ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TreeMap.java
(Generate patch)

Comparing jsr166/src/main/java/util/TreeMap.java (file contents):
Revision 1.20 by jsr166, Tue Jun 21 07:45:08 2005 UTC vs.
Revision 1.46 by jsr166, Sun May 18 23:59:57 2008 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24   */
25  
26   package java.util;
9 import java.util.*; // for javadoc (till 6280605 is fixed)
27  
28   /**
29   * A Red-Black tree based {@link NavigableMap} implementation.
# Line 31 | Line 48 | import java.util.*; // for javadoc (till
48   * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
49   * just fails to obey the general contract of the <tt>Map</tt> interface.
50   *
51 < * <p><b>Note that this implementation is not synchronized.</b> If multiple
52 < * threads access a map concurrently, and at least one of the threads modifies
53 < * the map structurally, it <i>must</i> be synchronized externally.  (A
54 < * structural modification is any operation that adds or deletes one or more
55 < * mappings; merely changing the value associated with an existing key is not
56 < * a structural modification.)  This is typically accomplished by
57 < * synchronizing on some object that naturally encapsulates the map.  If no
58 < * such object exists, the map should be "wrapped" using the
59 < * <tt>Collections.synchronizedMap</tt> method.  This is best done at creation
60 < * time, to prevent accidental unsynchronized access to the map:
61 < * <pre>
62 < *     Map m = Collections.synchronizedMap(new TreeMap(...));
63 < * </pre>
51 > * <p><strong>Note that this implementation is not synchronized.</strong>
52 > * If multiple threads access a map concurrently, and at least one of the
53 > * threads modifies the map structurally, it <i>must</i> be synchronized
54 > * externally.  (A structural modification is any operation that adds or
55 > * deletes one or more mappings; merely changing the value associated
56 > * with an existing key is not a structural modification.)  This is
57 > * typically accomplished by synchronizing on some object that naturally
58 > * encapsulates the map.
59 > * If no such object exists, the map should be "wrapped" using the
60 > * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
61 > * method.  This is best done at creation time, to prevent accidental
62 > * unsynchronized access to the map: <pre>
63 > *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
64   *
65   * <p>The iterators returned by the <tt>iterator</tt> method of the collections
66   * returned by all of this class's "collection view methods" are
# Line 69 | Line 86 | import java.util.*; // for javadoc (till
86   * associated map using <tt>put</tt>.)
87   *
88   * <p>This class is a member of the
89 < * <a href="{@docRoot}/../guide/collections/index.html">
89 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
90   * Java Collections Framework</a>.
91   *
92   * @param <K> the type of keys maintained by this map
93   * @param <V> the type of mapped values
94   *
95   * @author  Josh Bloch and Doug Lea
79 * @version %I%, %G%
96   * @see Map
97   * @see HashMap
98   * @see Hashtable
99   * @see Comparable
100   * @see Comparator
101   * @see Collection
86 * @see Collections#synchronizedMap(Map)
102   * @since 1.2
103   */
104  
# Line 97 | Line 112 | public class TreeMap<K,V>
112       *
113       * @serial
114       */
115 <    private Comparator<? super K> comparator = null;
115 >    private final Comparator<? super K> comparator;
116  
117      private transient Entry<K,V> root = null;
118  
# Line 111 | Line 126 | public class TreeMap<K,V>
126       */
127      private transient int modCount = 0;
128  
114    private void incrementSize()   { modCount++; size++; }
115    private void decrementSize()   { modCount++; size--; }
116
129      /**
130       * Constructs a new, empty tree map, using the natural ordering of its
131       * keys.  All keys inserted into the map must implement the {@link
# Line 127 | Line 139 | public class TreeMap<K,V>
139       * <tt>ClassCastException</tt>.
140       */
141      public TreeMap() {
142 +        comparator = null;
143      }
144  
145      /**
# Line 162 | Line 175 | public class TreeMap<K,V>
175       * @throws NullPointerException if the specified map is null
176       */
177      public TreeMap(Map<? extends K, ? extends V> m) {
178 +        comparator = null;
179          putAll(m);
180      }
181  
# Line 222 | Line 236 | public class TreeMap<K,V>
236       *
237       * @param value value whose presence in this map is to be tested
238       * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
239 <     *         <tt>false</tt> otherwise
239 >     *         <tt>false</tt> otherwise
240       * @since 1.2
241       */
242      public boolean containsValue(Object value) {
243 <        return (root==null ? false :
244 <                (value==null ? valueSearchNull(root)
245 <                             : valueSearchNonNull(root, value)));
246 <    }
233 <
234 <    private boolean valueSearchNull(Entry n) {
235 <        if (n.value == null)
236 <            return true;
237 <
238 <        // Check left and right subtrees for value
239 <        return (n.left  != null && valueSearchNull(n.left)) ||
240 <               (n.right != null && valueSearchNull(n.right));
241 <    }
242 <
243 <    private boolean valueSearchNonNull(Entry n, Object value) {
244 <        // Check this node for the value
245 <        if (value.equals(n.value))
246 <            return true;
247 <
248 <        // Check left and right subtrees for value
249 <        return (n.left  != null && valueSearchNonNull(n.left, value)) ||
250 <               (n.right != null && valueSearchNonNull(n.right, value));
243 >        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
244 >            if (valEquals(value, e.value))
245 >                return true;
246 >        return false;
247      }
248  
249      /**
250 <     * Returns the value to which this map maps the specified key, or
251 <     * <tt>null</tt> if the map contains no mapping for the key.  A return
252 <     * value of <tt>null</tt> does not <i>necessarily</i> indicate that the
253 <     * map contains no mapping for the key; it's also possible that the map
254 <     * explicitly maps the key to <tt>null</tt>.  The {@link #containsKey}
255 <     * operation may be used to distinguish these two cases.
250 >     * Returns the value to which the specified key is mapped,
251 >     * or {@code null} if this map contains no mapping for the key.
252 >     *
253 >     * <p>More formally, if this map contains a mapping from a key
254 >     * {@code k} to a value {@code v} such that {@code key} compares
255 >     * equal to {@code k} according to the map's ordering, then this
256 >     * method returns {@code v}; otherwise it returns {@code null}.
257 >     * (There can be at most one such mapping.)
258 >     *
259 >     * <p>A return value of {@code null} does not <i>necessarily</i>
260 >     * indicate that the map contains no mapping for the key; it's also
261 >     * possible that the map explicitly maps the key to {@code null}.
262 >     * The {@link #containsKey containsKey} operation may be used to
263 >     * distinguish these two cases.
264       *
261     * @param key key whose associated value is to be returned
262     * @return the value to which this map maps the specified key, or
263     *         <tt>null</tt> if the map contains no mapping for the key
265       * @throws ClassCastException if the specified key cannot be compared
266       *         with the keys currently in the map
267       * @throws NullPointerException if the specified key is null
# Line 307 | Line 308 | public class TreeMap<K,V>
308          if (size==0 && mapSize!=0 && map instanceof SortedMap) {
309              Comparator c = ((SortedMap)map).comparator();
310              if (c == comparator || (c != null && c.equals(comparator))) {
311 <                ++modCount;
312 <                try {
313 <                    buildFromSorted(mapSize, map.entrySet().iterator(),
314 <                                    null, null);
315 <                } catch (java.io.IOException cannotHappen) {
316 <                } catch (ClassNotFoundException cannotHappen) {
317 <                }
318 <                return;
311 >                ++modCount;
312 >                try {
313 >                    buildFromSorted(mapSize, map.entrySet().iterator(),
314 >                                    null, null);
315 >                } catch (java.io.IOException cannotHappen) {
316 >                } catch (ClassNotFoundException cannotHappen) {
317 >                }
318 >                return;
319              }
320          }
321          super.putAll(map);
# Line 332 | Line 333 | public class TreeMap<K,V>
333       *         and this map uses natural ordering, or its comparator
334       *         does not permit null keys
335       */
336 <    private Entry<K,V> getEntry(Object key) {
336 >    final Entry<K,V> getEntry(Object key) {
337          // Offload comparator-based version for sake of performance
338          if (comparator != null)
339              return getEntryUsingComparator(key);
340 <        Comparable<? super K> k = (Comparable<? super K>) key;
340 >        if (key == null)
341 >            throw new NullPointerException();
342 >        Comparable<? super K> k = (Comparable<? super K>) key;
343          Entry<K,V> p = root;
344          while (p != null) {
345              int cmp = k.compareTo(p.key);
# Line 356 | Line 359 | public class TreeMap<K,V>
359       * that are less dependent on comparator performance, but is
360       * worthwhile here.)
361       */
362 <    private Entry<K,V> getEntryUsingComparator(Object key) {
363 <        K k = (K) key;
362 >    final Entry<K,V> getEntryUsingComparator(Object key) {
363 >        K k = (K) key;
364          Comparator<? super K> cpr = comparator;
365 <        Entry<K,V> p = root;
366 <        while (p != null) {
367 <            int cmp = cpr.compare(k, p.key);
368 <            if (cmp < 0)
369 <                p = p.left;
370 <            else if (cmp > 0)
371 <                p = p.right;
372 <            else
373 <                return p;
365 >        if (cpr != null) {
366 >            Entry<K,V> p = root;
367 >            while (p != null) {
368 >                int cmp = cpr.compare(k, p.key);
369 >                if (cmp < 0)
370 >                    p = p.left;
371 >                else if (cmp > 0)
372 >                    p = p.right;
373 >                else
374 >                    return p;
375 >            }
376          }
377          return null;
378      }
# Line 378 | Line 383 | public class TreeMap<K,V>
383       * key; if no such entry exists (i.e., the greatest key in the Tree is less
384       * than the specified key), returns <tt>null</tt>.
385       */
386 <    private Entry<K,V> getCeilingEntry(K key) {
386 >    final Entry<K,V> getCeilingEntry(K key) {
387          Entry<K,V> p = root;
388 <        if (p==null)
384 <            return null;
385 <
386 <        while (true) {
388 >        while (p != null) {
389              int cmp = compare(key, p.key);
390              if (cmp < 0) {
391                  if (p.left != null)
# Line 405 | Line 407 | public class TreeMap<K,V>
407              } else
408                  return p;
409          }
410 +        return null;
411      }
412  
413      /**
# Line 412 | Line 415 | public class TreeMap<K,V>
415       * exists, returns the entry for the greatest key less than the specified
416       * key; if no such entry exists, returns <tt>null</tt>.
417       */
418 <    private Entry<K,V> getFloorEntry(K key) {
418 >    final Entry<K,V> getFloorEntry(K key) {
419          Entry<K,V> p = root;
420 <        if (p==null)
418 <            return null;
419 <
420 <        while (true) {
420 >        while (p != null) {
421              int cmp = compare(key, p.key);
422              if (cmp > 0) {
423                  if (p.right != null)
# Line 440 | Line 440 | public class TreeMap<K,V>
440                  return p;
441  
442          }
443 +        return null;
444      }
445  
446      /**
# Line 448 | Line 449 | public class TreeMap<K,V>
449       * key greater than the specified key; if no such entry exists
450       * returns <tt>null</tt>.
451       */
452 <    private Entry<K,V> getHigherEntry(K key) {
452 >    final Entry<K,V> getHigherEntry(K key) {
453          Entry<K,V> p = root;
454 <        if (p==null)
454 <            return null;
455 <
456 <        while (true) {
454 >        while (p != null) {
455              int cmp = compare(key, p.key);
456              if (cmp < 0) {
457                  if (p.left != null)
# Line 474 | Line 472 | public class TreeMap<K,V>
472                  }
473              }
474          }
475 +        return null;
476      }
477  
478      /**
# Line 481 | Line 480 | public class TreeMap<K,V>
480       * no such entry exists (i.e., the least key in the Tree is greater than
481       * the specified key), returns <tt>null</tt>.
482       */
483 <    private Entry<K,V> getLowerEntry(K key) {
483 >    final Entry<K,V> getLowerEntry(K key) {
484          Entry<K,V> p = root;
485 <        if (p==null)
487 <            return null;
488 <
489 <        while (true) {
485 >        while (p != null) {
486              int cmp = compare(key, p.key);
487              if (cmp > 0) {
488                  if (p.right != null)
# Line 507 | Line 503 | public class TreeMap<K,V>
503                  }
504              }
505          }
506 <    }
511 <
512 <    /**
513 <     * Returns the key corresponding to the specified Entry.
514 <     * @throws NoSuchElementException if the Entry is null
515 <     */
516 <    private static <K> K key(Entry<K,?> e) {
517 <        if (e==null)
518 <            throw new NoSuchElementException();
519 <        return e.key;
506 >        return null;
507      }
508  
509      /**
# Line 539 | Line 526 | public class TreeMap<K,V>
526       */
527      public V put(K key, V value) {
528          Entry<K,V> t = root;
542
529          if (t == null) {
530 <            if (key == null) {
531 <                if (comparator == null)
532 <                    throw new NullPointerException();
533 <                comparator.compare(key, key);
534 <            }
549 <            incrementSize();
530 >            // TBD:
531 >            // 5045147: (coll) Adding null to an empty TreeSet should
532 >            // throw NullPointerException
533 >            //
534 >            // compare(key, key); // type check
535              root = new Entry<K,V>(key, value, null);
536 +            size = 1;
537 +            modCount++;
538              return null;
539          }
540 <
541 <        while (true) {
542 <            int cmp = compare(key, t.key);
543 <            if (cmp == 0) {
544 <                return t.setValue(value);
545 <            } else if (cmp < 0) {
546 <                if (t.left != null) {
540 >        int cmp;
541 >        Entry<K,V> parent;
542 >        // split comparator and comparable paths
543 >        Comparator<? super K> cpr = comparator;
544 >        if (cpr != null) {
545 >            do {
546 >                parent = t;
547 >                cmp = cpr.compare(key, t.key);
548 >                if (cmp < 0)
549                      t = t.left;
550 <                } else {
562 <                    incrementSize();
563 <                    t.left = new Entry<K,V>(key, value, t);
564 <                    fixAfterInsertion(t.left);
565 <                    return null;
566 <                }
567 <            } else { // cmp > 0
568 <                if (t.right != null) {
550 >                else if (cmp > 0)
551                      t = t.right;
552 <                } else {
553 <                    incrementSize();
554 <                    t.right = new Entry<K,V>(key, value, t);
555 <                    fixAfterInsertion(t.right);
556 <                    return null;
557 <                }
558 <            }
552 >                else
553 >                    return t.setValue(value);
554 >            } while (t != null);
555 >        }
556 >        else {
557 >            if (key == null)
558 >                throw new NullPointerException();
559 >            Comparable<? super K> k = (Comparable<? super K>) key;
560 >            do {
561 >                parent = t;
562 >                cmp = k.compareTo(t.key);
563 >                if (cmp < 0)
564 >                    t = t.left;
565 >                else if (cmp > 0)
566 >                    t = t.right;
567 >                else
568 >                    return t.setValue(value);
569 >            } while (t != null);
570          }
571 +        Entry<K,V> e = new Entry<K,V>(key, value, parent);
572 +        if (cmp < 0)
573 +            parent.left = e;
574 +        else
575 +            parent.right = e;
576 +        fixAfterInsertion(e);
577 +        size++;
578 +        modCount++;
579 +        return null;
580      }
581  
582      /**
# Line 630 | Line 632 | public class TreeMap<K,V>
632          clone.size = 0;
633          clone.modCount = 0;
634          clone.entrySet = null;
635 <        clone.descendingEntrySet = null;
636 <        clone.descendingKeySet = null;
635 >        clone.navigableKeySet = null;
636 >        clone.descendingMap = null;
637  
638          // Initialize clone with our mappings
639          try {
# Line 645 | Line 647 | public class TreeMap<K,V>
647  
648      // NavigableMap API methods
649  
650 +    /**
651 +     * @since 1.6
652 +     */
653      public Map.Entry<K,V> firstEntry() {
654 <        Entry<K,V> e = getFirstEntry();
650 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
654 >        return exportEntry(getFirstEntry());
655      }
656  
657 +    /**
658 +     * @since 1.6
659 +     */
660      public Map.Entry<K,V> lastEntry() {
661 <        Entry<K,V> e = getLastEntry();
655 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
661 >        return exportEntry(getLastEntry());
662      }
663  
664 +    /**
665 +     * @since 1.6
666 +     */
667      public Map.Entry<K,V> pollFirstEntry() {
668          Entry<K,V> p = getFirstEntry();
669 <        if (p == null)
670 <            return null;
671 <        Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
663 <        deleteEntry(p);
669 >        Map.Entry<K,V> result = exportEntry(p);
670 >        if (p != null)
671 >            deleteEntry(p);
672          return result;
673      }
674  
675 +    /**
676 +     * @since 1.6
677 +     */
678      public Map.Entry<K,V> pollLastEntry() {
679          Entry<K,V> p = getLastEntry();
680 <        if (p == null)
681 <            return null;
682 <        Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(p);
672 <        deleteEntry(p);
680 >        Map.Entry<K,V> result = exportEntry(p);
681 >        if (p != null)
682 >            deleteEntry(p);
683          return result;
684      }
685  
# Line 678 | Line 688 | public class TreeMap<K,V>
688       * @throws NullPointerException if the specified key is null
689       *         and this map uses natural ordering, or its comparator
690       *         does not permit null keys
691 +     * @since 1.6
692       */
693      public Map.Entry<K,V> lowerEntry(K key) {
694 <        Entry<K,V> e =  getLowerEntry(key);
684 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
694 >        return exportEntry(getLowerEntry(key));
695      }
696  
697      /**
# Line 689 | Line 699 | public class TreeMap<K,V>
699       * @throws NullPointerException if the specified key is null
700       *         and this map uses natural ordering, or its comparator
701       *         does not permit null keys
702 +     * @since 1.6
703       */
704      public K lowerKey(K key) {
705 <        Entry<K,V> e =  getLowerEntry(key);
695 <        return (e == null)? null : e.key;
705 >        return keyOrNull(getLowerEntry(key));
706      }
707  
708      /**
# Line 700 | Line 710 | public class TreeMap<K,V>
710       * @throws NullPointerException if the specified key is null
711       *         and this map uses natural ordering, or its comparator
712       *         does not permit null keys
713 +     * @since 1.6
714       */
715      public Map.Entry<K,V> floorEntry(K key) {
716 <        Entry<K,V> e = getFloorEntry(key);
706 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
716 >        return exportEntry(getFloorEntry(key));
717      }
718  
719      /**
# Line 711 | Line 721 | public class TreeMap<K,V>
721       * @throws NullPointerException if the specified key is null
722       *         and this map uses natural ordering, or its comparator
723       *         does not permit null keys
724 +     * @since 1.6
725       */
726      public K floorKey(K key) {
727 <        Entry<K,V> e = getFloorEntry(key);
717 <        return (e == null)? null : e.key;
727 >        return keyOrNull(getFloorEntry(key));
728      }
729  
730      /**
# Line 722 | Line 732 | public class TreeMap<K,V>
732       * @throws NullPointerException if the specified key is null
733       *         and this map uses natural ordering, or its comparator
734       *         does not permit null keys
735 +     * @since 1.6
736       */
737      public Map.Entry<K,V> ceilingEntry(K key) {
738 <        Entry<K,V> e = getCeilingEntry(key);
728 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
738 >        return exportEntry(getCeilingEntry(key));
739      }
740  
741      /**
# Line 733 | Line 743 | public class TreeMap<K,V>
743       * @throws NullPointerException if the specified key is null
744       *         and this map uses natural ordering, or its comparator
745       *         does not permit null keys
746 +     * @since 1.6
747       */
748      public K ceilingKey(K key) {
749 <        Entry<K,V> e = getCeilingEntry(key);
739 <        return (e == null)? null : e.key;
749 >        return keyOrNull(getCeilingEntry(key));
750      }
751  
752      /**
# Line 744 | Line 754 | public class TreeMap<K,V>
754       * @throws NullPointerException if the specified key is null
755       *         and this map uses natural ordering, or its comparator
756       *         does not permit null keys
757 +     * @since 1.6
758       */
759      public Map.Entry<K,V> higherEntry(K key) {
760 <        Entry<K,V> e = getHigherEntry(key);
750 <        return (e == null)? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
760 >        return exportEntry(getHigherEntry(key));
761      }
762  
763      /**
# Line 755 | Line 765 | public class TreeMap<K,V>
765       * @throws NullPointerException if the specified key is null
766       *         and this map uses natural ordering, or its comparator
767       *         does not permit null keys
768 +     * @since 1.6
769       */
770      public K higherKey(K key) {
771 <        Entry<K,V> e = getHigherEntry(key);
761 <        return (e == null)? null : e.key;
771 >        return keyOrNull(getHigherEntry(key));
772      }
773  
774      // Views
# Line 768 | Line 778 | public class TreeMap<K,V>
778       * the first time this view is requested.  Views are stateless, so
779       * there's no reason to create more than one.
780       */
781 <    private transient Set<Map.Entry<K,V>> entrySet = null;
782 <    private transient Set<Map.Entry<K,V>> descendingEntrySet = null;
783 <    private transient Set<K> descendingKeySet = null;
781 >    private transient EntrySet entrySet = null;
782 >    private transient KeySet<K> navigableKeySet = null;
783 >    private transient NavigableMap<K,V> descendingMap = null;
784  
785      /**
786       * Returns a {@link Set} view of the keys contained in this map.
# Line 787 | Line 797 | public class TreeMap<K,V>
797       * operations.
798       */
799      public Set<K> keySet() {
800 <        Set<K> ks = keySet;
791 <        return (ks != null) ? ks : (keySet = new KeySet());
800 >        return navigableKeySet();
801      }
802  
803 <    class KeySet extends AbstractSet<K> {
804 <        public Iterator<K> iterator() {
805 <            return new KeyIterator(getFirstEntry());
806 <        }
807 <
808 <        public int size() {
809 <            return TreeMap.this.size();
801 <        }
802 <
803 <        public boolean contains(Object o) {
804 <            return containsKey(o);
805 <        }
806 <
807 <        public boolean remove(Object o) {
808 <            int oldSize = size;
809 <            TreeMap.this.remove(o);
810 <            return size != oldSize;
811 <        }
803 >    /**
804 >     * @since 1.6
805 >     */
806 >    public NavigableSet<K> navigableKeySet() {
807 >        KeySet<K> nks = navigableKeySet;
808 >        return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
809 >    }
810  
811 <        public void clear() {
812 <            TreeMap.this.clear();
813 <        }
811 >    /**
812 >     * @since 1.6
813 >     */
814 >    public NavigableSet<K> descendingKeySet() {
815 >        return descendingMap().navigableKeySet();
816      }
817  
818      /**
# Line 835 | Line 835 | public class TreeMap<K,V>
835          return (vs != null) ? vs : (values = new Values());
836      }
837  
838 +    /**
839 +     * Returns a {@link Set} view of the mappings contained in this map.
840 +     * The set's iterator returns the entries in ascending key order.
841 +     * The set is backed by the map, so changes to the map are
842 +     * reflected in the set, and vice-versa.  If the map is modified
843 +     * while an iteration over the set is in progress (except through
844 +     * the iterator's own <tt>remove</tt> operation, or through the
845 +     * <tt>setValue</tt> operation on a map entry returned by the
846 +     * iterator) the results of the iteration are undefined.  The set
847 +     * supports element removal, which removes the corresponding
848 +     * mapping from the map, via the <tt>Iterator.remove</tt>,
849 +     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
850 +     * <tt>clear</tt> operations.  It does not support the
851 +     * <tt>add</tt> or <tt>addAll</tt> operations.
852 +     */
853 +    public Set<Map.Entry<K,V>> entrySet() {
854 +        EntrySet es = entrySet;
855 +        return (es != null) ? es : (entrySet = new EntrySet());
856 +    }
857 +
858 +    /**
859 +     * @since 1.6
860 +     */
861 +    public NavigableMap<K, V> descendingMap() {
862 +        NavigableMap<K, V> km = descendingMap;
863 +        return (km != null) ? km :
864 +            (descendingMap = new DescendingSubMap(this,
865 +                                                  true, null, true,
866 +                                                  true, null, true));
867 +    }
868 +
869 +    /**
870 +     * @throws ClassCastException       {@inheritDoc}
871 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
872 +     *         null and this map uses natural ordering, or its comparator
873 +     *         does not permit null keys
874 +     * @throws IllegalArgumentException {@inheritDoc}
875 +     * @since 1.6
876 +     */
877 +    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
878 +                                    K toKey,   boolean toInclusive) {
879 +        return new AscendingSubMap(this,
880 +                                   false, fromKey, fromInclusive,
881 +                                   false, toKey,   toInclusive);
882 +    }
883 +
884 +    /**
885 +     * @throws ClassCastException       {@inheritDoc}
886 +     * @throws NullPointerException if <tt>toKey</tt> is null
887 +     *         and this map uses natural ordering, or its comparator
888 +     *         does not permit null keys
889 +     * @throws IllegalArgumentException {@inheritDoc}
890 +     * @since 1.6
891 +     */
892 +    public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
893 +        return new AscendingSubMap(this,
894 +                                   true,  null,  true,
895 +                                   false, toKey, inclusive);
896 +    }
897 +
898 +    /**
899 +     * @throws ClassCastException       {@inheritDoc}
900 +     * @throws NullPointerException if <tt>fromKey</tt> is null
901 +     *         and this map uses natural ordering, or its comparator
902 +     *         does not permit null keys
903 +     * @throws IllegalArgumentException {@inheritDoc}
904 +     * @since 1.6
905 +     */
906 +    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
907 +        return new AscendingSubMap(this,
908 +                                   false, fromKey, inclusive,
909 +                                   true,  null,    true);
910 +    }
911 +
912 +    /**
913 +     * @throws ClassCastException       {@inheritDoc}
914 +     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
915 +     *         null and this map uses natural ordering, or its comparator
916 +     *         does not permit null keys
917 +     * @throws IllegalArgumentException {@inheritDoc}
918 +     */
919 +    public SortedMap<K,V> subMap(K fromKey, K toKey) {
920 +        return subMap(fromKey, true, toKey, false);
921 +    }
922 +
923 +    /**
924 +     * @throws ClassCastException       {@inheritDoc}
925 +     * @throws NullPointerException if <tt>toKey</tt> is null
926 +     *         and this map uses natural ordering, or its comparator
927 +     *         does not permit null keys
928 +     * @throws IllegalArgumentException {@inheritDoc}
929 +     */
930 +    public SortedMap<K,V> headMap(K toKey) {
931 +        return headMap(toKey, false);
932 +    }
933 +
934 +    /**
935 +     * @throws ClassCastException       {@inheritDoc}
936 +     * @throws NullPointerException if <tt>fromKey</tt> is null
937 +     *         and this map uses natural ordering, or its comparator
938 +     *         does not permit null keys
939 +     * @throws IllegalArgumentException {@inheritDoc}
940 +     */
941 +    public SortedMap<K,V> tailMap(K fromKey) {
942 +        return tailMap(fromKey, true);
943 +    }
944 +
945 +    // View class support
946 +
947      class Values extends AbstractCollection<V> {
948          public Iterator<V> iterator() {
949              return new ValueIterator(getFirstEntry());
# Line 845 | Line 954 | public class TreeMap<K,V>
954          }
955  
956          public boolean contains(Object o) {
957 <            for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
849 <                if (valEquals(e.getValue(), o))
850 <                    return true;
851 <            return false;
957 >            return TreeMap.this.containsValue(o);
958          }
959  
960          public boolean remove(Object o) {
# Line 866 | Line 972 | public class TreeMap<K,V>
972          }
973      }
974  
869    /**
870     * Returns a {@link Set} view of the mappings contained in this map.
871     * The set's iterator returns the entries in ascending key order.
872     * The set is backed by the map, so changes to the map are
873     * reflected in the set, and vice-versa.  If the map is modified
874     * while an iteration over the set is in progress (except through
875     * the iterator's own <tt>remove</tt> operation, or through the
876     * <tt>setValue</tt> operation on a map entry returned by the
877     * iterator) the results of the iteration are undefined.  The set
878     * supports element removal, which removes the corresponding
879     * mapping from the map, via the <tt>Iterator.remove</tt>,
880     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
881     * <tt>clear</tt> operations.  It does not support the
882     * <tt>add</tt> or <tt>addAll</tt> operations.
883     */
884    public Set<Map.Entry<K,V>> entrySet() {
885        Set<Map.Entry<K,V>> es = entrySet;
886        return (es != null) ? es : (entrySet = new EntrySet());
887    }
888
975      class EntrySet extends AbstractSet<Map.Entry<K,V>> {
976          public Iterator<Map.Entry<K,V>> iterator() {
977              return new EntryIterator(getFirstEntry());
# Line 922 | Line 1008 | public class TreeMap<K,V>
1008          }
1009      }
1010  
1011 <    public Set<Map.Entry<K,V>> descendingEntrySet() {
1012 <        Set<Map.Entry<K,V>> es = descendingEntrySet;
1013 <        return (es != null) ? es : (descendingEntrySet = new DescendingEntrySet());
1011 >    /*
1012 >     * Unlike Values and EntrySet, the KeySet class is static,
1013 >     * delegating to a NavigableMap to allow use by SubMaps, which
1014 >     * outweighs the ugliness of needing type-tests for the following
1015 >     * Iterator methods that are defined appropriately in main versus
1016 >     * submap classes.
1017 >     */
1018 >
1019 >    Iterator<K> keyIterator() {
1020 >        return new KeyIterator(getFirstEntry());
1021      }
1022  
1023 <    class DescendingEntrySet extends EntrySet {
1024 <        public Iterator<Map.Entry<K,V>> iterator() {
1025 <            return new DescendingEntryIterator(getLastEntry());
1023 >    Iterator<K> descendingKeyIterator() {
1024 >        return new DescendingKeyIterator(getFirstEntry());
1025 >    }
1026 >
1027 >    static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1028 >        private final NavigableMap<E, Object> m;
1029 >        KeySet(NavigableMap<E,Object> map) { m = map; }
1030 >
1031 >        public Iterator<E> iterator() {
1032 >            if (m instanceof TreeMap)
1033 >                return ((TreeMap<E,Object>)m).keyIterator();
1034 >            else
1035 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
1036 >        }
1037 >
1038 >        public Iterator<E> descendingIterator() {
1039 >            if (m instanceof TreeMap)
1040 >                return ((TreeMap<E,Object>)m).descendingKeyIterator();
1041 >            else
1042 >                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
1043 >        }
1044 >
1045 >        public int size() { return m.size(); }
1046 >        public boolean isEmpty() { return m.isEmpty(); }
1047 >        public boolean contains(Object o) { return m.containsKey(o); }
1048 >        public void clear() { m.clear(); }
1049 >        public E lower(E e) { return m.lowerKey(e); }
1050 >        public E floor(E e) { return m.floorKey(e); }
1051 >        public E ceiling(E e) { return m.ceilingKey(e); }
1052 >        public E higher(E e) { return m.higherKey(e); }
1053 >        public E first() { return m.firstKey(); }
1054 >        public E last() { return m.lastKey(); }
1055 >        public Comparator<? super E> comparator() { return m.comparator(); }
1056 >        public E pollFirst() {
1057 >            Map.Entry<E,Object> e = m.pollFirstEntry();
1058 >            return e == null? null : e.getKey();
1059 >        }
1060 >        public E pollLast() {
1061 >            Map.Entry<E,Object> e = m.pollLastEntry();
1062 >            return e == null? null : e.getKey();
1063 >        }
1064 >        public boolean remove(Object o) {
1065 >            int oldSize = size();
1066 >            m.remove(o);
1067 >            return size() != oldSize;
1068 >        }
1069 >        public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1070 >                                      E toElement,   boolean toInclusive) {
1071 >            return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
1072 >                                           toElement,   toInclusive));
1073 >        }
1074 >        public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1075 >            return new TreeSet<E>(m.headMap(toElement, inclusive));
1076 >        }
1077 >        public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1078 >            return new TreeSet<E>(m.tailMap(fromElement, inclusive));
1079 >        }
1080 >        public SortedSet<E> subSet(E fromElement, E toElement) {
1081 >            return subSet(fromElement, true, toElement, false);
1082 >        }
1083 >        public SortedSet<E> headSet(E toElement) {
1084 >            return headSet(toElement, false);
1085 >        }
1086 >        public SortedSet<E> tailSet(E fromElement) {
1087 >            return tailSet(fromElement, true);
1088 >        }
1089 >        public NavigableSet<E> descendingSet() {
1090 >            return new TreeSet(m.descendingMap());
1091 >        }
1092 >    }
1093 >
1094 >    /**
1095 >     * Base class for TreeMap Iterators
1096 >     */
1097 >    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1098 >        Entry<K,V> next;
1099 >        Entry<K,V> lastReturned;
1100 >        int expectedModCount;
1101 >
1102 >        PrivateEntryIterator(Entry<K,V> first) {
1103 >            expectedModCount = modCount;
1104 >            lastReturned = null;
1105 >            next = first;
1106 >        }
1107 >
1108 >        public final boolean hasNext() {
1109 >            return next != null;
1110 >        }
1111 >
1112 >        final Entry<K,V> nextEntry() {
1113 >            Entry<K,V> e = next;
1114 >            if (e == null)
1115 >                throw new NoSuchElementException();
1116 >            if (modCount != expectedModCount)
1117 >                throw new ConcurrentModificationException();
1118 >            next = successor(e);
1119 >            lastReturned = e;
1120 >            return e;
1121 >        }
1122 >
1123 >        final Entry<K,V> prevEntry() {
1124 >            Entry<K,V> e = next;
1125 >            if (e == null)
1126 >                throw new NoSuchElementException();
1127 >            if (modCount != expectedModCount)
1128 >                throw new ConcurrentModificationException();
1129 >            next = predecessor(e);
1130 >            lastReturned = e;
1131 >            return e;
1132 >        }
1133 >
1134 >        public void remove() {
1135 >            if (lastReturned == null)
1136 >                throw new IllegalStateException();
1137 >            if (modCount != expectedModCount)
1138 >                throw new ConcurrentModificationException();
1139 >            // deleted entries are replaced by their successors
1140 >            if (lastReturned.left != null && lastReturned.right != null)
1141 >                next = lastReturned;
1142 >            deleteEntry(lastReturned);
1143 >            expectedModCount = modCount;
1144 >            lastReturned = null;
1145          }
1146      }
1147  
1148 <    public Set<K> descendingKeySet() {
1149 <        Set<K> ks = descendingKeySet;
1150 <        return (ks != null) ? ks : (descendingKeySet = new DescendingKeySet());
1148 >    final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1149 >        EntryIterator(Entry<K,V> first) {
1150 >            super(first);
1151 >        }
1152 >        public Map.Entry<K,V> next() {
1153 >            return nextEntry();
1154 >        }
1155      }
1156  
1157 <    class DescendingKeySet extends KeySet {
1158 <        public Iterator<K> iterator() {
1159 <            return new DescendingKeyIterator(getLastEntry());
1157 >    final class ValueIterator extends PrivateEntryIterator<V> {
1158 >        ValueIterator(Entry<K,V> first) {
1159 >            super(first);
1160 >        }
1161 >        public V next() {
1162 >            return nextEntry().value;
1163          }
1164      }
1165  
1166 +    final class KeyIterator extends PrivateEntryIterator<K> {
1167 +        KeyIterator(Entry<K,V> first) {
1168 +            super(first);
1169 +        }
1170 +        public K next() {
1171 +            return nextEntry().key;
1172 +        }
1173 +    }
1174 +
1175 +    final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1176 +        DescendingKeyIterator(Entry<K,V> first) {
1177 +            super(first);
1178 +        }
1179 +        public K next() {
1180 +            return prevEntry().key;
1181 +        }
1182 +    }
1183 +
1184 +    // Little utilities
1185 +
1186      /**
1187 <     * @throws ClassCastException       {@inheritDoc}
949 <     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
950 <     *         null and this map uses natural ordering, or its comparator
951 <     *         does not permit null keys
952 <     * @throws IllegalArgumentException {@inheritDoc}
1187 >     * Compares two keys using the correct comparison method for this TreeMap.
1188       */
1189 <    public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1190 <        return new SubMap(fromKey, toKey);
1189 >    final int compare(Object k1, Object k2) {
1190 >        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1191 >            : comparator.compare((K)k1, (K)k2);
1192      }
1193  
1194      /**
1195 <     * @throws ClassCastException       {@inheritDoc}
1196 <     * @throws NullPointerException if <tt>toKey</tt> is null
961 <     *         and this map uses natural ordering, or its comparator
962 <     *         does not permit null keys
963 <     * @throws IllegalArgumentException {@inheritDoc}
1195 >     * Test two values for equality.  Differs from o1.equals(o2) only in
1196 >     * that it copes with <tt>null</tt> o1 properly.
1197       */
1198 <    public NavigableMap<K,V> navigableHeadMap(K toKey) {
1199 <        return new SubMap(toKey, true);
1198 >    final static boolean valEquals(Object o1, Object o2) {
1199 >        return (o1==null ? o2==null : o1.equals(o2));
1200      }
1201  
1202      /**
1203 <     * @throws ClassCastException       {@inheritDoc}
971 <     * @throws NullPointerException if <tt>fromKey</tt> is null
972 <     *         and this map uses natural ordering, or its comparator
973 <     *         does not permit null keys
974 <     * @throws IllegalArgumentException {@inheritDoc}
1203 >     * Return SimpleImmutableEntry for entry, or null if null
1204       */
1205 <    public NavigableMap<K,V> navigableTailMap(K fromKey) {
1206 <        return new SubMap(fromKey, false);
1205 >    static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
1206 >        return e == null? null :
1207 >            new AbstractMap.SimpleImmutableEntry<K,V>(e);
1208      }
1209  
1210      /**
1211 <     * Equivalent to {@link #navigableSubMap} but with a return type
982 <     * conforming to the <tt>SortedMap</tt> interface.
983 <     *
984 <     * <p>{@inheritDoc}
985 <     *
986 <     * @throws ClassCastException       {@inheritDoc}
987 <     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
988 <     *         null and this map uses natural ordering, or its comparator
989 <     *         does not permit null keys
990 <     * @throws IllegalArgumentException {@inheritDoc}
1211 >     * Return key for entry, or null if null
1212       */
1213 <    public SortedMap<K,V> subMap(K fromKey, K toKey) {
1214 <        return new SubMap(fromKey, toKey);
1213 >    static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
1214 >        return e == null? null : e.key;
1215      }
1216  
1217      /**
1218 <     * Equivalent to {@link #navigableHeadMap} but with a return type
1219 <     * conforming to the <tt>SortedMap</tt> interface.
999 <     *
1000 <     * <p>{@inheritDoc}
1001 <     *
1002 <     * @throws ClassCastException       {@inheritDoc}
1003 <     * @throws NullPointerException if <tt>toKey</tt> is null
1004 <     *         and this map uses natural ordering, or its comparator
1005 <     *         does not permit null keys
1006 <     * @throws IllegalArgumentException {@inheritDoc}
1218 >     * Returns the key corresponding to the specified Entry.
1219 >     * @throws NoSuchElementException if the Entry is null
1220       */
1221 <    public SortedMap<K,V> headMap(K toKey) {
1222 <        return new SubMap(toKey, true);
1221 >    static <K> K key(Entry<K,?> e) {
1222 >        if (e==null)
1223 >            throw new NoSuchElementException();
1224 >        return e.key;
1225      }
1226  
1227 +
1228 +    // SubMaps
1229 +
1230      /**
1231 <     * Equivalent to {@link #navigableTailMap} but with a return type
1232 <     * conforming to the <tt>SortedMap</tt> interface.
1015 <     *
1016 <     * <p>{@inheritDoc}
1017 <     *
1018 <     * @throws ClassCastException       {@inheritDoc}
1019 <     * @throws NullPointerException if <tt>fromKey</tt> is null
1020 <     *         and this map uses natural ordering, or its comparator
1021 <     *         does not permit null keys
1022 <     * @throws IllegalArgumentException {@inheritDoc}
1231 >     * Dummy value serving as unmatchable fence key for unbounded
1232 >     * SubMapIterators
1233       */
1234 <    public SortedMap<K,V> tailMap(K fromKey) {
1025 <        return new SubMap(fromKey, false);
1026 <    }
1234 >    private static final Object UNBOUNDED = new Object();
1235  
1236 <    private class SubMap
1237 <        extends AbstractMap<K,V>
1238 <        implements NavigableMap<K,V>, java.io.Serializable {
1239 <        private static final long serialVersionUID = -6520786458950516097L;
1236 >    /**
1237 >     * @serial include
1238 >     */
1239 >    static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>
1240 >        implements NavigableMap<K,V>, java.io.Serializable {
1241 >        /**
1242 >         * The backing map.
1243 >         */
1244 >        final TreeMap<K,V> m;
1245  
1246          /**
1247 <         * fromKey is significant only if fromStart is false.  Similarly,
1248 <         * toKey is significant only if toStart is false.
1247 >         * Endpoints are represented as triples (fromStart, lo,
1248 >         * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1249 >         * true, then the low (absolute) bound is the start of the
1250 >         * backing map, and the other values are ignored. Otherwise,
1251 >         * if loInclusive is true, lo is the inclusive bound, else lo
1252 >         * is the exclusive bound. Similarly for the upper bound.
1253           */
1254 <        private boolean fromStart = false, toEnd = false;
1255 <        private K fromKey, toKey;
1254 >        final K lo, hi;
1255 >        final boolean fromStart, toEnd;
1256 >        final boolean loInclusive, hiInclusive;
1257 >
1258 >        NavigableSubMap(TreeMap<K,V> m,
1259 >                        boolean fromStart, K lo, boolean loInclusive,
1260 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1261 >            if (!fromStart && !toEnd) {
1262 >                if (m.compare(lo, hi) > 0)
1263 >                    throw new IllegalArgumentException("fromKey > toKey");
1264 >            } else {
1265 >                if (!fromStart) // type check
1266 >                    m.compare(lo, lo);
1267 >                if (!toEnd)
1268 >                    m.compare(hi, hi);
1269 >            }
1270  
1271 <        SubMap(K fromKey, K toKey) {
1272 <            if (compare(fromKey, toKey) > 0)
1273 <                throw new IllegalArgumentException("fromKey > toKey");
1274 <            this.fromKey = fromKey;
1275 <            this.toKey = toKey;
1271 >            this.m = m;
1272 >            this.fromStart = fromStart;
1273 >            this.lo = lo;
1274 >            this.loInclusive = loInclusive;
1275 >            this.toEnd = toEnd;
1276 >            this.hi = hi;
1277 >            this.hiInclusive = hiInclusive;
1278          }
1279  
1280 <        SubMap(K key, boolean headMap) {
1281 <            compare(key, key); // Type-check key
1282 <
1283 <            if (headMap) {
1284 <                fromStart = true;
1285 <                toKey = key;
1286 <            } else {
1287 <                toEnd = true;
1288 <                fromKey = key;
1280 >        // internal utilities
1281 >
1282 >        final boolean tooLow(Object key) {
1283 >            if (!fromStart) {
1284 >                int c = m.compare(key, lo);
1285 >                if (c < 0 || (c == 0 && !loInclusive))
1286 >                    return true;
1287 >            }
1288 >            return false;
1289 >        }
1290 >
1291 >        final boolean tooHigh(Object key) {
1292 >            if (!toEnd) {
1293 >                int c = m.compare(key, hi);
1294 >                if (c > 0 || (c == 0 && !hiInclusive))
1295 >                    return true;
1296              }
1297 +            return false;
1298          }
1299  
1300 <        SubMap(boolean fromStart, K fromKey, boolean toEnd, K toKey) {
1301 <            this.fromStart = fromStart;
1302 <            this.fromKey= fromKey;
1303 <            this.toEnd = toEnd;
1304 <            this.toKey = toKey;
1300 >        final boolean inRange(Object key) {
1301 >            return !tooLow(key) && !tooHigh(key);
1302 >        }
1303 >
1304 >        final boolean inClosedRange(Object key) {
1305 >            return (fromStart || m.compare(key, lo) >= 0)
1306 >                && (toEnd || m.compare(hi, key) >= 0);
1307 >        }
1308 >
1309 >        final boolean inRange(Object key, boolean inclusive) {
1310 >            return inclusive ? inRange(key) : inClosedRange(key);
1311 >        }
1312 >
1313 >        /*
1314 >         * Absolute versions of relation operations.
1315 >         * Subclasses map to these using like-named "sub"
1316 >         * versions that invert senses for descending maps
1317 >         */
1318 >
1319 >        final TreeMap.Entry<K,V> absLowest() {
1320 >            TreeMap.Entry<K,V> e =
1321 >                (fromStart ?  m.getFirstEntry() :
1322 >                 (loInclusive ? m.getCeilingEntry(lo) :
1323 >                                m.getHigherEntry(lo)));
1324 >            return (e == null || tooHigh(e.key)) ? null : e;
1325 >        }
1326 >
1327 >        final TreeMap.Entry<K,V> absHighest() {
1328 >            TreeMap.Entry<K,V> e =
1329 >                (toEnd ?  m.getLastEntry() :
1330 >                 (hiInclusive ?  m.getFloorEntry(hi) :
1331 >                                 m.getLowerEntry(hi)));
1332 >            return (e == null || tooLow(e.key)) ? null : e;
1333 >        }
1334 >
1335 >        final TreeMap.Entry<K,V> absCeiling(K key) {
1336 >            if (tooLow(key))
1337 >                return absLowest();
1338 >            TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1339 >            return (e == null || tooHigh(e.key)) ? null : e;
1340 >        }
1341 >
1342 >        final TreeMap.Entry<K,V> absHigher(K key) {
1343 >            if (tooLow(key))
1344 >                return absLowest();
1345 >            TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1346 >            return (e == null || tooHigh(e.key)) ? null : e;
1347 >        }
1348 >
1349 >        final TreeMap.Entry<K,V> absFloor(K key) {
1350 >            if (tooHigh(key))
1351 >                return absHighest();
1352 >            TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1353 >            return (e == null || tooLow(e.key)) ? null : e;
1354 >        }
1355 >
1356 >        final TreeMap.Entry<K,V> absLower(K key) {
1357 >            if (tooHigh(key))
1358 >                return absHighest();
1359 >            TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1360 >            return (e == null || tooLow(e.key)) ? null : e;
1361          }
1362  
1363 +        /** Returns the absolute high fence for ascending traversal */
1364 +        final TreeMap.Entry<K,V> absHighFence() {
1365 +            return (toEnd ? null : (hiInclusive ?
1366 +                                    m.getHigherEntry(hi) :
1367 +                                    m.getCeilingEntry(hi)));
1368 +        }
1369 +
1370 +        /** Return the absolute low fence for descending traversal  */
1371 +        final TreeMap.Entry<K,V> absLowFence() {
1372 +            return (fromStart ? null : (loInclusive ?
1373 +                                        m.getLowerEntry(lo) :
1374 +                                        m.getFloorEntry(lo)));
1375 +        }
1376 +
1377 +        // Abstract methods defined in ascending vs descending classes
1378 +        // These relay to the appropriate absolute versions
1379 +
1380 +        abstract TreeMap.Entry<K,V> subLowest();
1381 +        abstract TreeMap.Entry<K,V> subHighest();
1382 +        abstract TreeMap.Entry<K,V> subCeiling(K key);
1383 +        abstract TreeMap.Entry<K,V> subHigher(K key);
1384 +        abstract TreeMap.Entry<K,V> subFloor(K key);
1385 +        abstract TreeMap.Entry<K,V> subLower(K key);
1386 +
1387 +        /** Returns ascending iterator from the perspective of this submap */
1388 +        abstract Iterator<K> keyIterator();
1389 +
1390 +        /** Returns descending iterator from the perspective of this submap */
1391 +        abstract Iterator<K> descendingKeyIterator();
1392 +
1393 +        // public methods
1394 +
1395          public boolean isEmpty() {
1396 <            return entrySet().isEmpty();
1396 >            return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1397          }
1398  
1399 <        public boolean containsKey(Object key) {
1400 <            return inRange(key) && TreeMap.this.containsKey(key);
1399 >        public int size() {
1400 >            return (fromStart && toEnd) ? m.size() : entrySet().size();
1401          }
1402  
1403 <        public V get(Object key) {
1404 <            if (!inRange(key))
1076 <                return null;
1077 <            return TreeMap.this.get(key);
1403 >        public final boolean containsKey(Object key) {
1404 >            return inRange(key) && m.containsKey(key);
1405          }
1406  
1407 <        public V put(K key, V value) {
1407 >        public final V put(K key, V value) {
1408              if (!inRange(key))
1409                  throw new IllegalArgumentException("key out of range");
1410 <            return TreeMap.this.put(key, value);
1410 >            return m.put(key, value);
1411          }
1412  
1413 <        public V remove(Object key) {
1414 <            if (!inRange(key))
1088 <                return null;
1089 <            return TreeMap.this.remove(key);
1413 >        public final V get(Object key) {
1414 >            return !inRange(key)? null :  m.get(key);
1415          }
1416  
1417 <        public Comparator<? super K> comparator() {
1418 <            return comparator;
1417 >        public final V remove(Object key) {
1418 >            return !inRange(key)? null  : m.remove(key);
1419          }
1420  
1421 <        public K firstKey() {
1422 <            TreeMap.Entry<K,V> e = fromStart ? getFirstEntry() : getCeilingEntry(fromKey);
1098 <            K first = key(e);
1099 <            if (!toEnd && compare(first, toKey) >= 0)
1100 <                throw new NoSuchElementException();
1101 <            return first;
1421 >        public final Map.Entry<K,V> ceilingEntry(K key) {
1422 >            return exportEntry(subCeiling(key));
1423          }
1424  
1425 <        public K lastKey() {
1426 <            TreeMap.Entry<K,V> e = toEnd ? getLastEntry() : getLowerEntry(toKey);
1106 <            K last = key(e);
1107 <            if (!fromStart && compare(last, fromKey) < 0)
1108 <                throw new NoSuchElementException();
1109 <            return last;
1425 >        public final K ceilingKey(K key) {
1426 >            return keyOrNull(subCeiling(key));
1427          }
1428  
1429 <        public Map.Entry<K,V> firstEntry() {
1430 <            TreeMap.Entry<K,V> e = fromStart ?
1114 <                getFirstEntry() : getCeilingEntry(fromKey);
1115 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1116 <                return null;
1117 <            return e;
1429 >        public final Map.Entry<K,V> higherEntry(K key) {
1430 >            return exportEntry(subHigher(key));
1431          }
1432  
1433 <        public Map.Entry<K,V> lastEntry() {
1434 <            TreeMap.Entry<K,V> e = toEnd ?
1122 <                getLastEntry() : getLowerEntry(toKey);
1123 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1124 <                return null;
1125 <            return e;
1433 >        public final K higherKey(K key) {
1434 >            return keyOrNull(subHigher(key));
1435          }
1436  
1437 <        public Map.Entry<K,V> pollFirstEntry() {
1438 <            TreeMap.Entry<K,V> e = fromStart ?
1130 <                getFirstEntry() : getCeilingEntry(fromKey);
1131 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1132 <                return null;
1133 <            Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(e);
1134 <            deleteEntry(e);
1135 <            return result;
1437 >        public final Map.Entry<K,V> floorEntry(K key) {
1438 >            return exportEntry(subFloor(key));
1439          }
1440  
1441 <        public Map.Entry<K,V> pollLastEntry() {
1442 <            TreeMap.Entry<K,V> e = toEnd ?
1140 <                getLastEntry() : getLowerEntry(toKey);
1141 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1142 <                return null;
1143 <            Map.Entry<K,V> result = new AbstractMap.SimpleImmutableEntry<K,V>(e);
1144 <            deleteEntry(e);
1145 <            return result;
1441 >        public final K floorKey(K key) {
1442 >            return keyOrNull(subFloor(key));
1443          }
1444  
1445 <        private TreeMap.Entry<K,V> subceiling(K key) {
1446 <            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1150 <                getCeilingEntry(fromKey) : getCeilingEntry(key);
1151 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1152 <                return null;
1153 <            return e;
1445 >        public final Map.Entry<K,V> lowerEntry(K key) {
1446 >            return exportEntry(subLower(key));
1447          }
1448  
1449 <        public Map.Entry<K,V> ceilingEntry(K key) {
1450 <            TreeMap.Entry<K,V> e = subceiling(key);
1158 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1449 >        public final K lowerKey(K key) {
1450 >            return keyOrNull(subLower(key));
1451          }
1452  
1453 <        public K ceilingKey(K key) {
1454 <            TreeMap.Entry<K,V> e = subceiling(key);
1163 <            return e == null? null : e.key;
1453 >        public final K firstKey() {
1454 >            return key(subLowest());
1455          }
1456  
1457 <
1458 <        private TreeMap.Entry<K,V> subhigher(K key) {
1168 <            TreeMap.Entry<K,V> e = (!fromStart && compare(key, fromKey) < 0)?
1169 <                getCeilingEntry(fromKey) : getHigherEntry(key);
1170 <            if (e == null || (!toEnd && compare(e.key, toKey) >= 0))
1171 <                return null;
1172 <            return e;
1457 >        public final K lastKey() {
1458 >            return key(subHighest());
1459          }
1460  
1461 <        public Map.Entry<K,V> higherEntry(K key) {
1462 <            TreeMap.Entry<K,V> e = subhigher(key);
1177 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1461 >        public final Map.Entry<K,V> firstEntry() {
1462 >            return exportEntry(subLowest());
1463          }
1464  
1465 <        public K higherKey(K key) {
1466 <            TreeMap.Entry<K,V> e = subhigher(key);
1182 <            return e == null? null : e.key;
1465 >        public final Map.Entry<K,V> lastEntry() {
1466 >            return exportEntry(subHighest());
1467          }
1468  
1469 <        private TreeMap.Entry<K,V> subfloor(K key) {
1470 <            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1471 <                getLowerEntry(toKey) : getFloorEntry(key);
1472 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1473 <                return null;
1474 <            return e;
1469 >        public final Map.Entry<K,V> pollFirstEntry() {
1470 >            TreeMap.Entry<K,V> e = subLowest();
1471 >            Map.Entry<K,V> result = exportEntry(e);
1472 >            if (e != null)
1473 >                m.deleteEntry(e);
1474 >            return result;
1475          }
1476  
1477 <        public Map.Entry<K,V> floorEntry(K key) {
1478 <            TreeMap.Entry<K,V> e = subfloor(key);
1479 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1477 >        public final Map.Entry<K,V> pollLastEntry() {
1478 >            TreeMap.Entry<K,V> e = subHighest();
1479 >            Map.Entry<K,V> result = exportEntry(e);
1480 >            if (e != null)
1481 >                m.deleteEntry(e);
1482 >            return result;
1483          }
1484  
1485 <        public K floorKey(K key) {
1486 <            TreeMap.Entry<K,V> e = subfloor(key);
1487 <            return e == null? null : e.key;
1485 >        // Views
1486 >        transient NavigableMap<K,V> descendingMapView = null;
1487 >        transient EntrySetView entrySetView = null;
1488 >        transient KeySet<K> navigableKeySetView = null;
1489 >
1490 >        public final NavigableSet<K> navigableKeySet() {
1491 >            KeySet<K> nksv = navigableKeySetView;
1492 >            return (nksv != null) ? nksv :
1493 >                (navigableKeySetView = new TreeMap.KeySet(this));
1494          }
1495  
1496 <        private TreeMap.Entry<K,V> sublower(K key) {
1497 <            TreeMap.Entry<K,V> e = (!toEnd && compare(key, toKey) >= 0)?
1205 <                getLowerEntry(toKey) :  getLowerEntry(key);
1206 <            if (e == null || (!fromStart && compare(e.key, fromKey) < 0))
1207 <                return null;
1208 <            return e;
1496 >        public final Set<K> keySet() {
1497 >            return navigableKeySet();
1498          }
1499  
1500 <        public Map.Entry<K,V> lowerEntry(K key) {
1501 <            TreeMap.Entry<K,V> e = sublower(key);
1213 <            return e == null? null : new AbstractMap.SimpleImmutableEntry<K,V>(e);
1500 >        public NavigableSet<K> descendingKeySet() {
1501 >            return descendingMap().navigableKeySet();
1502          }
1503  
1504 <        public K lowerKey(K key) {
1505 <            TreeMap.Entry<K,V> e = sublower(key);
1218 <            return e == null? null : e.key;
1504 >        public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1505 >            return subMap(fromKey, true, toKey, false);
1506          }
1507  
1508 <        private transient Set<Map.Entry<K,V>> entrySet = null;
1508 >        public final SortedMap<K,V> headMap(K toKey) {
1509 >            return headMap(toKey, false);
1510 >        }
1511  
1512 <        public Set<Map.Entry<K,V>> entrySet() {
1513 <            Set<Map.Entry<K,V>> es = entrySet;
1225 <            return (es != null)? es : (entrySet = new EntrySetView());
1512 >        public final SortedMap<K,V> tailMap(K fromKey) {
1513 >            return tailMap(fromKey, true);
1514          }
1515  
1516 <        private class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1516 >        // View classes
1517 >
1518 >        abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1519              private transient int size = -1, sizeModCount;
1520  
1521              public int size() {
1522 <                if (size == -1 || sizeModCount != TreeMap.this.modCount) {
1523 <                    size = 0;  sizeModCount = TreeMap.this.modCount;
1522 >                if (fromStart && toEnd)
1523 >                    return m.size();
1524 >                if (size == -1 || sizeModCount != m.modCount) {
1525 >                    sizeModCount = m.modCount;
1526 >                    size = 0;
1527                      Iterator i = iterator();
1528                      while (i.hasNext()) {
1529                          size++;
# Line 1241 | Line 1534 | public class TreeMap<K,V>
1534              }
1535  
1536              public boolean isEmpty() {
1537 <                return !iterator().hasNext();
1537 >                TreeMap.Entry<K,V> n = absLowest();
1538 >                return n == null || tooHigh(n.key);
1539              }
1540  
1541              public boolean contains(Object o) {
# Line 1251 | Line 1545 | public class TreeMap<K,V>
1545                  K key = entry.getKey();
1546                  if (!inRange(key))
1547                      return false;
1548 <                TreeMap.Entry node = getEntry(key);
1548 >                TreeMap.Entry node = m.getEntry(key);
1549                  return node != null &&
1550 <                       valEquals(node.getValue(), entry.getValue());
1550 >                    valEquals(node.getValue(), entry.getValue());
1551              }
1552  
1553              public boolean remove(Object o) {
# Line 1263 | Line 1557 | public class TreeMap<K,V>
1557                  K key = entry.getKey();
1558                  if (!inRange(key))
1559                      return false;
1560 <                TreeMap.Entry<K,V> node = getEntry(key);
1560 >                TreeMap.Entry<K,V> node = m.getEntry(key);
1561                  if (node!=null && valEquals(node.getValue(),entry.getValue())){
1562 <                    deleteEntry(node);
1562 >                    m.deleteEntry(node);
1563                      return true;
1564                  }
1565                  return false;
1566              }
1273
1274            public Iterator<Map.Entry<K,V>> iterator() {
1275                return new SubMapEntryIterator(
1276                    (fromStart ? getFirstEntry() : getCeilingEntry(fromKey)),
1277                    (toEnd     ? null            : getCeilingEntry(toKey)));
1278            }
1279        }
1280
1281        private transient Set<Map.Entry<K,V>> descendingEntrySetView = null;
1282        private transient Set<K> descendingKeySetView = null;
1283
1284        public Set<Map.Entry<K,V>> descendingEntrySet() {
1285            Set<Map.Entry<K,V>> es = descendingEntrySetView;
1286            return (es != null) ? es :
1287                (descendingEntrySetView = new DescendingEntrySetView());
1567          }
1568  
1569 <        public Set<K> descendingKeySet() {
1570 <            Set<K> ks = descendingKeySetView;
1571 <            return (ks != null) ? ks :
1572 <                (descendingKeySetView = new DescendingKeySetView());
1573 <        }
1569 >        /**
1570 >         * Iterators for SubMaps
1571 >         */
1572 >        abstract class SubMapIterator<T> implements Iterator<T> {
1573 >            TreeMap.Entry<K,V> lastReturned;
1574 >            TreeMap.Entry<K,V> next;
1575 >            final Object fenceKey;
1576 >            int expectedModCount;
1577  
1578 <        private class DescendingEntrySetView extends EntrySetView {
1579 <            public Iterator<Map.Entry<K,V>> iterator() {
1580 <                return new DescendingSubMapEntryIterator
1581 <                    ((toEnd     ? getLastEntry()  : getLowerEntry(toKey)),
1582 <                     (fromStart ? null            : getLowerEntry(fromKey)));
1578 >            SubMapIterator(TreeMap.Entry<K,V> first,
1579 >                           TreeMap.Entry<K,V> fence) {
1580 >                expectedModCount = m.modCount;
1581 >                lastReturned = null;
1582 >                next = first;
1583 >                fenceKey = fence == null ? UNBOUNDED : fence.key;
1584              }
1302        }
1303
1304        private class DescendingKeySetView extends AbstractSet<K> {
1305            public Iterator<K> iterator() {
1306                return new Iterator<K>() {
1307                    private Iterator<Entry<K,V>> i = descendingEntrySet().iterator();
1585  
1586 <                    public boolean hasNext() { return i.hasNext(); }
1587 <                    public K next() { return i.next().getKey(); }
1311 <                    public void remove() { i.remove(); }
1312 <                };
1586 >            public final boolean hasNext() {
1587 >                return next != null && next.key != fenceKey;
1588              }
1589  
1590 <            public int size() {
1591 <                return SubMap.this.size();
1590 >            final TreeMap.Entry<K,V> nextEntry() {
1591 >                TreeMap.Entry<K,V> e = next;
1592 >                if (e == null || e.key == fenceKey)
1593 >                    throw new NoSuchElementException();
1594 >                if (m.modCount != expectedModCount)
1595 >                    throw new ConcurrentModificationException();
1596 >                next = successor(e);
1597 >                lastReturned = e;
1598 >                return e;
1599              }
1600  
1601 <            public boolean contains(Object k) {
1602 <                return SubMap.this.containsKey(k);
1601 >            final TreeMap.Entry<K,V> prevEntry() {
1602 >                TreeMap.Entry<K,V> e = next;
1603 >                if (e == null || e.key == fenceKey)
1604 >                    throw new NoSuchElementException();
1605 >                if (m.modCount != expectedModCount)
1606 >                    throw new ConcurrentModificationException();
1607 >                next = predecessor(e);
1608 >                lastReturned = e;
1609 >                return e;
1610              }
1322        }
1611  
1612 <        public NavigableMap<K,V> navigableSubMap(K fromKey, K toKey) {
1613 <            if (!inRange2(fromKey))
1614 <                throw new IllegalArgumentException("fromKey out of range");
1615 <            if (!inRange2(toKey))
1616 <                throw new IllegalArgumentException("toKey out of range");
1617 <            return new SubMap(fromKey, toKey);
1618 <        }
1612 >            final void removeAscending() {
1613 >                if (lastReturned == null)
1614 >                    throw new IllegalStateException();
1615 >                if (m.modCount != expectedModCount)
1616 >                    throw new ConcurrentModificationException();
1617 >                // deleted entries are replaced by their successors
1618 >                if (lastReturned.left != null && lastReturned.right != null)
1619 >                    next = lastReturned;
1620 >                m.deleteEntry(lastReturned);
1621 >                lastReturned = null;
1622 >                expectedModCount = m.modCount;
1623 >            }
1624  
1625 <        public NavigableMap<K,V> navigableHeadMap(K toKey) {
1626 <            if (!inRange2(toKey))
1627 <                throw new IllegalArgumentException("toKey out of range");
1628 <            return new SubMap(fromStart, fromKey, false, toKey);
1629 <        }
1625 >            final void removeDescending() {
1626 >                if (lastReturned == null)
1627 >                    throw new IllegalStateException();
1628 >                if (m.modCount != expectedModCount)
1629 >                    throw new ConcurrentModificationException();
1630 >                m.deleteEntry(lastReturned);
1631 >                lastReturned = null;
1632 >                expectedModCount = m.modCount;
1633 >            }
1634  
1338        public NavigableMap<K,V> navigableTailMap(K fromKey) {
1339            if (!inRange2(fromKey))
1340                throw new IllegalArgumentException("fromKey out of range");
1341            return new SubMap(false, fromKey, toEnd, toKey);
1635          }
1636  
1637 <        public SortedMap<K,V> subMap(K fromKey, K toKey) {
1638 <            return navigableSubMap(fromKey, toKey);
1637 >        final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1638 >            SubMapEntryIterator(TreeMap.Entry<K,V> first,
1639 >                                TreeMap.Entry<K,V> fence) {
1640 >                super(first, fence);
1641 >            }
1642 >            public Map.Entry<K,V> next() {
1643 >                return nextEntry();
1644 >            }
1645 >            public void remove() {
1646 >                removeAscending();
1647 >            }
1648          }
1649  
1650 <        public SortedMap<K,V> headMap(K toKey) {
1651 <            return navigableHeadMap(toKey);
1650 >        final class SubMapKeyIterator extends SubMapIterator<K> {
1651 >            SubMapKeyIterator(TreeMap.Entry<K,V> first,
1652 >                              TreeMap.Entry<K,V> fence) {
1653 >                super(first, fence);
1654 >            }
1655 >            public K next() {
1656 >                return nextEntry().key;
1657 >            }
1658 >            public void remove() {
1659 >                removeAscending();
1660 >            }
1661          }
1662  
1663 <        public SortedMap<K,V> tailMap(K fromKey) {
1664 <            return navigableTailMap(fromKey);
1665 <        }
1663 >        final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1664 >            DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1665 >                                          TreeMap.Entry<K,V> fence) {
1666 >                super(last, fence);
1667 >            }
1668  
1669 <        private boolean inRange(Object key) {
1670 <            return (fromStart || compare(key, fromKey) >= 0) &&
1671 <                   (toEnd     || compare(key, toKey)   <  0);
1669 >            public Map.Entry<K,V> next() {
1670 >                return prevEntry();
1671 >            }
1672 >            public void remove() {
1673 >                removeDescending();
1674 >            }
1675          }
1676  
1677 <        // This form allows the high endpoint (as well as all legit keys)
1678 <        private boolean inRange2(Object key) {
1679 <            return (fromStart || compare(key, fromKey) >= 0) &&
1680 <                   (toEnd     || compare(key, toKey)   <= 0);
1677 >        final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
1678 >            DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1679 >                                        TreeMap.Entry<K,V> fence) {
1680 >                super(last, fence);
1681 >            }
1682 >            public K next() {
1683 >                return prevEntry().key;
1684 >            }
1685 >            public void remove() {
1686 >                removeDescending();
1687 >            }
1688          }
1689      }
1690  
1691      /**
1692 <     * TreeMap Iterator.
1692 >     * @serial include
1693       */
1694 <    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1695 <        int expectedModCount = TreeMap.this.modCount;
1373 <        Entry<K,V> lastReturned = null;
1374 <        Entry<K,V> next;
1694 >    static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1695 >        private static final long serialVersionUID = 912986545866124060L;
1696  
1697 <        PrivateEntryIterator(Entry<K,V> first) {
1698 <            next = first;
1697 >        AscendingSubMap(TreeMap<K,V> m,
1698 >                        boolean fromStart, K lo, boolean loInclusive,
1699 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1700 >            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1701          }
1702  
1703 <        public boolean hasNext() {
1704 <            return next != null;
1703 >        public Comparator<? super K> comparator() {
1704 >            return m.comparator();
1705          }
1706  
1707 <        Entry<K,V> nextEntry() {
1708 <            if (next == null)
1709 <                throw new NoSuchElementException();
1710 <            if (modCount != expectedModCount)
1711 <                throw new ConcurrentModificationException();
1712 <            lastReturned = next;
1713 <            next = successor(next);
1714 <            return lastReturned;
1707 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1708 >                                        K toKey,   boolean toInclusive) {
1709 >            if (!inRange(fromKey, fromInclusive))
1710 >                throw new IllegalArgumentException("fromKey out of range");
1711 >            if (!inRange(toKey, toInclusive))
1712 >                throw new IllegalArgumentException("toKey out of range");
1713 >            return new AscendingSubMap(m,
1714 >                                       false, fromKey, fromInclusive,
1715 >                                       false, toKey,   toInclusive);
1716          }
1717  
1718 <        public void remove() {
1719 <            if (lastReturned == null)
1720 <                throw new IllegalStateException();
1721 <            if (modCount != expectedModCount)
1722 <                throw new ConcurrentModificationException();
1723 <            if (lastReturned.left != null && lastReturned.right != null)
1400 <                next = lastReturned;
1401 <            deleteEntry(lastReturned);
1402 <            expectedModCount++;
1403 <            lastReturned = null;
1718 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1719 >            if (!inRange(toKey, inclusive))
1720 >                throw new IllegalArgumentException("toKey out of range");
1721 >            return new AscendingSubMap(m,
1722 >                                       fromStart, lo,    loInclusive,
1723 >                                       false,     toKey, inclusive);
1724          }
1405    }
1725  
1726 <    class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1727 <        EntryIterator(Entry<K,V> first) {
1728 <            super(first);
1729 <        }
1730 <        public Map.Entry<K,V> next() {
1731 <            return nextEntry();
1726 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1727 >            if (!inRange(fromKey, inclusive))
1728 >                throw new IllegalArgumentException("fromKey out of range");
1729 >            return new AscendingSubMap(m,
1730 >                                       false, fromKey, inclusive,
1731 >                                       toEnd, hi,      hiInclusive);
1732          }
1414    }
1733  
1734 <    class KeyIterator extends PrivateEntryIterator<K> {
1735 <        KeyIterator(Entry<K,V> first) {
1736 <            super(first);
1734 >        public NavigableMap<K,V> descendingMap() {
1735 >            NavigableMap<K,V> mv = descendingMapView;
1736 >            return (mv != null) ? mv :
1737 >                (descendingMapView =
1738 >                 new DescendingSubMap(m,
1739 >                                      fromStart, lo, loInclusive,
1740 >                                      toEnd,     hi, hiInclusive));
1741          }
1420        public K next() {
1421            return nextEntry().key;
1422        }
1423    }
1742  
1743 <    class ValueIterator extends PrivateEntryIterator<V> {
1744 <        ValueIterator(Entry<K,V> first) {
1427 <            super(first);
1428 <        }
1429 <        public V next() {
1430 <            return nextEntry().value;
1743 >        Iterator<K> keyIterator() {
1744 >            return new SubMapKeyIterator(absLowest(), absHighFence());
1745          }
1432    }
1433
1434    class SubMapEntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1435        private final K firstExcludedKey;
1746  
1747 <        SubMapEntryIterator(Entry<K,V> first, Entry<K,V> firstExcluded) {
1748 <            super(first);
1439 <            firstExcludedKey = (firstExcluded == null
1440 <                                ? null
1441 <                                : firstExcluded.key);
1747 >        Iterator<K> descendingKeyIterator() {
1748 >            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1749          }
1750  
1751 <        public boolean hasNext() {
1752 <            return next != null && next.key != firstExcludedKey;
1751 >        final class AscendingEntrySetView extends EntrySetView {
1752 >            public Iterator<Map.Entry<K,V>> iterator() {
1753 >                return new SubMapEntryIterator(absLowest(), absHighFence());
1754 >            }
1755          }
1756  
1757 <        public Map.Entry<K,V> next() {
1758 <            if (next == null || next.key == firstExcludedKey)
1759 <                throw new NoSuchElementException();
1451 <            return nextEntry();
1757 >        public Set<Map.Entry<K,V>> entrySet() {
1758 >            EntrySetView es = entrySetView;
1759 >            return (es != null) ? es : new AscendingEntrySetView();
1760          }
1761 +
1762 +        TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
1763 +        TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
1764 +        TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
1765 +        TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
1766 +        TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
1767 +        TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
1768      }
1769  
1770      /**
1771 <     * Base for Descending Iterators.
1771 >     * @serial include
1772       */
1773 <    abstract class DescendingPrivateEntryIterator<T> extends PrivateEntryIterator<T> {
1774 <        DescendingPrivateEntryIterator(Entry<K,V> first) {
1775 <            super(first);
1773 >    static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
1774 >        private static final long serialVersionUID = 912986545866120460L;
1775 >        DescendingSubMap(TreeMap<K,V> m,
1776 >                        boolean fromStart, K lo, boolean loInclusive,
1777 >                        boolean toEnd,     K hi, boolean hiInclusive) {
1778 >            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1779          }
1780  
1781 <        Entry<K,V> nextEntry() {
1782 <            if (next == null)
1465 <                throw new NoSuchElementException();
1466 <            if (modCount != expectedModCount)
1467 <                throw new ConcurrentModificationException();
1468 <            lastReturned = next;
1469 <            next = predecessor(next);
1470 <            return lastReturned;
1471 <        }
1472 <    }
1781 >        private final Comparator<? super K> reverseComparator =
1782 >            Collections.reverseOrder(m.comparator);
1783  
1784 <    class DescendingEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1785 <        DescendingEntryIterator(Entry<K,V> first) {
1476 <            super(first);
1784 >        public Comparator<? super K> comparator() {
1785 >            return reverseComparator;
1786          }
1787 <        public Map.Entry<K,V> next() {
1788 <            return nextEntry();
1787 >
1788 >        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1789 >                                        K toKey,   boolean toInclusive) {
1790 >            if (!inRange(fromKey, fromInclusive))
1791 >                throw new IllegalArgumentException("fromKey out of range");
1792 >            if (!inRange(toKey, toInclusive))
1793 >                throw new IllegalArgumentException("toKey out of range");
1794 >            return new DescendingSubMap(m,
1795 >                                        false, toKey,   toInclusive,
1796 >                                        false, fromKey, fromInclusive);
1797          }
1481    }
1798  
1799 <    class DescendingKeyIterator extends DescendingPrivateEntryIterator<K> {
1800 <        DescendingKeyIterator(Entry<K,V> first) {
1801 <            super(first);
1799 >        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1800 >            if (!inRange(toKey, inclusive))
1801 >                throw new IllegalArgumentException("toKey out of range");
1802 >            return new DescendingSubMap(m,
1803 >                                        false, toKey, inclusive,
1804 >                                        toEnd, hi,    hiInclusive);
1805          }
1806 <        public K next() {
1807 <            return nextEntry().key;
1806 >
1807 >        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){
1808 >            if (!inRange(fromKey, inclusive))
1809 >                throw new IllegalArgumentException("fromKey out of range");
1810 >            return new DescendingSubMap(m,
1811 >                                        fromStart, lo, loInclusive,
1812 >                                        false, fromKey, inclusive);
1813          }
1490    }
1814  
1815 +        public NavigableMap<K,V> descendingMap() {
1816 +            NavigableMap<K,V> mv = descendingMapView;
1817 +            return (mv != null) ? mv :
1818 +                (descendingMapView =
1819 +                 new AscendingSubMap(m,
1820 +                                     fromStart, lo, loInclusive,
1821 +                                     toEnd,     hi, hiInclusive));
1822 +        }
1823  
1824 <    class DescendingSubMapEntryIterator extends DescendingPrivateEntryIterator<Map.Entry<K,V>> {
1825 <        private final K lastExcludedKey;
1824 >        Iterator<K> keyIterator() {
1825 >            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1826 >        }
1827  
1828 <        DescendingSubMapEntryIterator(Entry<K,V> last, Entry<K,V> lastExcluded) {
1829 <            super(last);
1498 <            lastExcludedKey = (lastExcluded == null
1499 <                                ? null
1500 <                                : lastExcluded.key);
1828 >        Iterator<K> descendingKeyIterator() {
1829 >            return new SubMapKeyIterator(absLowest(), absHighFence());
1830          }
1831  
1832 <        public boolean hasNext() {
1833 <            return next != null && next.key != lastExcludedKey;
1832 >        final class DescendingEntrySetView extends EntrySetView {
1833 >            public Iterator<Map.Entry<K,V>> iterator() {
1834 >                return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
1835 >            }
1836          }
1837  
1838 <        public Map.Entry<K,V> next() {
1839 <            if (next == null || next.key == lastExcludedKey)
1840 <                throw new NoSuchElementException();
1510 <            return nextEntry();
1838 >        public Set<Map.Entry<K,V>> entrySet() {
1839 >            EntrySetView es = entrySetView;
1840 >            return (es != null) ? es : new DescendingEntrySetView();
1841          }
1842  
1843 +        TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
1844 +        TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
1845 +        TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
1846 +        TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
1847 +        TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
1848 +        TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
1849      }
1850  
1851      /**
1852 <     * Compares two keys using the correct comparison method for this TreeMap.
1852 >     * This class exists solely for the sake of serialization
1853 >     * compatibility with previous releases of TreeMap that did not
1854 >     * support NavigableMap.  It translates an old-version SubMap into
1855 >     * a new-version AscendingSubMap. This class is never otherwise
1856 >     * used.
1857 >     *
1858 >     * @serial include
1859       */
1860 <    private int compare(Object k1, Object k2) {
1861 <        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1862 <                                : comparator.compare((K)k1, (K)k2);
1860 >    private class SubMap extends AbstractMap<K,V>
1861 >        implements SortedMap<K,V>, java.io.Serializable {
1862 >        private static final long serialVersionUID = -6520786458950516097L;
1863 >        private boolean fromStart = false, toEnd = false;
1864 >        private K fromKey, toKey;
1865 >        private Object readResolve() {
1866 >            return new AscendingSubMap(TreeMap.this,
1867 >                                       fromStart, fromKey, true,
1868 >                                       toEnd, toKey, false);
1869 >        }
1870 >        public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1871 >        public K lastKey() { throw new InternalError(); }
1872 >        public K firstKey() { throw new InternalError(); }
1873 >        public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1874 >        public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1875 >        public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1876 >        public Comparator<? super K> comparator() { throw new InternalError(); }
1877      }
1878  
1879 <    /**
1880 <     * Test two values for equality.  Differs from o1.equals(o2) only in
1525 <     * that it copes with <tt>null</tt> o1 properly.
1526 <     */
1527 <    private static boolean valEquals(Object o1, Object o2) {
1528 <        return (o1==null ? o2==null : o1.equals(o2));
1529 <    }
1879 >
1880 >    // Red-black mechanics
1881  
1882      private static final boolean RED   = false;
1883      private static final boolean BLACK = true;
# Line 1536 | Line 1887 | public class TreeMap<K,V>
1887       * user (see Map.Entry).
1888       */
1889  
1890 <    static class Entry<K,V> implements Map.Entry<K,V> {
1891 <        K key;
1890 >    static final class Entry<K,V> implements Map.Entry<K,V> {
1891 >        K key;
1892          V value;
1893          Entry<K,V> left = null;
1894          Entry<K,V> right = null;
# Line 1588 | Line 1939 | public class TreeMap<K,V>
1939          public boolean equals(Object o) {
1940              if (!(o instanceof Map.Entry))
1941                  return false;
1942 <            Map.Entry e = (Map.Entry)o;
1942 >            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1943  
1944              return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1945          }
# Line 1608 | Line 1959 | public class TreeMap<K,V>
1959       * Returns the first Entry in the TreeMap (according to the TreeMap's
1960       * key-sort function).  Returns null if the TreeMap is empty.
1961       */
1962 <    private Entry<K,V> getFirstEntry() {
1962 >    final Entry<K,V> getFirstEntry() {
1963          Entry<K,V> p = root;
1964          if (p != null)
1965              while (p.left != null)
# Line 1620 | Line 1971 | public class TreeMap<K,V>
1971       * Returns the last Entry in the TreeMap (according to the TreeMap's
1972       * key-sort function).  Returns null if the TreeMap is empty.
1973       */
1974 <    private Entry<K,V> getLastEntry() {
1974 >    final Entry<K,V> getLastEntry() {
1975          Entry<K,V> p = root;
1976          if (p != null)
1977              while (p.right != null)
# Line 1631 | Line 1982 | public class TreeMap<K,V>
1982      /**
1983       * Returns the successor of the specified Entry, or null if no such.
1984       */
1985 <    private Entry<K,V> successor(Entry<K,V> t) {
1985 >    static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
1986          if (t == null)
1987              return null;
1988          else if (t.right != null) {
# Line 1653 | Line 2004 | public class TreeMap<K,V>
2004      /**
2005       * Returns the predecessor of the specified Entry, or null if no such.
2006       */
2007 <    private Entry<K,V> predecessor(Entry<K,V> t) {
2007 >    static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
2008          if (t == null)
2009              return null;
2010          else if (t.left != null) {
# Line 1692 | Line 2043 | public class TreeMap<K,V>
2043  
2044      private static <K,V> void setColor(Entry<K,V> p, boolean c) {
2045          if (p != null)
2046 <            p.color = c;
2046 >            p.color = c;
2047      }
2048  
2049      private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
# Line 1703 | Line 2054 | public class TreeMap<K,V>
2054          return (p == null) ? null: p.right;
2055      }
2056  
2057 <    /** From CLR **/
2057 >    /** From CLR */
2058      private void rotateLeft(Entry<K,V> p) {
2059 <        Entry<K,V> r = p.right;
2060 <        p.right = r.left;
2061 <        if (r.left != null)
2062 <            r.left.parent = p;
2063 <        r.parent = p.parent;
2064 <        if (p.parent == null)
2065 <            root = r;
2066 <        else if (p.parent.left == p)
2067 <            p.parent.left = r;
2068 <        else
2069 <            p.parent.right = r;
2070 <        r.left = p;
2071 <        p.parent = r;
2059 >        if (p != null) {
2060 >            Entry<K,V> r = p.right;
2061 >            p.right = r.left;
2062 >            if (r.left != null)
2063 >                r.left.parent = p;
2064 >            r.parent = p.parent;
2065 >            if (p.parent == null)
2066 >                root = r;
2067 >            else if (p.parent.left == p)
2068 >                p.parent.left = r;
2069 >            else
2070 >                p.parent.right = r;
2071 >            r.left = p;
2072 >            p.parent = r;
2073 >        }
2074      }
2075  
2076 <    /** From CLR **/
2076 >    /** From CLR */
2077      private void rotateRight(Entry<K,V> p) {
2078 <        Entry<K,V> l = p.left;
2079 <        p.left = l.right;
2080 <        if (l.right != null) l.right.parent = p;
2081 <        l.parent = p.parent;
2082 <        if (p.parent == null)
2083 <            root = l;
2084 <        else if (p.parent.right == p)
2085 <            p.parent.right = l;
2086 <        else p.parent.left = l;
2087 <        l.right = p;
2088 <        p.parent = l;
2078 >        if (p != null) {
2079 >            Entry<K,V> l = p.left;
2080 >            p.left = l.right;
2081 >            if (l.right != null) l.right.parent = p;
2082 >            l.parent = p.parent;
2083 >            if (p.parent == null)
2084 >                root = l;
2085 >            else if (p.parent.right == p)
2086 >                p.parent.right = l;
2087 >            else p.parent.left = l;
2088 >            l.right = p;
2089 >            p.parent = l;
2090 >        }
2091      }
2092  
2093 <
1739 <    /** From CLR **/
2093 >    /** From CLR */
2094      private void fixAfterInsertion(Entry<K,V> x) {
2095          x.color = RED;
2096  
# Line 1755 | Line 2109 | public class TreeMap<K,V>
2109                      }
2110                      setColor(parentOf(x), BLACK);
2111                      setColor(parentOf(parentOf(x)), RED);
2112 <                    if (parentOf(parentOf(x)) != null)
1759 <                        rotateRight(parentOf(parentOf(x)));
2112 >                    rotateRight(parentOf(parentOf(x)));
2113                  }
2114              } else {
2115                  Entry<K,V> y = leftOf(parentOf(parentOf(x)));
# Line 1770 | Line 2123 | public class TreeMap<K,V>
2123                          x = parentOf(x);
2124                          rotateRight(x);
2125                      }
2126 <                    setColor(parentOf(x),  BLACK);
2126 >                    setColor(parentOf(x), BLACK);
2127                      setColor(parentOf(parentOf(x)), RED);
2128 <                    if (parentOf(parentOf(x)) != null)
1776 <                        rotateLeft(parentOf(parentOf(x)));
2128 >                    rotateLeft(parentOf(parentOf(x)));
2129                  }
2130              }
2131          }
# Line 1783 | Line 2135 | public class TreeMap<K,V>
2135      /**
2136       * Delete node p, and then rebalance the tree.
2137       */
1786
2138      private void deleteEntry(Entry<K,V> p) {
2139 <        decrementSize();
2139 >        modCount++;
2140 >        size--;
2141  
2142          // If strictly internal, copy successor's element to p and then make p
2143          // point to successor.
# Line 1831 | Line 2183 | public class TreeMap<K,V>
2183          }
2184      }
2185  
2186 <    /** From CLR **/
2186 >    /** From CLR */
2187      private void fixAfterDeletion(Entry<K,V> x) {
2188          while (x != root && colorOf(x) == BLACK) {
2189              if (x == leftOf(parentOf(x))) {
# Line 1846 | Line 2198 | public class TreeMap<K,V>
2198  
2199                  if (colorOf(leftOf(sib))  == BLACK &&
2200                      colorOf(rightOf(sib)) == BLACK) {
2201 <                    setColor(sib,  RED);
2201 >                    setColor(sib, RED);
2202                      x = parentOf(x);
2203                  } else {
2204                      if (colorOf(rightOf(sib)) == BLACK) {
# Line 1873 | Line 2225 | public class TreeMap<K,V>
2225  
2226                  if (colorOf(rightOf(sib)) == BLACK &&
2227                      colorOf(leftOf(sib)) == BLACK) {
2228 <                    setColor(sib,  RED);
2228 >                    setColor(sib, RED);
2229                      x = parentOf(x);
2230                  } else {
2231                      if (colorOf(leftOf(sib)) == BLACK) {
# Line 1924 | Line 2276 | public class TreeMap<K,V>
2276          }
2277      }
2278  
1927
1928
2279      /**
2280       * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2281       * deserialize it).
# Line 1941 | Line 2291 | public class TreeMap<K,V>
2291          buildFromSorted(size, null, s, null);
2292      }
2293  
2294 <    /** Intended to be called only from TreeSet.readObject **/
2294 >    /** Intended to be called only from TreeSet.readObject */
2295      void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2296          throws java.io.IOException, ClassNotFoundException {
2297          buildFromSorted(size, null, s, defaultVal);
2298      }
2299  
2300 <    /** Intended to be called only from TreeSet.addAll **/
2300 >    /** Intended to be called only from TreeSet.addAll */
2301      void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2302 <        try {
2303 <            buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2304 <        } catch (java.io.IOException cannotHappen) {
2305 <        } catch (ClassNotFoundException cannotHappen) {
2306 <        }
2302 >        try {
2303 >            buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2304 >        } catch (java.io.IOException cannotHappen) {
2305 >        } catch (ClassNotFoundException cannotHappen) {
2306 >        }
2307      }
2308  
2309  
# Line 1987 | Line 2337 | public class TreeMap<K,V>
2337       * @throws ClassNotFoundException propagated from readObject.
2338       *         This cannot occur if str is null.
2339       */
2340 <    private
2341 <    void buildFromSorted(int size, Iterator it,
2342 <                         java.io.ObjectInputStream str,
1993 <                         V defaultVal)
2340 >    private void buildFromSorted(int size, Iterator it,
2341 >                                 java.io.ObjectInputStream str,
2342 >                                 V defaultVal)
2343          throws  java.io.IOException, ClassNotFoundException {
2344          this.size = size;
2345 <        root =
2346 <            buildFromSorted(0, 0, size-1, computeRedLevel(size),
1998 <                            it, str, defaultVal);
2345 >        root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2346 >                               it, str, defaultVal);
2347      }
2348  
2349      /**
2350       * Recursive "helper method" that does the real work of the
2351 <     * of the previous method.  Identically named parameters have
2351 >     * previous method.  Identically named parameters have
2352       * identical definitions.  Additional parameters are documented below.
2353       * It is assumed that the comparator and size fields of the TreeMap are
2354       * already set prior to calling this method.  (It ignores both fields.)
# Line 2013 | Line 2361 | public class TreeMap<K,V>
2361       *        Must be equal to computeRedLevel for tree of this size.
2362       */
2363      private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2364 <                                             int redLevel,
2365 <                                             Iterator it,
2366 <                                             java.io.ObjectInputStream str,
2367 <                                             V defaultVal)
2364 >                                             int redLevel,
2365 >                                             Iterator it,
2366 >                                             java.io.ObjectInputStream str,
2367 >                                             V defaultVal)
2368          throws  java.io.IOException, ClassNotFoundException {
2369          /*
2370           * Strategy: The root is the middlemost element. To get to it, we
# Line 2032 | Line 2380 | public class TreeMap<K,V>
2380  
2381          if (hi < lo) return null;
2382  
2383 <        int mid = (lo + hi) / 2;
2383 >        int mid = (lo + hi) >>> 1;
2384  
2385          Entry<K,V> left  = null;
2386          if (lo < mid)
2387              left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2388 <                                   it, str, defaultVal);
2388 >                                   it, str, defaultVal);
2389  
2390          // extract key and/or value from iterator or stream
2391          K key;
# Line 2069 | Line 2417 | public class TreeMap<K,V>
2417  
2418          if (mid < hi) {
2419              Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2420 <                                               it, str, defaultVal);
2420 >                                               it, str, defaultVal);
2421              middle.right = right;
2422              right.parent = middle;
2423          }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines