavigableMap<K,V> navigableTailMap(K fromKey) {
1696 <            if (!inRange2(fromKey))
1695 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1696 >            if (!inRange(fromKey, inclusive))
1697                  throw new IllegalArgumentException("fromKey out of range");
1698 <            return new SubMap(false, fromKey, toEnd, toKey);
1698 >            return new AscendingSubMap(m,
1699 >                                       false, fromKey, excluded(inclusive),
1700 >                                       toEnd, hi,      hiExcluded);
1701          }
1702  
1703 <        public SortedMap<K,V> subMap(K fromKey, K toKey) {
1704 <            return navigableSubMap(fromKey, toKey);
1703 >        Iterator<K> keyIterator() {
1704 >            return new SubMapKeyIterator(loEntry(), hiFence());
1705          }
1706  
1707 <        public SortedMap<K,V> headMap(K toKey) {
1708 <            return navigableHeadMap(toKey);
1707 >        Iterator<K> descendingKeyIterator() {
1708 >            return new DescendingSubMapKeyIterator(hiEntry(), loFence());
1709          }
1710  
1711 <        public SortedMap<K,V> tailMap(K fromKey) {
1712 <            return navigableTailMap(fromKey);
1711 >        class AscendingEntrySetView extends NavigableSubMap.EntrySetView {
1712 >            public Iterator<Map.Entry<K,V>> iterator() {
1713 >                return new SubMapEntryIterator(loEntry(), hiFence());
1714 >            }
1715          }
1716  
1717 <        private boolean inRange(K key) {
1718 <            return (fromStart || compare(key, fromKey) >= 0) &&
1719 <                   (toEnd     || compare(key, toKey)   <  0);
1717 >        public Set<Map.Entry<K,V>> entrySet() {
1718 >            EntrySetView es = entrySetView;
1719 >            return (es != null) ? es : new AscendingEntrySetView();
1720          }
1721  
1722 <        // This form allows the high endpoint (as well as all legit keys)
1723 <        private boolean inRange2(K key) {
1361 <            return (fromStart || compare(key, fromKey) >= 0) &&
1362 <                   (toEnd     || compare(key, toKey)   <= 0);
1722 >        public K firstKey() {
1723 >            return key(loEntry());
1724          }
1364    }
1725  
1726 <    /**
1727 <     * TreeMap Iterator.
1368 <     */
1369 <    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1370 <        int expectedModCount = TreeMap.this.modCount;
1371 <        Entry<K,V> lastReturned = null;
1372 <        Entry<K,V> next;
1373 <
1374 <        PrivateEntryIterator(Entry<K,V> first) {
1375 <            next = first;
1726 >        public K lastKey() {
1727 >            return key(hiEntry());
1728          }
1729  
1730 <        public boolean hasNext() {
1731 <            return next != null;
1730 >        public Map.Entry<K,V> firstEntry() {
1731 >            return loEntry();
1732          }
1733  
1734 <        Entry<K,V> nextEntry() {
1735 <            if (next == null)
1384 <                throw new NoSuchElementException();
1385 <            if (modCount != expectedModCount)
1386 <                throw new ConcurrentModificationException();
1387 <            lastReturned = next;
1388 <            next = successor(next);
1389 <            return lastReturned;
1734 >        public Map.Entry<K,V> lastEntry() {
1735 >            return hiEntry();
1736          }
1737  
1738 <        public void remove() {
1739 <            if (lastReturned == null)
1394 <                throw new IllegalStateException();
1395 <            if (modCount != expectedModCount)
1396 <                throw new ConcurrentModificationException();
1397 <            if (lastReturned.left != null && lastReturned.right != null)
1398 <                next = lastReturned;
1399 <            deleteEntry(lastReturned);
1400 <            expectedModCount++;
1401 <            lastReturned = null;
1738 >        public Map.Entry<K,V> pollFirstEntry() {
1739 >            return pollLoEntry();
1740          }
1403    }
1741  
1742 <    class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1743 <        EntryIterator(Entry<K,V> first) {
1407 <            super(first);
1742 >        public Map.Entry<K,V> pollLastEntry() {
1743 >            return pollHiEntry();
1744          }
1745 <        public Map.Entry<K,V> next() {
1746 <            return nextEntry();
1745 >
1746 >        public NavigableMap<K,V> descendingMap() {
1747 >            NavigableMap<K,V> mv = descendingMapView;
1748 >            return (mv != null) ? mv :
1749 >                (descendingMapView =
1750 >                 new DescendingSubMap(m,
1751 >                                      fromStart, lo, loExcluded,
1752 >                                      toEnd,     hi, hiExcluded));
1753          }
1754      }
1755  
1756 <    class KeyIterator extends PrivateEntryIterator<K> {
1757 <        KeyIterator(Entry<K,V> first) {
1758 <            super(first);
1756 >    static class DescendingSubMap<K,V> extends NavigableSubMap<K,V> {
1757 >        private static final long serialVersionUID = 912986545866120460L;
1758 >        DescendingSubMap(TreeMap<K,V> m,
1759 >                        boolean fromStart, K lo, int loExcluded,
1760 >                        boolean toEnd, K hi, int hiExcluded) {
1761 >            super(m, fromStart, lo, loExcluded, toEnd, hi, hiExcluded);
1762          }
1763 <        public K next() {
1764 <            return nextEntry().key;
1763 >
1764 >        private final Comparator<? super K> reverseComparator =
1765 >            Collections.reverseOrder(m.comparator);
1766 >
1767 >        public Comparator<? super K> comparator() {
1768 >            return reverseComparator;
1769          }
1421    }
1770  
1771 <    class ValueIterator extends PrivateEntryIterator<V> {
1772 <        ValueIterator(Entry<K,V> first) {
1773 <            super(first);
1771 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1772 >                                        K toKey, boolean toInclusive) {
1773 >            if (!inRange(fromKey, fromInclusive))
1774 >                throw new IllegalArgumentException("fromKey out of range");
1775 >            if (!inRange(toKey, toInclusive))
1776 >                throw new IllegalArgumentException("toKey out of range");
1777 >            return new DescendingSubMap(m,
1778 >                                        false, toKey,   excluded(toInclusive),
1779 >                                        false, fromKey, excluded(fromInclusive));
1780          }
1781 <        public V next() {
1782 <            return nextEntry().value;
1781 >
1782 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1783 >            if (!inRange(toKey, inclusive))
1784 >                throw new IllegalArgumentException("toKey out of range");
1785 >            return new DescendingSubMap(m,
1786 >                                        false, toKey, excluded(inclusive),
1787 >                                        toEnd, hi,    hiExcluded);
1788          }
1430    }
1789  
1790 <    class SubMapEntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1791 <        private final K firstExcludedKey;
1790 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1791 >            if (!inRange(fromKey, inclusive))
1792 >                throw new IllegalArgumentException("fromKey out of range");
1793 >            return new DescendingSubMap(m,
1794 >                                        fromStart, lo, loExcluded,
1795 >                                        false, fromKey, excluded(inclusive));
1796 >        }
1797  
1798 <        SubMapEntryIterator(Entry<K,V> first, Entry<K,V> firstExcluded) {
1799 <            super(first);
1437 <            firstExcludedKey = (firstExcluded == null
1438 <                                ? null
1439 <                                : firstExcluded.key);
1798 >        Iterator<K> keyIterator() {
1799 >            return new DescendingSubMapKeyIterator(hiEntry(), loFence());
1800          }
1801  
1802 <        public boolean hasNext() {
1803 <            return next != null && next.key != firstExcludedKey;
1802 >        Iterator<K> descendingKeyIterator() {
1803 >            return new SubMapKeyIterator(loEntry(), hiFence());
1804          }
1805  
1806 <        public Map.Entry<K,V> next() {
1807 <            if (next == null || next.key == firstExcludedKey)
1808 <                throw new NoSuchElementException();
1809 <            return nextEntry();
1806 >        class DescendingEntrySetView extends NavigableSubMap.EntrySetView {
1807 >            public Iterator<Map.Entry<K,V>> iterator() {
1808 >                return new DescendingSubMapEntryIterator(hiEntry(), loFence());
1809 >            }
1810          }
1451    }
1811  
1812 <    /**
1813 <     * Base for Descending Iterators.
1814 <     */
1456 <    abstract class DescendingPrivateEntryIterator<T> extends PrivateEntryIterator<T> {
1457 <        DescendingPrivateEntryIterator(Entry<K,V> first) {
1458 <            super(first);
1812 >        public Set<Map.Entry<K,V>> entrySet() {
1813 >            EntrySetView es = entrySetView;
1814 >            return (es != null) ? es : new DescendingEntrySetView();
1815          }
1816  
1817 <        Entry<K,V> nextEntry() {
1818 <            if (next == null)
1463 <                throw new NoSuchElementException();
1464 <            if (modCount != expectedModCount)
1465 <                throw new ConcurrentModificationException();
1466 <            lastReturned = next;
1467 <            next = predecessor(next);
1468 <            return lastReturned;
1817 >        public K firstKey() {
1818 >            return key(hiEntry());
1819          }
1470    }
1820  
1821 <    class DescendingEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1822 <        DescendingEntryIterator(Entry<K,V> first) {
1474 <            super(first);
1821 >        public K lastKey() {
1822 >            return key(loEntry());
1823          }
1824 <        public Map.Entry<K,V> next() {
1825 <            return nextEntry();
1824 >
1825 >        public Map.Entry<K,V> firstEntry() {
1826 >            return hiEntry();
1827          }
1479    }
1828  
1829 <    class DescendingKeyIterator extends DescendingPrivateEntryIterator<K> {
1830 <        DescendingKeyIterator(Entry<K,V> first) {
1483 <            super(first);
1829 >        public Map.Entry<K,V> lastEntry() {
1830 >            return loEntry();
1831          }
1832 <        public K next() {
1833 <            return nextEntry().key;
1832 >
1833 >        public Map.Entry<K,V> pollFirstEntry() {
1834 >            return pollHiEntry();
1835          }
1488    }
1836  
1837 +        public Map.Entry<K,V> pollLastEntry() {
1838 +            return pollLoEntry();
1839 +        }
1840  
1841 <    class DescendingSubMapEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1842 <        private final K lastExcludedKey;
1841 >        public NavigableMap<K,V> descendingMap() {
1842 >            NavigableMap<K,V> mv = descendingMapView;
1843 >            return (mv != null) ? mv :
1844 >                (descendingMapView =
1845 >                 new AscendingSubMap(m,
1846 >                                     fromStart, lo, loExcluded,
1847 >                                     toEnd, hi, hiExcluded));
1848 >        }
1849  
1850 <        DescendingSubMapEntryIterator(Entry<K,V> last, Entry<K,V> lastExcluded) {
1851 <            super(last);
1496 <            lastExcludedKey = (lastExcluded == null
1497 <                                ? null
1498 <                                : lastExcluded.key);
1850 >        @Override TreeMap.Entry<K,V> subCeiling(K key) {
1851 >            return super.subFloor(key);
1852          }
1853  
1854 <        public boolean hasNext() {
1855 <            return next != null && next.key != lastExcludedKey;
1854 >        @Override TreeMap.Entry<K,V> subHigher(K key) {
1855 >            return super.subLower(key);
1856          }
1857  
1858 <        public Map.Entry<K,V> next() {
1859 <            if (next == null || next.key == lastExcludedKey)
1507 <                throw new NoSuchElementException();
1508 <            return nextEntry();
1858 >        @Override TreeMap.Entry<K,V> subFloor(K key) {
1859 >            return super.subCeiling(key);
1860          }
1861  
1862 +        @Override TreeMap.Entry<K,V> subLower(K key) {
1863 +            return super.subHigher(key);
1864 +        }
1865      }
1866  
1867      /**
1868       * Compares two keys using the correct comparison method for this TreeMap.
1869       */
1870 <    private int compare(K k1, K k2) {
1871 <        return comparator==null ? ((Comparable<? super K>)k1).compareTo(k2)
1872 <                                : comparator.compare(k1, k2);
1870 >    final int compare(Object k1, Object k2) {
1871 >        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1872 >            : comparator.compare((K)k1, (K)k2);
1873      }
1874  
1875      /**
1876 <     * Test two values  for equality.  Differs from o1.equals(o2) only in
1876 >     * Test two values for equality.  Differs from o1.equals(o2) only in
1877       * that it copes with <tt>null</tt> o1 properly.
1878       */
1879 <    private static boolean valEquals(Object o1, Object o2) {
1879 >    final static boolean valEquals(Object o1, Object o2) {
1880          return (o1==null ? o2==null : o1.equals(o2));
1881      }
1882  
1883 +    /**
1884 +     * This class exists solely for the sake of serialization
1885 +     * compatibility with previous releases of TreeMap that did not
1886 +     * support NavigableMap.  It translates an old-version SubMap into
1887 +     * a new-version AscendingSubMap. This class is never otherwise
1888 +     * used.
1889 +     */
1890 +    private class SubMap extends AbstractMap<K,V>
1891 +        implements SortedMap<K,V>, java.io.Serializable {
1892 +        private static final long serialVersionUID = -6520786458950516097L;
1893 +        private boolean fromStart = false, toEnd = false;
1894 +        private K fromKey, toKey;
1895 +        private Object readResolve() {
1896 +            return new AscendingSubMap(TreeMap.this,
1897 +                                       fromStart, fromKey, 0,
1898 +                                       toEnd, toKey, 1);
1899 +        }
1900 +        public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1901 +        public K lastKey() { throw new InternalError(); }
1902 +        public K firstKey() { throw new InternalError(); }
1903 +        public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1904 +        public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1905 +        public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1906 +        public Comparator<? super K> comparator() { throw new InternalError(); }
1907 +    }
1908 +
1909 +
1910      private static final boolean RED   = false;
1911      private static final boolean BLACK = true;
1912  
# Line 1534 | Line 1915 | public class TreeMap<K,V>
1915       * user (see Map.Entry).
1916       */
1917  
1918 <    static class Entry<K,V> implements Map.Entry<K,V> {
1918 >    static final class Entry<K,V> implements Map.Entry<K,V> {
1919          K key;
1920          V value;
1921          Entry<K,V> left = null;
# Line 1606 | Line 1987 | public class TreeMap<K,V>
1987       * Returns the first Entry in the TreeMap (according to the TreeMap's
1988       * key-sort function).  Returns null if the TreeMap is empty.
1989       */
1990 <    private Entry<K,V> getFirstEntry() {
1990 >    final Entry<K,V> getFirstEntry() {
1991          Entry<K,V> p = root;
1992          if (p != null)
1993              while (p.left != null)
# Line 1618 | Line 1999 | public class TreeMap<K,V>
1999       * Returns the last Entry in the TreeMap (according to the TreeMap's
2000       * key-sort function).  Returns null if the TreeMap is empty.
2001       */
2002 <    private Entry<K,V> getLastEntry() {
2002 >    final Entry<K,V> getLastEntry() {
2003          Entry<K,V> p = root;
2004          if (p != null)
2005              while (p.right != null)
# Line 1629 | Line 2010 | public class TreeMap<K,V>
2010      /**
2011       * Returns the successor of the specified Entry, or null if no such.
2012       */
2013 <    private Entry<K,V> successor(Entry<K,V> t) {
2013 >    static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
2014          if (t == null)
2015              return null;
2016          else if (t.right != null) {
# Line 1651 | Line 2032 | public class TreeMap<K,V>
2032      /**
2033       * Returns the predecessor of the specified Entry, or null if no such.
2034       */
2035 <    private Entry<K,V> predecessor(Entry<K,V> t) {
2035 >    static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
2036          if (t == null)
2037              return null;
2038          else if (t.left != null) {
# Line 1768 | Line 2149 | public class TreeMap<K,V>
2149                          x = parentOf(x);
2150                          rotateRight(x);
2151                      }
2152 <                    setColor(parentOf(x),  BLACK);
2152 >                    setColor(parentOf(x), BLACK);
2153                      setColor(parentOf(parentOf(x)), RED);
2154                      if (parentOf(parentOf(x)) != null)
2155                          rotateLeft(parentOf(parentOf(x)));
# Line 1844 | Line 2225 | public class TreeMap<K,V>
2225  
2226                  if (colorOf(leftOf(sib))  == BLACK &&
2227                      colorOf(rightOf(sib)) == BLACK) {
2228 <                    setColor(sib,  RED);
2228 >                    setColor(sib, RED);
2229                      x = parentOf(x);
2230                  } else {
2231                      if (colorOf(rightOf(sib)) == BLACK) {
# Line 1871 | Line 2252 | public class TreeMap<K,V>
2252  
2253                  if (colorOf(rightOf(sib)) == BLACK &&
2254                      colorOf(leftOf(sib)) == BLACK) {
2255 <                    setColor(sib,  RED);
2255 >                    setColor(sib, RED);
2256                      x = parentOf(x);
2257                  } else {
2258                      if (colorOf(leftOf(sib)) == BLACK) {
# Line 1922 | Line 2303 | public class TreeMap<K,V>
2303          }
2304      }
2305  
1925
1926
2306      /**
2307       * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2308       * deserialize it).
# Line 1985 | Line 2364 | public class TreeMap<K,V>
2364       * @throws ClassNotFoundException propagated from readObject.
2365       *         This cannot occur if str is null.
2366       */
2367 <    private
2368 <    void buildFromSorted(int size, Iterator it,
2369 <                         java.io.ObjectInputStream str,
1991 <                         V defaultVal)
2367 >    private void buildFromSorted(int size, Iterator it,
2368 >                                 java.io.ObjectInputStream str,
2369 >                                 V defaultVal)
2370          throws  java.io.IOException, ClassNotFoundException {
2371          this.size = size;
2372 <        root =
2373 <            buildFromSorted(0, 0, size-1, computeRedLevel(size),
1996 <                            it, str, defaultVal);
2372 >        root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2373 >                               it, str, defaultVal);
2374      }
2375  
2376      /**
2377       * Recursive "helper method" that does the real work of the
2378 <     * of the previous method.  Identically named parameters have
2378 >     * previous method.  Identically named parameters have
2379       * identical definitions.  Additional parameters are documented below.
2380       * It is assumed that the comparator and size fields of the TreeMap are
2381       * already set prior to calling this method.  (It ignores both fields.)

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines